F -
ey
T e
| AR
- \Ewy
T
B ey

Creating Apps
with React
Native

Deliver Cross-Platform o Crash,
5 Star Apps

M. Holmes He

APICSS”

M. Holmes He

Creating Apps with React Native

Deliver Cross-Platform 0 Crash, 5 Star Apps

Apress:

M. Holmes He

Bucklands Beach, New Zealand

ISBN 978-1-4842-8041-6 e-ISBN 978-1-4842-8042-3
https://doi.org/10.1007/978-1-4842-8042-3

© M. Holmes He 2022
This work 1s subject to copyright. All rights are solely and exclusively

licensed by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any
other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service
marks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice
and information in this book are believed to be true and accurate at the date
of publication. Neither the publisher nor the authors or the editors give a
warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The
publisher remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

This Apress imprint is published by the registered company APress

Media, LLC part of Springer Nature.

The registered company address is: 1 New York Plaza, New York, NY
10004, U.S.A.

https://doi.org/10.1007/978-1-4842-8042-3

The Path to a 05 App

User experience and developer experience (U & D experiences) are
coiled double helix that spiral up a great product. React Native offers
awesomeness of both. React Native is neither as luxurious and fabri-
cated as other comparable frameworks, such as Xamarin and Flutter,
nor as plain and simple as a WebView. Nonetheless, it successfully
reconciles the U & D experiences on various mobile platforms by
leveraging the timeworn front-end technologies, JavaScript and
React, which marks a sweet spot on the frontier of mobile

development.

No framework is perfect. React Native is no exception. The question
is whether the shortcoming can be contained, and the answer is
"yes." In the experience of the author, React Native is capable of de-
livering high-quality user experiences as the market has seen a lot of
apps of such kind. Nevertheless, underoptimized apps and unsuc-
cessful stories also shadow. The purpose of this book is to provide
you with a solid information source to achieve the former, a 0 crash, 5

star app, a.k.a. a 05 app.

Any source code or other supplementary material referenced by the
author in this book is available to readers on the Github repository:
https://github.com/Apress/Creating-Apps-with-React-Native. For
more detailed information, please visit

http://www.apress.com/source-code.

Table of Contents
Chapter 1: Start Thinking_in React

1.1 Component

1.1.1 Key Takeaways
1.2 The “Hello World” App. in Pieces

1.2.1 React Native Development Environment
1.2.2 JSX

1.2.3 props

1.2.4 JSX Internals

1.2.5 States

1.2.6 setState()_Internals

1.2.7 Key Takeaways

1.3 Summary
Chapter 2: Foundations of React
2.1 Flexbox, a Practical Guide

2.1.1 Component Size
2.1.2 Case Study: Feed
2.1.3 Key Takeaways

2.2 Composition vs. Inheritance, HOC
2.2.1 Case Study: Multiple Photo Feeds
2.2.2 Key Takeaways

2.3 ScrollView and FlatList

2.3.1 Case Study: Moment

2.3.2 Key Takeaways

2.4 Error Handling
2.4.1 Case Study: Moment (Reinforced)

2.4.2 Key Takeaways
2.5 Summary
Chapter 3: Animation in React Native

3.1 Introduction to React Native Animation

3.2 Layout Animation

3.2.1 Presets

3.2.2 LayoutAnimation.create()
3.2.3 Raw Animation Config
3.2.4 Android

3.2.5 Case Study, Read More
3.2.6 Key Takeaways

3.3 Value Animation
3.3.1 Animate the Animation
3.3.2 Bind the Animation Value

3.3.3 Case Study 1, Looming_Animation for Image Loading

3.3.4 Case Study 2, Loading Indicators

3.3.5 Key Takeaways
3.4 Gesture-Driven Animation
3.4.1 Native Event

3.4.2 Case Study, a Pull Down Load Experience

3.4.3 Key Takeaways
3.5 Summary,
Chapter 4: Native Modules and Components
4.1 Native Modules
4.1.1i0S Native Module
4.1.2 Android Native Module

4.1.3 Use the Native Module in JavaScript

4.1.4 Key Takeaways
4.2 Native Components

4.2.1 i0S Native Component

4.2.2 Android Native Component
4.2 3 Use the Native Component in JavaScript
4.2.4 Children of a Native Component
4.2.5 Key Takeaways

4.3 Advanced Techniques

4.3.1 Event

4.3.2 React Tag

4.3.3 Direct Manipulation

4.3.4 Synchronous Method Call

4.3.5 Export Constants

4.3.6 Initial Properties

4.3.7 Dependency Injection

4.3.8 Key Takeaways

4.4 Exception Handling

4.5 Case Study — a Video Component

4.5.1i0S Implementation of a Video Component
4.5.2 Android Implementation of a Video Component
4.5.3 JavaScript Layer

4.5.4 Reinforced Video Component

4.6 Summary

Chapter 5: Network Programming

5.1 A Very Brief Introduction to TCP/IP

5.1.1TCP

5.1.2 HTTP/1.1

5.1.3 DNS

5.14TLS

5.1.5 The Modern Internet

5.1.6 Key Takeaway

5.2 Network Programming_on the JavaScript Layer
5.2.1 Asynchronous Operations

5.2.2 fetch()

5.2.3 Case Study, Move Everything Online

5.3 Network Programming_on the Native Layer
5.3.1 Case Study, Enable Local Caching
5.4 Exception Handling

5.4.1 Case Study, Reinforce the Network Components
5.4.2 Case Study, Offline Mode

5.5 Summary
Chapter 6: Advanced Topics

6.1 Revisit Rendering

6.2 Redux

6.2.1 Case Study, Like

6.3 Long List

6.3.1 Case Study, Apply Basic Heuristics

6.4 0 Crash, Design Exception Flow

6.4.1 Robustness Built in Software Architecture
6.4.2 Last Resort, Global Error Handler

6.4.3 Wrap Up

6.5 Native Modules Inside Out

6.5.1 Phase 0, Prior Bootstrap

6.5.2 Phase 1, Bootstrap

6.5.3 Phase 2, Native Module on the JavaScript Layer
6.5.4 Execute the Bundle

6.5.5 The Two-Way Communication

6.5.6 The Native Module Metadata

6.5.7 Wrap Up

6.6 Animation Inside Out

6.6.1 Establish the Animated Node Graph
6.6.2 Bind the Event Receiver

6.6.3 Attach the Event Source

6.6.4 Native Event Transmission

6.7 Adaptive to All Screens, Layout Design

6.8 Time to Say Goodbye
Index

About the Author
M. Holmes He
Muyang (Holmes) He is a software engineer. He spent four years

working with Tencent on hyperscale social network products. At the
time when this book is written, he is a mobile engineer with Microsoft.
He is also an active advocate and a practice leader of using React

Native to create 0 crash, 5 star apps (05 apps).

About the Technical Reviewer
Akshat Paul
is a technology leader and author of four books on React Native,

Ruby, and RubyMotion. He has extensive experience in mobile and
web development and has delivered many enterprise and consumer
applications over the years. In other avatars, Akshat frequently
speaks at conferences and meetups on various technologies. He has
given talks at React Native EU, Cross-Platform Mobile Summit, De-
vops@Scale Amsterdam, TheDevTheory Conference India, Ruby-
Confindia, and #inspect-RubyMotion Conference Brussels and was a
keynote speaker at technology leadership events at Bangkok and
Kuala Lumpur. Besides writing code, Akshat likes to spend time with

his family, is an avid reader, and is obsessive about healthy eating.

© M. Holmes He 2022
M. H. He, Creating Apps with React Native
https://doi.org/10.1007/978-1-4842-8042-3 1

1. Start Thinking in React

M. Holmes He!
(1) Bucklands Beach, New Zealand

Figure 1-1 A fractal topology

React reflects the fractal topology (Figure 1-1) in which the whole system

and each of its parts share the same geometrical form. This topology is

https://doi.org/10.1007/978-1-4842-8042-3_1

found as a common phenomenon across scales spanning from a flake to a
galaxy. In that sense, every React component shares the same program-
matical form. This topology is the key factor, in the opinion of the author,
that consistently drives the growth of React-based systems and ecosys-

tems in an organic fashion.

It is almost intuitive for a seasoned React developer to map between a tree
of stylized components and the visual result. This ability can vastly en-

hance efficiency. To help you to become a React Native developer like this
is the goal of this book. Let us start by looking at the basic building block of

React, a component.

Notegllly The “drag and drop” Ul builder, on the other hand, offers a tempt-
ing, painting-like development experience, ideally on a fix-sized canvas.
However, the programmatic approach for the Ul has been proven to be the
putative winner when dealing with real-world complexity. More specifically,
we need logic to control the adaptation of various dimensions and user in-
teractions, which modern apps desire. We can naturally express logic in
code. But things very soon become clumsy when the same logic is repre-
sented within a Ul builder. | think this is for the discipline boundary be-

tween engineering and art.

1.1 Component

Components are the basic building blocks of all views. Technically, they
are the underpinnings of the XML tags that represent various Ul elements.

For example, <Text /> represents a view that renders text, <Image/> is

the one that renders graphic, and <view/> represents a plain rectangle
area. Those tags are backed by their respective components encapsulat-

ing the presentation and business logic.

A component takes props (Section 1.2.3) as input. For instance, a
<Text /> accepts attributes like fontFamily, fontSize, fontWeight,
color, etc.; a<View/>takes width, height, and borderRadius; and
an <Image/> takes source prop that indicates the image location. Most
of the presentational props are categorized as style, a special type of

props reserved by React (Section 1.2.3.1).

When a component works as a flex container (simplified as container in
the following text), it takes certain styles that handle the layout of its chil-
dren (Section 1.2.3.2). We use a technique called a flexbox to define
adaptive layout. Since flexbox is presentational, the flexbox-related attrib-
utes are styles too. We are going to cover the basics as well as some
handy techniques of flexbox in Section 2.1. As we will see very soon, the
structural component tree, in conjunction with flexbox, results in a declar-
ative, modernized semantic that makes Ul layout a breeze. This semantic
is called a JSX (Section 1.2.2).

Developers of the React Native core team and third parties have created
more than enough stock components to address almost any difficulties
and requirements for a mobile app. That said, it is essential to know how to
create custom components to encapsulate the Ul and logic units that suit

our own business needs which could be very specific and specialized.

Let’s start thinking of a social network with a billion expected users; we call it
Manyface. One of the novel features of Manyface allows users to share with
friends what is happening in their life by posting a short text along with a photo,
and we call a post of this kind a Feed. On the other hand, the user can also get to
know their friends’ everyday lives by navigating a list with their recently posted
Feeds mixed and sorted, and we decide to call this feature Moment. For the

Moment list, it is nice to encapsulate one Feed as a component. Listings 1-1 and

1-2 show what a Feed component is like and how it is used by Moment.

class Feed extends React.Component {

render () {
return (
<View style={{
flexDirection: 'row',
justifyContent: flex-start
L B e
<Text>...</Text> // === — .
<Image // ————————— e
source={{uri: 'https://xxx.xx'}} />
<Image />
</View>

);

}i

Listing 1-1 A sample component

class Moment extends React.Component {

render () {

return (

<Feed/>
<Feed/>
<Feed/>
<Feed/>
<Feed/>

}i

Listing 1-2 How Feed component is used

NoteHere, the example is given for simplicity. In practice, map () is normal-
ly used to render an array of similar components. This technique will be

used in the case study in Section 2.2.

Starting from the top, every component is required to inherit from
React.Component which is a template class that instructs React how to

construct, render, and deallocate itself. With that information, React can

then incorporate the component into the component tree and construct

the whole app.

Next, let’s take in some of the basics of a component by focusing on the

render () method :

1)<View> is the most basic library component in React that simply
represents a rectangle in the user interface. It defines the attributes
of the rectangle such as background color, rounded corner, and
shadows. Since <vView> does not render anything special, a plain
<View> component is normally used as a container that lays out its
children components. As mentioned just now, the layout engine in
React is flexbox (Section 2.1). For now, we can see the flexbox-re-
lated attributes are flexDirection and justifyContent.

2) :
As a more advanced component, <Image> renders graphic. Here,

the graphic is fetched from "https:// xxx.xx' thatis indicated

by the source prop.

3
)As mentioned, <Text> renders text.

What is returned by the render () of a component is nothing but a tree of
other components. In the preceding case, the root node of the tree is
<View>. Those components inside render () are called subcompo-
nents. Each subcomponent recursively calls their render () and ren-
ders their subcomponents to complete a subtree. Let’s now take a higher

perspective; the whole app is a cascading tree of components started

from a component named <App>, and now we can see the whole picture

of the fractal topology mentioned in the beginning.

Now let’s magnify the tree by looking at its leaves. Those leaf compo-
nents are backed directly by native Ul entities. They are the concrete UIV-
iews in UIKit and one kind of Views or ViewGroups in Android Ul. The
translation of the components to native Ul objects is the cutting point be-

tween React and Native; we will examine this mechanism in Chapter 4.

One important property of a component is its life cycle (Figure 1-2).
Predefined life cycle methods are constructor (),
componentDidMount (), componentDidUpdate (),
componentWillUnmount (), and shouldComponentUpdate (). They
are invoked by the React runtime at the appropriate time during the life cycle of
the component, which provides us chances to carry out additional work. For
instance, we might need to fetch data from the network (Chapter 5) in
componentDidMount () and to carry out clean up and free in

componentWillUnmount ().

constructor()

l

render()

componentDidMount()

Y

Q\ shouldComponentUpdate()
Active :
componentDidUpdate()

v
componentWillUnmount()

Figure 1-2 Life cycle methods

NoteshouldComponentUpdate () is a method used primarily for perfor-

mance optimization. We will discuss its usage in Chapter 6.

1.1.1 Key Takeaways

In this section, we introduced some React basics by looking at what a
component roughly looks like. We noted some of the key concepts of a
component, such as (a) props, (b) component tree, and (c) subcompo-
nent, which will be used repeatedly in the following learnings. We also in-
troduced the unique layout system called flexbox and the declarative syn-
tax JSX, but we didn’t get into too much depth. Most importantly, we now
have a purpose, the Manyface as an ongoing project. We are going to use
it as a medium to learn all the mentioned concepts and techniques in detail

throughout this book.

1.2 The “Hello World” App in Pieces

We’ve got a rough idea of what a component looks like and how an app is
structured from a high-end perspective. But that level of understanding
does not help a lot when it comes to a real-world project. We need more in-
depth and extensive knowledge in order to accomplish Manyface. One of
the good ways to establish such knowledge is by examining the autonomy
of another real app. What we are going to examine is the “Hello world” app
shipped with any React Native projects. It contains almost everything of a
runnable app while being minimal. For now, we forget about Manyface and
take a detour on this “Hello world” app shipped with every React Native

project.
1.2.1 React Native Development Environment

The React Native development environment is a NodedS project that en-

lists several subprojects targeting native platforms such as iOS, Android,

and desktop. These subprojects represent the native facets of the main
project. React Native supports most mainstream operating systems (e.g.,
Windows, Linux, and macOS) as the development host. Nonetheless, we

need macOS if we want to target iOS.

For most of the time, we should work only on the main NodedS project
which contains the business and Ul logic in JavaScript. The native
projects, on the other hand, are app projects conforming to the structure of
the platform IDE. Native projects also contain the React Native runtime
that loads and executes the JavaScript code in the main project. Cus-
tomized native modules and native components (Chapter 4) are included

also in the native projects.

React Native adopts npm to manage the dependencies. So most of the
awesomeness in the npm ecosystem, like TypeScript, Jest, and linting
tools, are supported by nature. Moreover, this setting makes a React Na-

tive project work well with Visual Studio Code.

React Native apps should be executable seamlessly on various platforms,
so should its dependencies. Just like in the main project, most dependen-
cies contain native facades managed by iOS CocoaPods and Android Gra-
dle. More specifically, npm loads all the required source code and binaries
to local storage of the host, and dependency managers on the respective
native projects load the native parts into the native IDEs for compiling and

linking to the platform specific executables.

NoteThere are also React Native libraries implemented in pure JavaScript.
And sometimes we can also use libraries implemented for the Web. Those

projects do not have native facades.

In production mode, the main project produces a JavaScript bundle which
is embedded into the native projects as a plain resource file. When the app
is loaded, the React Native runtime loads the bundle file to execute the

business and Ul logic.

In dev mode, the code is loaded from a metro server running on the devel-
opment host and is reloaded whenever the code is changed locally (a.k.a.
hot reload). giily Hot reload is a killer feature equipped with React Native. It
gives a nearly zero compiling turnaround, which not only enhances the de-
velopment efficiency but also opens up developer experience that is ex-
travagant in mobile development. For instance, we can have ten phones of
various operating systems and screen sizes and hot reload the code to all
of them simultaneously when programming adaptive layouts and compati-
ble features; we can also sit side by side with designers and product man-
agers and fine-tune parameters together in real time for features that re-

quire cross-disciplines such as Ul and data validation and verification.

In dev mode, we can also access various debugging tools by shaking the
device (or sending the shaking command to a simulator). For instance, we
can set breakpoints or step into the code through Chrome; we can inspect
the layout and metadata of the components in display; and we shall send

commands to reload the entire app when the states are corrupted.

Lastly, the React Native version in use is 0.63.4.

NoteReducing the compiling turnaround is one of the major demands on
mobile development. On iOS, we need to resort to advanced lldb com-
mands to change some of the behaviors of the app without recompiling
the code base. In React Native, we can change everything we wrote and

hot reload it. All these come by nature and free of cost.

Now let’s create a React Native project from scratch by executing the following

command:

npx react-native init Manyface

Then we can execute npm start to boot up the metro server.

NoteThe original code of the “Hello world” project is modified for demon-

stration purposes.

Let’s start the reading from the index . js which is the entry point (Listing 1-3).

import {AppRegistry} from 'react-native';

import App from './App';

import {name as appName} from './app.json';
AppRegistry.registerComponent (appName, () => App);
Listing 1-3 The hello world app —index.js

The only line of logic registers a component App as the root of the entire
app. Here, App is just a naming convention; feel free to rename it as, for

example, MyAwesomeAppCreatedByAwesomeMe.

Next, we look at the main body of the App (Listing 1-4).

class Section extends Component { // —-—————————-————-.
render() {
return (
<View style={styles.sectionContainer}> // -———--.
<Text style={styles.sectionTitle}> // ———————-.
{props.title} // ————————— .
</Text>
<Text style={styles.sectionDescription}> // --.
{props.children}
</Text>
</View>
)
}
}

export default class App extends Component {
render () {
return (
<View>
<StatusBar barStyle="dark-content" /> // ——————-]
<SafeAreaview> // ——————— .
<Scrollview // —-——————— .
contentInsetAdjustmentBehavior="automatic" /.
style={styles.scrollvView}> // ——————m—m—m——————.
<Header />
{global.HermesInternal == null ? null : (//
<View style={styles.engine}> // ————————--.
<Text style={styles.footer}> // ———————-.

Engine: Hermes // ————————— .

</Text>
</View>
)}
<View style={styles.body}>
<Section title={'Step One'}> // —————————-]
Edit <Text style={ styles.highlight } > .
App.js // ————————— 1
</Text> to change this // ————————-]
screen and then come back to see your ed.
</Section>
<Section title={'See Your Changes'}> // --
<ReloadInstructions />
</Section>
<Section title={'Debug'}> // ———————-o—- 1
<DebugInstructions />
</Section>
<Section title={'Learn More'}> // ———————-]
Read the docs to discover what to do nex
</Section>
<LearnMoreLinks />
</View>
</Scrollview>
</SafeAreaView>

</View>

)i
}
}i
const styles = StyleSheet.create({

}) i

Listing 1-4 The hello world app — skeleton

1.2.2 JSX

Now it’s a good chance to examine JSX. As we have seen before, components
are used in the form of XML tags called JSX in the render () method. This
declarative way of defining a “page” is very similar to that using HTML. The
major advantage of JSX over static HTML is that JSX supports inline
JavaScript which offers runtime controls over visual outcome. Its name could
also hint at this advantage, JSX = inline JS + XML tags. Embedding inline
JavaScript to JSX is simple; just wrap the expression in curly braces { }. Next,

we look at JSX in the “Hello world” app:
1)The most common embedded expression returns a single variable
object. For instance, the expression {props.title} returnsthe
value props.title and sets it as the body of the wrapping <Text>
component. {styles.engine} returns the value of styles.en-
gine and sets it as View’s style prop. We will cover props in Sec-
tion 1.2.3; for now, we only need to know that props define the com-

ponent input and a style prop defines its visual style.

) o .
You can also use a constant string in an expression, for example,
<Section title={'Learn More'}>.

3)And in the above case (2) where the prop value is a string, curly braces can

be omitted, for example:

<StatusBar barStyle="dark-content"/>

4)Moreover, if the static string is under a tag, double quotes can be omitted

too. See this one:

<Section title={'Step One'}>
Edit <Text style={ styles.highlight }
App.Jjs
</Text>
screen and then come back to see your edits.

</Section>

One interesting point here is that the complete amalgam of string and
<Text> (Edit ... your edits) is passed down to <Section> as prop-
s.children. The real rendering point is actually the <Text> in <Sec-

tion>:

<Text style={styles.sectionDescription}>
{props.children}

</Text>

Here, children is another important concept, which we will cover very

soon in the next section.

<Text> IS a very versatile component as it can be nested, and each
of the nested individuals can be applied with different styles. So a

rich text box is supported by <Text>.

Noteln general principle, the Ul layer shouldn’t contain any complex
logic that normally belongs to the other software layers. In some
large scale industrial applications, business logic are carried out

solely from server-side to give the most flexibility. So it is reasonable

that each expression can only contain one line of code.

6)Since we have this one-line restriction, the ternary expression is used in

placeofan if...else...:

{global.HermesInternal == null ?
null
<View>...

}

This is called a conditional rendering . Here, if the condition is false

(i.e., Hermes is not detected), the expression returns nul1, which
will be simply ignored and render nothing. Otherwise, it returns a

<View> with the Hermes-related information.

Notenull instead of undefined is the recommended value to ren-
der nothing. Later, we will see expressions that are more interesting
than an if...else equivalence. For example, you shall use

map () to render a list of components based on an array or use a

|component state to drive animation.

7)

Some handy stock components, their names are self-explained:
<StatusBar> occupies the phone status bar and defines the attrib-
utes of the area; <safeAreaView> places bottom and top insets
that avoid overlapping between the app content and system items
such as screen rounded corners, sensor housing and area for home
indicator. All its children can be positioned away from those areas to
avoid occlusion or clipping; <ScrollView> makes a <vView> scrol-

lable when its size is larger than that of the screen.

8
)Lastly, we defined a <section/>component and reuse it in various
places. This is the first custom component we have seen. To better

understand how it works, let’s quickly move on to the next section.

1.2.3 props

props define the components inputs. Since React is data driven, there is
a very limited need for public methods and properties. All interfaces and
potential interactions of a component are exposed in the form of props.
So whenever you are not sure about the usage of a component, look at its

props.

[NoteReact has very good support of TypeScript. In fact, all code in React
can be written in TypeScript to give an explicit type and type check in

packaging time, which is way safer for large-scale projects. A side benefit
of TypeScript is that it makes the interfaces of components crystal clear

with the explicitly typed props.

For instance, an <Image> or a <video> could expose a source props to
indicate where to fetch the content, and a <Button> could expose an on-

Press () method to define what happens when it is pressed.

There are also predefined props that are reserved for special cases. Next,

we examine two most common predefined props, style and children.
1.2.3.1 Style

Style is well self-explained by its name; it defines the components visual style
and layout. A style prop is no different than an ordinary prop by its usage. In
Listing 1-5, we include the style prop of the “Hello world” app.

const styles = StyleSheet.create({

scrollvView: {
backgroundColor: Colors.lighter,

s

engine: {
position: 'absolute', // -—————— - ———.
right: 0,

}y

body: {
backgroundColor: Colors.white,

b

sectionContainer: {
marginTop: 32, // ——————— .
paddingHorizontal: 24, // ——————— .
s
sectionTitle: {
fontSize: 24,
fontWeight: '600°',
color: Colors.black,
s
sectionDescription: {
marginTop: 8, // —————— .
fontSize: 18,
fontWeight: '400°',
color: Colors.dark,
}y
highlight: {
fontWeight: '700°',
s
footer: {
color: Colors.dark,
fontSize: 12,
fontWeight: '600°',
padding: 4, // ———————— .
paddingRight: 12, // —————— .
textAlign: 'right',
s

})i
Listing 1-5 The hello world app — styles

Most of the styles are for individual attributes and are self-explained; Figure
1-3 gives the components’ corresponding positions on the screen to demonstrate

the visual outcome of the styles.

I 4cameram 4G @ 08:41

®
.

body Welcome to

React s highlight

--Step One .. .
Edit App.jsto change this. screen-and

then come back to sce umlr nriﬁ'l:

sectionTitle TR R R PP PP P i

sectionContainer

“-See Your Changes

Press Cmd + R in the swnulator to reload
Vour app's code, - s

Debug

Press Cmd +Din the simulatoror ,...---"

Shake your device to open the React
[.] _Native debug menu

------- ' sectionDescription

" Learn More

Figure 1-3 Visual outcome when styles are applied

NoteWhen defining your own component, nothing stops you from expos-

ing all related styles as custom, first-level props. It is just nice to group all
the visual- and layout-related props into style. One special case of using

custom, first-level props for styles is when stylizing children (Section

1.2.3.2) of subcomponents. jiily It is preferred to define their styles as

ustom, first-level props in order to be distinguished from the styles asso-

iated with the component itself.

Apart from individual visuals, styles can be used to define the layout:
1) :
position: 'absolute' isused to opt out the default flexbox layout.

Instead, you indicate the absolute position inside the component’s contain-

er. For example:

position: 'absolute',
top: O,
left: 0

lays out the component to the top-left corner:

Comp

One use case of absolute position is an overlay:

position: 'absolute',

top: O,

left: 0,
+ width: '100%',
+ height: '100%',

Overlay

Contailner

2)margin adds space outside of the component border, so it is normally

used to adjust the position of the component itself:

Comp

while padding adds space inside; hence, it is used to adjust the positions of

its children component:

Comp

Another common style you might see in production source code is style=
{{xxx1: yyl, xxx2: yy2}}.Here,the outer pair of braces is for JSX,
and the inner pair of braces is part of the JavaScript object. s This way is

called an inline style , which is slightly less performant as it creates new

anonymous objects each time the render () is called. ;f So the static

styles variable used earlier is the best practice.

Besides a single object, you can also assign an array of objects for style,
forexample, style={[{xxx1: yyl, xxx2: yy2}, {xxx3:

yy3}1}. Astyle array is normally used when you want some style attribut-
es to be dynamically defined by states. The change of those styles is dri-

ven by setState () invocations (Section 1.2.5).

Notesk stands for performance issue; ﬁ is the hint for resolving it.

1.2.3.2 Children

Children are components that are wrapped inside another component. Children

are passed to the container as a special prop for custom layout within. Listing 1-

6 demonstrates their relationship.

render() {// the render method of some component

<Container> // The wrapper tag is a container
<Childl/> // The lower ordered tags are chil
<Child2/>

</Container>

Listing 1-6 Container and children

Another similar notion to children is a subcomponent which is discussed
in Section 1.1.1. As a reminder, if children are components under a con-
tainer geologically, a subcomponent belongs to the super-component
itself logically. In “Hello world,” <view> and <Text> are Section’s sub-

components.

Let us continue with the “Hello world” example and look at children of
Section (Listing 1-7).

<Section title={'Step One'}>
Edit <Text style={ styles.highlight } //
App.Jjs
</Text> to change this
screen and then come back to see your ed.
</Section>
<Section title={'See Your Changes'}>
<ReloadInstructions /> // ————————m_— ———.
</Section>
<Section title={'Debug'}>
<DebugInstructions /> // ——————cmm—.————.
</Section>
<Section title={'Learn More'}>
Read the docs to discover what to do nex
</Section>

Listing 1-7 The hello world app — children of Section

They are as follows:

1
)Theneﬁcd<Text>

Edit <Text style={ styles.highlight }

App.Jjs
</Text> to change this

screen and then come back to see your edits.

The <ReloadInstructions />
3) .
The <DebuglInstructions />

4
) The plain text “Read the docs to discover what to do next:”

We have explored what children are like. Now it’s time to explain prop-
s.children and where it comes from. Like styles, props.childrenis
another predefined prop that refers to the current children of the compo-
nent instance. This prop gives the current component a chance to lay out

its potential children.

NoteFigure 1-5 in the next section (Section 1.2.4) is a good place to refer to

as it illustrates how props.children works in the big picture.

If a component omits the props.children passed through, it cannot be

used as a container at all as all its children will not be rendered. Con-

versely, gilly when designing a component as a container, it’'s compulsory

to handle props.childrenin render ().

Note,llly stands for architecture and design principles.

Back to the source code (Listing 1-8).

class Section extends Component {
render () {
return (
<View style={styles.sectionContainer}>
<Text style={styles.sectionTitle}>
{props.title}
</Text>
<Text style={styles.sectionDescription}>
{props.children} // ———————— .
</Text>
</View>
7
}
}

Listing 1-8 The hello world app — layout subcomponents of Section

1
)Section explicitly renders its children (under one of its <Text>

subcomponents). So, whenever it is used as a container, its chil-

dren will be displayed properly.

OK, we can say that Section is a container by design since render ()
settles the positions of children. But what if it does not? Lastly, let us take a

quick counterexample where children are omitted:

<Text style={styles.sectionDescription}>
{props.children} // <—————— .

</Text>

As expected, all its children (the section bodies) are dismissed as Section

does not know how to lay out them (Figure 1-4).

4 camera « ' 4G @ 08:37 @ &

Welcome to
React

Step One
See Your Changes
Debug

Learn More

TR R [Explams a He_llo World

Figure 1-4 Section without handling props.children

1.2.4 JSX Internals

NoteUnderstanding how JSX works internally does not only satisfy our cu-

riosity as a developer but also offers insight into how a Ul update works,

which is one critical point in React Native’s performance.

If JSX 1s on one side of a coin, the other side would be
React.createElement (type, config, children) whichis the
internal implementation of JSX. The parameters are extracted directly from what
you declared in JSX. type is the tag name, config is what you passed as
props, and children are all the children components which, in turn, are
represented as a group of createElement () invocations. We can look at the
transformed version of the Section component in the “Hello world” app to get
a practical view of how JSX is mapped into parameters of createElement ()

as shown in Listing 1-9.

function Section(props) {

return React.createElement (

View, // ———————— - > type

{ style: styles.sectionContainer }, // ---> conf.

React.createElement(// —-————————————————— > chil
Text,

{ style: styles.sectionTitle },
props.title
) 1
React.createElement(// —-—————————————————— > chil
Text,
{ style: styles.sectionDescription },

props.children

);
}

Listing 1-9 The hello world app — the real form of Section

As shown in Listing 1-9, the cascading createElement () is actually one
line of code where the children components (also created by create-
Element ()) are passed as the container’s last parameters. Likewise,
deeper nested components are passed through in a similar way to their

corresponding container.

This transformation is carried out by babel. We shall use the following

command to uncover the thin veil of JSX and look at the App in its real form.

Alternatively, we can use https://babeljs.io/repl to achieve the same.

./node modules/.bin/babel --plugins transform-react-

NoteYou might need to install bable-cli and babel-plugin-transform-react-

jsx if you havent.

Now let’s look at the whole App component (Listing 1-10).

export default class App extends Component {
render() {
return React.createElement (
View,
null,

React.createElement (StatusBar,

https://babeljs.io/repl

{ barStyle: 'dark-content' }),
React.createElement (
SafeAreaView,
null,
React.createElement (
ScrollView,
{
contentInsetAdjustmentBehavior: 'automat.
style: styles.scrollView },
React.createElement (Header, null),
global.HermesInternal == null ? null : Rea
View,
{ style: styles.engine },
React.createElement (
Text,
{ style: styles.footer },

'Engine: Hermes'

) s

React.createElement (

View,

{ style: styles.body },

React.createElement (
Section,
{ title: 'Step One' },
'Edit ',
React.createElement (

Text,

{
style: styles.highlight

b
'App.Jjs'
)/
'to change this screen and then come b
) s
React.createElement (
Section,
{ title: 'See Your Changes' },
React.createElement (ReloadInstructions
) 1
React.createElement (
Section,
{ title: 'Debug' },
React.createElement (DebugInstructions,
) 1
React.createElement (
Section,
{ title: 'Learn More' },
'Read the docs to discover what to do 1

) 1

React.createElement (LearnMoreLinks, null

}i
Listing 1-10 The hello world app — the real form of App

You might have heard about a virtual DOM tree (VDOM tree) . This is the
core data structure React uses to render the Ul and to drive its updates.
However, createElement () does not create the virtual DOMs. Instead,

it returns a blueprint that can be used by React to create the final VDOMSs.

The blueprint of createElement () is also what the render () method

returns.

NoteSo your render () method does not actually render anything. It kick-

starts the whole render process.

Back to the “Hello world” app, what React generates based on our render ()

method is illustrated in Figure 1-5.

View [render()in App

/\

SafeAreaView StatusBar 1 render() in Section
I
ScrollView
|
View LearMoreLinks

instruc
tions

tions || g e - -—-——

b |
11 1
11 |
11 |
: : Instruc : Children
11 -
11 1
11 1
11 1
ol

Figure 1-5 DOM tree of app

1.2.5 States

Like props, states are data that drive the behavior or, more specifically,
the Ul behavior of a component. Unlike props that are passed from out-
side, states are intrinsic. In other words, all moving parts of the Ul are con-
verged in the form of states combined. Thanks to the data-driven design of
React, all the visual changes are driven by a single function, setState ().
This is true for all sources or forms of the changes, text editing, button

press, device rotation, and so forth. When you call setState () of one

component, you basically tell React to do two things: (1) to update the

component’s state and (2) to call its render () method to refresh the Ul.

Next, we modify the “Hello world” a bit to demonstrate how it works.
1.2.5.1 State Change on the Current Component

I hope you still remember the missing Hermes-related information in the “Hello
world” app. This time, we use a state rather than a static global variable to

control its visibility (Listing 1-11).

export default class App extends Component ({
+ constructor (props) {

-+ super (props) ;

this.state = {
displayHermes: false // —-———————— .

}i

+ + + o+

+

}
headerTouched () {

let display = !this.state. displayHermes;
this.setState({displayHermes}); // ————————————.

}

render () {

+ + + +

return (
<View>
<StatusBar barStyle="dark-content" />
<SafeAreaView>
<ScrollView

contentInsetAdjustmentBehavior="automatic"

+ + + + +

style={styles.scrollView}>

<TouchableOpacity
onPress={this.headerTouched.bind(this)} //
>
<Header />
</TouchableOpacity>
{this.state.displayHermes === false ? null :

<View style={styles.engine}>
<Text style={styles.footer}>
Engine: Hermes
</Text>
</View>
) }
<View style={styles.body}>
<Section title={'Step One'}>
Edit <Text style={ styles.highlight }
App.Jjs
</Text> to change this
screen and then come back to see your ed.
</Section>
<Section title={'See Your Changes'}>
<ReloadInstructions />
</Section>
<Section title={'Debug'}>
<DebugInstructions />
</Section>
<Section title={'Learn More'}>
Read the docs to discover what to do nex
</Section>

<LearnMoreLinks />

</View>
</ScrollView>
</SafeAreaView>

</View>

}
}i:

Listing 1-11 The hello world app with a change of state

1
) state is nothing but an ordinary JavaScript object. All the states of

a component are required to be declared in its constructor. ‘ Oth-
erwise, setState () throws an exception and could potentially
crash the app. (") Again, TypeScript is extremely helpful to avoid this
kind of crash as it enforces the state structure at a very early stage

of compiling.

oteHere, ‘ means a crash point and () is its countermeasure. The
relentless vigilance to all categories of crashes is one key to 0

crash.

2)

We replace the global.HermesInternal with the added state to

be used to control the visibility of the Hermes information.

3)

We add a TouchableOpacity which can turn any component into
a clickable button. The onPress prop accepts an instance method

which will be called back when TouchableOpacity is pressed.

4)Call setState () to update the Ul. s Note that if the name of the

key and the value are the same, we can take the shortcut of set-

State ({name}) instead of setState ({name: name}).

Besides an instance method, we can also pass an arrow method to this

prop, for example, onPress={ () => {...}}.% Like aninline style, an
inline callback has a performance hit as a new method instance needs to
be created for every render pass. # We’d better use the instance method

as shown earlier.

1.2.5.2 Cascading State Changes

Changing the visual of the current component is of less interest. Very of-
ten, we need to simultaneously conduct the change to a nested subcom-

ponent, or more than one subcomponent, in a cascading way.

A cascading change is carried out using setState () in conjunction with
a prop which is the single point that connects a component to the outside,
its caller component. More specifically, when a prop of a component is
set with the reference of a state, the change of the state can be replayed

into its subcomponent.

Back to the “Hello world.” Now we want to change the title of the first
section to blue when the TouchableOpacity is pressed (Listing 1-12).

class Section extends Component {

render () {

return (
<View style={styles.sectionContainer}>

+— <Text style={][
+- styles.sectionTitle,
- {color: this.props.redTitile ? 'red' : 'blacl
+- 13>
{props.title}
</Text>

<Text style={styles.sectionDescription}>
{props.children}
</Text>
</View>
)
}
}

export default class App extends Component ({
constructor (props) {
super (props) ;
this.state = {
+- redTitle: false // ———————— e ——.
}i
}
headerTouched () {

+- let redTitle = !this.state.redTitle;
+- this.setState({redTitle}); // —-———————— .. — ——.
4=}
render () {
return (
<View>
<StatusBar barStyle="dark-content" />

<SafeAreaView>
<ScrollView
contentInsetAdjustmentBehavior="automatic"
style={styles.scrollvView}>
<TouchableOpacity
onPress={this.headerTouched.bind(this)}

<Header />
</TouchableOpacity>
<View style={styles.engine}>
<Text style={styles.footer}>
Engine: Hermes
</Text>
</View>
T
<View style={styles.body}>
<Section
title={'Step One'}
redTitle={this.state.redTitle} // —-———-

Edit <Text style={ styles.highlight }
App.Jjs
</Text> to change this
screen and then come back to see your ed.
</Section>
<Section title={'See Your Changes'}>
<ReloadInstructions />
</Section>
<Section title={'Debug'}>

<DebugInstructions />
</Section>
<Section title={'Learn More'}>
Read the docs to discover what to do nex
</Section>
<LearnMorelLinks />
</View>
</Scrollview>
</SafeAreaView>
</View>
)i
}
}i

Listing 1-12 The hello world app with a cascading change of state

1
) We adjust the name of the state in accordance with the purpose of
this time.

2
) We associate the state of App to the prop of Section and prepare

for the cascading change.

3
)We use the designated prop, that is, this.props.redTitle,to

control the text color of the title.

1.2.6 setState() Internals

setState () invokes the component’s render () method with the
states that are newly set to update the Ul. But this doesn’t answer the
question of how cascading state changes are carried out. To understand

that part, we need to look closer.

In fact, setState () does not only trigger the current component ren-
der () method but all the render () methods of the subtree rooted by the
current component. Then, all the changes occurring along the subtree are
collected, and a VDOM tree is derived based on the changes. Last, the
new VDOM tree is compared with the existing one, and actual updates are

carried out on components that are changed.

This operation is expensive. The time complexity is linearly correlated to
the scale of the component tree. We have demonstrated one in Figure 1-
5. In real-world applications, the tree is much bigger, and # setState ()
becomes extremely heavy. In such a scenario, the user will experience un-
responsive UX. This is because most of the user interactions take place on
the same thread as setState () (Chapter 6). As such, setState ()
stands as one of the most critical performance bottlenecks of React

Native.

What are the cures? # The simplest trick is to keep the component tree
small by relentlessly trimming it down. Simple but not easy. In the next
chapter (Section 2.1), we will give some techniques of doing away superflu-
ous layers or nodes. # It’s also very crucial to avoid calling setState ()
on a node with a large subtree, or, in other words, very close to the root.

Here, Redux (Chapter 6) is our friend. Please refer to Chapter 6 for more

information. View flatting introduced by Fabric is a “nice to have” optimiza-
tion that trims down the component tree. As app developers, it is still rec-
ommended for us to be mindful about the tree size as the always caring of

performance leads to a 5 star app.

Lastly, it is worth noting that multiple invocations of setState () are a typ-
ical antipattern. s It exacerbates the rendering process as the React run-
time needs to repeat the heavy lifting work each time a setState () isin-
voked. # In React 18, automatic batching can alleviate the preceding is-
sues. Nevertheless, coalescing the state updates is still highly recom-
mended for occasions that automatic batching cannot cover, for example,

promises, callbacks from timeout, etc. So we should keep a close eye on it.

1.2.7 Key Takeaways

In this section, we examined the “Hello world” app shipped with the React
Native project. All the terminology brought up in Section 1.1 were exam-
ined with concrete code. We learned how components are composed and
aggregated using JSX syntax, how to define a component’s external input
using props, how to define a component’s internal visual state using
state, and how to define the visual and conduct basic layout using styles
and flexbox. Then we modified the “Hello world” app to demonstrate how
a component can change its visual outcome in runtime by leveraging
setState () which is the key method that updates the Ul and proceeds
the UX. We also peeked into the VDOM tree, the mechanism underlying

JSX and setState () that drives the Ul in all React-based apps. Besides,

we also learned the concepts of children and subcomponents which are
sometimes confused with each other. We didn’t stop at the concept level;
we took a step further to illustrate the practical layout of children in sub-

components.

1.3 Summary

In this chapter, we grasped some general knowledge of React. We brought
up those key concepts in the beginning and illustrated with the assistance
of real code, the “Hello world” app shipped with React Native. Knowledge
gained through “learning” and “reading” are neither sufficient nor fast
enough to make a real app, but they are enough to assist us in going on

with the rest of this book which will be emphasizing on “do.”

We set Manyface as the main quest to consolidate our learning. As we pro-
ceed, Manyface will grow side by side with us. Each time we learn new
skills, advance in knowledge, and gain matching confidence, Manyface it-

erates to its next version better.

We started using notion to highlight the key points, which are summarized as

follows:

D

% Stands for a performance issue.

2)

Stands for an efficiency boost trick.

3
)6 Stands for a crash point, an antipattern, or simply a pitfall.

4)0) Stands for the approach to defend a crash or to circumvent a

pitfall.

5)
)ﬁ Stands for a hint at app architecture, principles, philosophy, or

pattern.

© M. Holmes He 2022
M. H. He, Creating Apps with React Native
https://doi.org/10.1007/978-1-4842-8042-3 2

2. Foundations of React

M. Holmes He!
(1) Bucklands Beach, New Zealand

React is built on top of very minimal theoretical concepts, and we have covered, well, pretty much all
of them in the last chapter. However, to get things done, we need to get to know the meticulous tech-
nical details, the various framework particularities, and hands-on, factory techniques. Some of them
are clean, well-abstracted principles that can be applied not only to React-based applications but

anywhere else in the programming world, while others are just unspoken Konami codes.

Starting from this chapter, we are going to learn those techniques, well documented and unspoken
alike. This chapter will continue focusing on the React part; hence, it emphasizes on the user inter-
face in practice. At the end of this chapter, we will complete the basic interface for the moment

screen of Manyface.
2.1 Flexbox, a Practical Guide

Basically, flexbox assists in arranging a group of components within a container representing a
rectangle area, or a box. For each box, style f1exDirection is the general guide that indicates
whether the children should flow horizontally (' row') or vertically (' column'). Then, we can use
styles like justifyContent and alignItems to lay out the children. In a similar way, these box-
es with various layout settings are in turn put together to fill bigger boxes, which ultimately fill the full

screen.

The two most used styles for layout are justifyContent and alignItems . Here,
justifyContent determines in what order children should occupy the available space along the
mentioned flow direction (main axis), while alignItems aligns children across the direction. For instance,
the combination of flexDirection: 'column', justifyContent: 'flex-start',and

alignItems: 'center' should lay out the children, as shown in Figure 2-1.

https://doi.org/10.1007/978-1-4842-8042-3_2

alignltems
center

justifyContent

flexDirection flex-start

column
(to flow vertically)

Figure 2-1 justifyContent: ‘flex-start’

Figure 2-2 gives the visual outcome if we change the justifyContent to 'flex-end’.

alignltems

le—____center ~—p]

flexDirection
column

(to flow vertically)

justifyContent
flex-end

Figure 2-2 justifyContent: flex-end’

Figure 2-3 gives the result of ' space-between' for justifyContent.

alignltems

|_<_:__ center ——

1 1
] 1
1 1
[| 1
1 1
flexDirection : -
column : i justifyContent
(to flow vertically) i i space-between
: :
1 1
1 1
1 1
1 1
I.------ ------I

Figure 2-3 justifyContent: ‘space-between’

alignItems works as a supplementary means of justifyContent. It applies alignments on the
cross axis after the main flow direction is settled. Due to this variance, some of the values for

justifyContent such as 'space-between' do not existin alignItems. Figure 2-4 shows what
alignItems: 'center' lookslike for flexDirection: 'column' and flexDirection:

'row', respectively.

o TTTTTTTTmTT T T H
N L = —
1 1
;] ; . _=
flexDirection] 11] flexDirection |::>
column I 1 row
(to flow vertically) '______. I__:_ _:__I _______ i (to flow horizontally)

Figure 2-4 alignitem: ‘center’ on different flow directions

Besides 'center', another common value foralignItemsis 'flex-start' as shown in Figure 2-

5.
I 1
1 1
---------------------- . ! i
1
| : : |
: e o
flexDirection |] flexDirection [————>
column] ! row
(to flow vertically) === _ oo ! (to flow horizontally)

Figure 2-5 alignitem: ‘flex-start’ on different flow directions

Lastly, Figure 2-6 is the layout of ' flex-end".

g —
flexDirection i I:
g —

flexDirection |:>

row
(to flow horizontally)

column
(to flow vertically)

Figure 2-6 alignitem: ‘flex-end’ on different flow directions

2.1.1 Component Size
The component size is determined in three ways: intrinsic size, given size, and flex size.

Intrinsic size is decided by the content size of the component. For instance, the intrinsic size of a
Text is determined by the font size and text length combined; and the intrinsic size of an Image is
the dimension of the graphic resource in use. A more complex example is a container component
whose intrinsic size is the sum of the intrinsic sizes of all its children plus the gap/margin among

them. Intrinsic size only becomes effective when no size is set explicitly.

Notegllly The intrinsic size of an image can be deduced automatically only when it is a local resource
and loaded in the packaging phase (source={require ('local-directory-to-the-re-
source') }). When the graphic is loaded from the network, we must use the given size to represent
the intrinsic size of the resource as its dimension should be fixed and known in most cases. A more

practical approach is to implement a media selection to cater to various pixel densities.

We know that one way to set size explicitly is to use style.width and style.height (Section
1.2.3.1). We can call sizes of this kind given size. The value of these props can be an absolute value
in points or percentage compared to the container, for example, width: '80%'. The concept of
point might be unfamiliar to developers with non-front-end background. Simply put, points describe
the logical size regardless of the pixel density. So, if sizes of two objects are the same in points, you

see they are about the same size in handhold.

Flex size is another kind of explicit size. Flex size is indicated with style. flex, which dictates the

relative size compared to sibling components. In other words, it determines how the full space of a container

is distributed among children. Figure 2-7 shows what it looks like if three components (a, b, ¢)

style.flexissetto 1, 1, 2, respectively.

Figure 2-7 Flex sizes

Armed with the basics explained earlier, we are now capable of a very complex layout. Let’s get back
to the Manyface. This time, we are going to take it more seriously by composing its core component
Feed.

2.1.2 Case Study: Feed

We look at the requirements first:
1
)We want the thumbnail of the user’s avatar to be displayed on the left top of each Feed. And
we want the image to be rounded corners.

2
)We want the user’s nickname to be on the right of her avatar, aligned to the top, and we need a

reasonable margin in between.

3
)We want the time right beneath her nickname. It is aligned with a nickname to the left and

aligned with a thumbnail to the bottom.

4
)Then follows the text and image.

5
)If the Feed s liked, we want to show the likes and number of comments and number of shares.

We also give control to the users so they can like, comment, or share the Feed. In terms of the

visual, we want to list the control buttons and numbers in the same row.

6
)Lastly, the Feed should be adaptable to any length of the content.

Figure 2-8 is what the outcome looks like.

Meet Joy!

G B2 [

Figure 2-8 Feed visual outcome

Our first impression is that the main flow direction of this view is vertical. Following this direction, we
can then take a top-down approach to divide the view into three major areas: (1) metadata area, (2)
Feed body, and (3) control panel. Now we can conquer them separately (Figure 2-9).

At this stage, all the resources are hard coded for now. They will be aggregated in a model layer and
eventually fetched from the network (Chapter 5) as we progress.

_ ?’; -':l Marina
eta data L\rz’ July 17
Meet Joy!

Feed body

Control panel —— (510 P [s

Figure 2-9 The divided mock

We look at the code for the area of metadata first (Listing 2-1).

<View style={styles.metaContainer}> // ————————m——o——u—— > 1)
<Image style={styles.avatar} source={{uri: 'https://holmeshe.me/05app:!
<View style={styles.infoContainer}> // —————————————au—— > 3)
<Text style={styles.userName}>{'Marina'}</Text>
<Text style={styles.date}>{'July 17'}</Text>
</View>
</View>
metaContainer: { // ————————— > 1)
width: '100%°',
flexDirection: 'row',

marginBottom: 20,},

avatar: { // ———— > 2)
width: 60,
height: 60,

borderRadius: 5,
marginRight: 20,
b

infoContainer: { // ———————— > 3)

flexDirection: 'column',
justifyContent: 'space-between'

b

userName: {
fontWeight: 'bold',
fontSize: 18,

|

date: {
fontSize: 18,

b

Listing 2-1 Metadata area

1
)We notice that the height of the metadata area can be determined by the height of the image;

hence, we refrain from giving explicit height to make this view more adaptable.

2)

As said, Image can deduce its intrinsic size only when it is loaded locally using a
require (...) expression. So we give an explicit size to the component.

3)

A subcontainer is created to give a vertical layout for the texts.

[NoteReact Native does not have margin collapsing. So we need to apply marginBottom ex-

plicitly for all the containers when appropriate.

Next, we look at the Feed body which is relatively simpler (Listing 2-2).

[/ e > 1)
<Text style={styles.textPost}> // —————— > 2)
Meet Joy!
</Text>

<Image style={styles.imagePost} source={{uri: 'https://holmeshe.me/05ap]
textPost: { // ————— > 2)
fontSize: 22,

marginBottom: 20,

|

imagePost: { // —————————— > 3)
width: '100%°',
aspectRatio: 4/3,
marginRight: 20,

|

Listing 2-2 Feed body area

1)

Since there is no change of flex direction as in metadata (infoContainer), we decide to try

not to enlist a container for the Feed body. Rather, we let the Feed content flow along the main
flex direction.

Notegdliy Less components reduce memory and CPU overhead, and less code spares time
and energy for the developer in the long run. Here is one approach: try introducing a new layer

only when the flex direction changes. Though there are a few exceptional cases, this approach

can make us more vigilant by using less layers consciously.

2)

We need to apply the marginBottom to make the layout consistent.

3) .
)E width: '100%' and aspectRatio are the golden combo styles applied for Image.

Let’s continue along with the flow direction and examine the layout for the control panel (Listing 2-3).

<View style={styles.controlContainer}> // —————————————u—— > 1)
<NumberedWidget style={{flex: 1}} type={widgetTypes.LIKE} number={10}
<NumberedWidget style={{flex: 1}} type={widgetTypes.COMMENT} number={:
<NumberedWidget style={{flex: 1.5}} type={widgetTypes.SHARE} number={
<Widget type={widgetTypes.MORE} /> // ————— oo > 2)

</View>

controlContainer: {
flexDirection: 'row',

justifyContent: 'space-between',

b

e o o

Listing 2-3 Control panel area

1)

We encounter another flex direction change. So we added another container here.

2
)By examining the visual requirement, it is very tempting to divide the control panel into two major por-

tions using two containers like this:

<View style={{flex:3}}>
<Like/>
<Comment />
<Share/>

</View>

<View style={{flex:1}}>
<More/>

</View>

But since there is no change of flex direction, we find a way to use flex applied for individual control

buttons to reduce another layer of container.

Next, we look at how a widget is implemented (Listing 2-4).

const widgetTypes = {
LIKE: 'like',
COMMENT: 'commnet',
SHARE: 'share',
MORE: 'more',
}
function Widget(props) { // ———————— > 3)
let iconName = 'thumb-up-outline';
switch (props.type) {
case widgetTypes.LIKE:

iconName = 'thumb-up-outline';

break;

case widgetTypes.COMMENT:
iconName = 'comment-text-outline';
break;
case widgetTypes.SHARE:
iconName = 'launch';
break;
case widgetTypes.MORE:

iconName = 'dots-horizontal';
break;

}

return (

<Icon name={iconName} color={'grey'} size={30} />

)i

}
function NumberedWidget (props) { // ——————————— o —— > 1)
return (
<View style={[{...props.style}, styles.widget]}> // ----> 2)
<Widget type={props.type}/>
<Text style={styles.widgetText}>{props.number}</Text>
</View>
)i
}
widget: { // - - —————_—————-———-——-— . ——.—.— . — —, ——— > 2)

flexDirection: 'row',
alignItems: 'center',
justifyContent: 'flex-start',
b
widgetText: {
marginLeft: 3,
fontSize: 16,
color: 'grey',

I

Listing 2-4 Widget

1)

NumberedWidget is the composition of Widget and Text. We will see very soon that compo-

sition is favorable than inheritance for code encapsulation and reusing (Section 2.2).

2
)The styles of NumberedwWidget are divided into two portions. The subcomponents layout is
inherent in the NumberedWidget; hence, it is defined as a constant style. On the other hand,
the layout of NumberedWidget itself should be defined by its container. So the passed

through styles are expanded as is.

)Widget is a factory component that returns an Icon in an on-demand manner.

Lastly, we look at how components are put together to implement Feed (Listing 2-5).

class Feed extends React.Component {

render() {
return (
<View
style={[
{...this.props.style}, styles.commonPadding
1}
>

<View style={styles.metaContainer}>
<Image
style={
styles.avatar
}
source={
{uri: 'https://holmeshe.me/05apps/avatar0l.jpeg'}
}
/>
<View style={styles.infoContainer}>
<Text style={styles.userName}>{'Marina'}</Text>
<Text style={styles.date}>{'July 17'}</Text>
</View>
</View>
<Text style={styles.textPost}>
Meet Joy!
</Text>

<Image

style={styles.imagePost}

source={

{uri: 'https://holmeshe.me/05apps/post0l.png’}

/>

<View style={styles.controlContainer}>
<NumberedWidget
style={{flex: 1}}
type={widgetTypes.LIKE}
number={10}
/>
<NumberedWidget
style={{flex: 1}}
type={widgetTypes.COMMENT}
number={2}
/>
<NumberedWidget
style={{flex: 1.5}}
type={widgetTypes.SHARE}
number={5}
/>
<wWidget type={widgetTypes.MORE} />
</View>

</View>

Listing 2-5 Feed

2.1.3 Key Takeaways

In this section, we went through the usage of flexbox, namely, to lay out and to set size. Then we

took it into action by composing the Feed, the building block of the core user experience of

Manyface. This section could set up the foundation to handle most basic layout tasks. For more com-
plex scenarios, we are going to learn some high-end principles and advanced techniques for layout

in Chapter 6. What? You want to own a complete vertical feature? You will! Just read on.

2.2 Composition vs. Inheritance, HOC

I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a

nail.
—Abraham Harold Maslow

Coming from a traditional OOP background, it could be tempting to use inheritance for code reusing
and logic encapsulation. But it is inappropriate in React which adopts a declarative paradigm. To un-

derstand why, let us look at the tool and the object more closely.

In traditional OOP, classes are mechanical centric, and all the logic and properties can be accessed
or overridden directly by a subclass. This makes inheritance an efficient tool for code reusing and

logic encapsulation.

On the other hand, components are presentational centric, and the most valuable method that is
worth being inherited could be the render () method . This is what makes inheritance clumsy.
There are generally three options to use inheritance for components, to override completely, to in-
herit as is, and to call super.render () inthe overridden render (). Let’s look at them separately

and understand why none of them are optimal.

First, completely overriding a render () makes no sense — if a component has its own version of
render (), it is better off being a stand-alone rather than being a subclass of any component as a
superclass. Moreover, completely overriding a render () could potentially invalidate all the supple-

mentary methods and states built around the original one.

Second, directly inheriting the super . render () without overriding is less optimal as any special-
ization introduced in the subclass (that controls the render () behavior of the superclass) can be

achieved in a simpler and more standard form, props in the superclass.

Third, we can also override the render () and call super.render () to reuse the superclass’ ren-

der (). This causes an adversary called code fragmentation and makes the render () much harder

to reason or, in other words, not scalable. & When it comes to complex layout and animations, it's

important to ensure that all the involved elements are in one centralized place.

In a more fundamental sense, inheritance is not applicable for components because the specializa-
tion order of the inheritance chain (in OOP) is reversed from that of a JSX structure in a render ()
method. In inheritance, the downer a class is in the inheritance chain, the more specialized it is. On
the other hand, in the JSX structure, the deeper a component is nested to the tag structure, it repre-
sents a more specialized or detailed feature and layout. They are not compatible when put together
because it is not possible, or too tricky, to put a child class of a component to be in the children po-

sition of the super component in the render () method.

As such, a composition-based technique, higher-order component (HOC) , is favored to achieve the same
end result of inheritance. A HOC is like a superclass that conforms to the previously discussed specification

order of components. Listing 2-6 gives a typical HOC example.

function HOC(Subcomponent) {
return class extends React.Component {
constructor (props) {

super (props) ;

Render () {
<ComponentThatProvidesBasicFunctionality>
<Subcomponent/>

</ComponentThatProvidesBasicFunctionality>

Listing 2-6 A HOC example

Next, we look at how HOC is used in real projects.
2.2.1 Case Study: Multiple Photo Feeds

This time, we are going to add more types of Feed (Figure 2-10). Let’s look at the requirements first:

1)

We give users the option to publish more than one photo in one of their Feeds.

If the user posts more than one and less than four photos, we want the photos to be displayed
ina?2x?2grid.

3)

If the user posts more than four and less than nine photos, we want the photos to be displayed
ina3x3grid.

Deepthie
Jan 12

Kath
Oct 10s

Figure 2-10 Multiple photo Feeds

We could implement three variances of Feed using a factory component (as we did for widget in

1.3.2.) that returns the right version in accordance with the number of photos. And we soon find out

that the code for the control panel and metadata area has to be duplicated for each Feed. Moreover,

similar duplication could occur for other feed-related features such as comment. So instead of apply-

ing a short-term, ad hoc solution, let’s take one step further to solve the problem the right way.

Firstly, we need a factory component to meet the new requirement (Listing 2-7).

export default function FeedFactory(props) { // -————-—————- > 1)
let numOfImages = props.item.feed.images.length;
if (numOfImages > 4 && numOfImages <= 9) {

return <Feed3x3 {...props}/>; // ——————————————-—--—— > 2)
} else if (numOfImages > 1 && numOfImages <= 4) {

return <Feed2x2 {...props}/>; // —————————————m—ee—— > 2)
} else if (numOfImages === 1) {

return <Feed {...props}/>; // ————————m e > 2)
}
return <Feed3x3 {...props}/>; // === > 2)

Listing 2-7 Feed factory

1
)This factory component simply returns another component based on the condition derived

from the props.

2
)It also sincerely passed through all the props it received. This is achieved with a spread
operator.

Noteglly As we mentioned in the beginning of this section, for the purpose of easy layout (and
animation as we will see very soon in Chapter 3), it is preferred for a render () method to re-
turn a monolithic JSX layout free of logic as much as possible. However, there is one excep-
tion, that is, when a component works as a factory and sincerely returns a set of homoge-
neous components as is, logic such as if elseor switch case is acceptable and will not

cause trouble to further layout and animation effort.

Next, we implement the HOC that adds metadata and control panels to plain Feeds (Listing 2-8).

export default function withMetaAndControls(Feed) {
return class extends React.Component { // —————————————-o > 1)
render() {
return (
<View style={[
{...this.props.style},

styles.commonPadding

1}

<View style={styles.metaContainer}>
<Image style={styles.avatar}

source={{
uri:this.props.item.meta.avatarUri // --> 2)
}}
/>
<View style={styles.infoContainer}>
<Text style={styles.userName}>
{this.props.item.meta.name} // —————————-—- > 2)
</Text>
<Text style={styles.date}>
{this.props.item.meta.date} // —————————-—- > 2)
</Text>
</View>
</View>
<Feed {...this.props}/> // - ———————————————— > 3)
<View style={styles.controlContainer}>
<NumberedWidget
style={{flex: 1}}
type={widgetTypes.LIKE}
number={ this.props.item.meta.numOfLikes } // -> 2)
/>
<NumberedWidget
style={{flex: 1}}
type={widgetTypes.COMMENT}
number={ this.props.item.meta.numOfComments }//> 2)

/>

<NumberedWidget
style={{flex: 1.5}}
type={widgetTypes.SHARE}
number={ this.props.item.meta.numOfShares } //-> 2)
/>
<Widget type={widgetTypes.MORE} />
</View>

</View>

Listing 2-8 HOC that adds the metadata to the feed

1)

HOC returns an enhanced class of the component passed through.

2
)We start replacing all the hard-coded values with proper props which can be dynamically cus-
tomized by the caller.

3
)HOC is responsible to pass through the props to the target component being wrapped. This is

achieved with the spread operator.

Next, we implement the three types of Feed. Listing 2-9 is how the original one-photo Feed looks after

some of the functionalities are pulled out to the HOC.

class Feed extends React.Component {
render() {
return (
<>
<Text style={styles.textPost}>
{ this.props.item.feed.text }
</Text>
<Image
style={styles.imagePost}
source={{uri: this.props.item.feed.images[0]}} // -> 2)

/>
</>
)
}
}
export default withMetaAndControls(Feed); // —-————————-———- > 1)

Listing 2-9 The original Feed

1
)This is how HOC is used. Here, we export the enhanced class returned by the HOC instead of
the Feedtself.

2
)Unprotected access to array elements is error-prone. Safer approaches and ways to handle

potential exceptions will be introduced in Section 2.4.

The two new types of Feed are implemented as in Listings 2-10 and 2-11.

class Feed2x2 extends React.Component {

render() {
return (
<>
<Text style={styles.textPost}>
{ this.props.item.feed.text }

</Text>
<View style={styles.gridContainer}> // —-——————————- > 1)
{this.props.item.feed.images.slice(0, 4).map(e =>//> 2)
<View style={styles.cell}> // ———————mmm——o——— > 1)
<Image // ———————— e > 3)

style={styles.imagePost}
source={{uri: e}}
/>

</View>
)}
</View>
</>

}
const styles = StyleSheet.create({

textPost: {
fontSize: 22,
marginBottom: 20,

bo

gridContainer: {

flexDirection: 'row',

flexWrap: 'wrap', // ——————— > 1)
bo
cell: {
width: '50%', // =—mm e > 1)
paddingRight: 12, // ———————— e > 3)
marginBottom: 12, // —————————— > 3)

justifyContent: 'center',
alignItems: 'flex-start'

b

imagePost: {

width: '100%', // ——————— > 3)
aspectRatio: 4/3, // =—————— > 4)

}y
)i

export default withMetaAndControls(Feed2x2); // —————————-- > 5)
Listing 2-10 Feed2x2

1))

We use flexWrap: 'wrap' onthe container to enable the grid layout. Each row of the grid
will contain two cells as the width of the children is setto '50% ' of the container.

2)

We use map () as the JSX expression to transform the image URLs from the props to the list of
cells in the grid. We also use s1ice (0, 4) to ensure the number of cells in the grid is less

than four; hence, the number of rows will always be less than two.

3)We use a combination of styles to maintain a consistent horizontal and vertical margin among
the cells. Firstly, we set the width of the graphic to be '100% ' which will be offset by the pad-
ding (12) given to the cell. Then the same amount of margin is also given to the cell
correspondingly.

4
)We set the aspectRatio of the cells the same as before.

5)The HOC is applied to the Feed2x2 the same way as to the Feed.

class Feed3x3 extends React.Component {
render() {
return (
<>
<Text style={styles.textPost}>
{ this.props.item.feed.text }
</Text>
<View style={styles.gridContainer}>
{this.props.item.feed.images.slice(0, 9).map(e =>//> 2)
<View style={styles.cell}>
<Image style={styles.imagePost} source={{uri: e}}/>
</View>
)}
</View>

</>

}
const styles = StyleSheet.create({
textPost: {
fontSize: 22,
marginBottom: 20,
b
gridContainer: {
flexDirection: 'row',

flexWrap: 'wrap',

b
cell: {
width: '33%', // === > 1)
paddingRight: 3, // === > 3)

marginBottom: 3,

justifyContent: 'center',
alignItems: 'flex-start'

bo

imagePost: {
width: '100%', // —————————— > 3)
aspectRatio: 4/3,

|

})i
export default withMetaAndControls(Feed3x3);

Listing 2-11 Feed3x3

1
)We use 33%’ to set the grid to be 3 x N.

2
)slice (0, 9) makes the grid 3 x 3.

3)

We reduce the gap value to be three in accordance with a grid of more density.

2.2.2 Key Takeaways

In this section, we learned the fundamental difference between a React component and an ordinary

class in the traditional OOP paradigm.

2.3 ScrollView and FlatList

One of the key mobile experiences distinguished from desktop is swipe. Whether the swiping is
smooth or not by and large determines the success of the user experience of an app. Here is where
ScrollView comes into play. ScrollView is backed by the native scroll view and inherits all the
smoothness and fluency optimized for the mobile platform. Moreover, the fine-tuned snapping and
momentum mimicking real world physics are sincerely relayed in React Native. So Scrollview is

one key ingredient to unlock a highly user-interactive animation experience (Chapter 3).

FlatList extends scrollview catering for the need of a long list. In addition to the excessive
length, a long list is required to grow dynamically. When triggered by certain user interactions, for ex-
ample, scrolling to the end, additional rows could be added. FlatList is more appropriate as ren-
dering everything in one shot is not optimal or not feasible for most long list use cases. FlatList
implements a concept virtual list which renders only a necessary portion of it at any point of time. The
user will be under the impression that they are navigating a list fully populated at all times because
the component ensures that the visible area of the list is always being covered within the portion
that has been rendered. As noted, FlatList or, more specifically, the scrolling mechanism of
FlatList isbasedon ScrollView; hence, FlatList also inherits all the native-level perfor-

mance and user experience merits by nature.

As you might already be figuring out, F1atList is more suitable for Moment in Manyface. And this is

what we are going to do.

[Noteln the terminology of the virtual list, the visible area is called viewport, and a rendered area is
called a window. By default, F1latList can cope with most scenarios of a long list. In extreme cas-
es, nevertheless, it is desirable to deeply squeeze the performance of the component by adjusting

the sizes of windows and anticipated viewport. Such heuristics are examined in detail in Chapter 6.

2.3.1 Case Study: Moment

This time, we are going to complete the layout for Moment. The requirement of Moment is simple: a scrollable
list of Feeds (Figure 2-11).

My diet plan to loss 12 Kg.

Lo

7 ES AN
- ,.wﬂl\\\\\\
X Mg
A
\ ey, il

=12 Y Wy,

-,

s B &

L& Deepthie
L@ Jon2

Exciting new jorney!

Figure 2-11 Moment

Firstly, let’s move the hard-coded Feeds content to a model layer which could be read by the FlatList
(Listing 2-12). As we progress, we are going to gradually remove the hard-coded content and fetch everything
from a web APL

class Meta {
constructor (
avatarUri,
name,
date,
numOfLikes,

numOfComments,

numOfShares

) |
this.avatarUri = avatarUri;

this.name = name;

this.date = date;
this.numOfLikes = numOfLikes;
this.numOfComments = numOfComments;

this.numOfShares = numOfShares;

}

class Feed {
constructor (text, images) {
this.text = text;

this.images = images;

}
class FeedModel { // =—————— o > 1)

constructor(obj) {
this.meta = new Meta(
obj.avatarUri,
obj.name,
obj.date,
obj.numOfLikes,
obj.numOfComments,
obj.numOfShares
)i

this.feed = new Feed(obj.text, obj.images);

Listing 2-12 FeedModel

1))

It is common to create a model layer to capture the underlying data structure that the app is

running on. In practice, TypeScript is more favorable than vanilla JavaScript used here.

Next, we fill the model with some mock data (Listing 2-13).

const mockData = [{

avatarUri: 'https://holmeshe.me/05apps/avatar08.jpeg’,
name: 'Kath',

b

b

date: 'Oct 10',
numOfLikes: 8,

numOfComments: 1,

numOfShares: 1,

text: 'My diet plan

images:

'https://holmeshe.
'https://holmeshe.
'https://holmeshe.

]
{

avatarUri:

[

name: 'Deepthie’',
date: 'Jan 12°',
numOfLikes: 11,

numOfComments: 2,

numOfShares: 5,

text: 'Exciting new

images:

[

"https:
"https:
"https:
'"https:
'https:
'"https:
'"https:
'"https:
"https:

{

avatarUri:

//holmeshe.
//holmeshe.
//holmeshe.
//holmeshe.
//holmeshe.
//holmeshe.
//holmeshe.
//holmeshe.
//holmeshe.

name: 'Kath',
date: 'Jan 10',
numOfLikes: 3,

numOfComments: 1,

numOfShares: 0,

text: 'Meet joy.',

images:

[

to loss 12 Kg.',

me/05apps/hoc-2x2-1.3jpg"',

me/05apps/hoc-2x2-2.3jpg",

me/05apps/hoc-2x2-3.jpg"',

jorney!',

me/05apps/hoc-3x3-1.
me/05apps/hoc-3x3-2.
me/05apps/hoc-3x3-3.
me/05apps/hoc-3x3-4.
me/05apps/hoc-3x3-5.
me/05apps/hoc-3x3-6.
me/05apps/hoc-3x3-7.
me/05apps/hoc-3x3-8.
me/05apps/hoc-3x3-9.

jpg’
jpg’
jpg'
jpg'
Jpg’
jpg’
jpg’
jpg’
jpg’

'https://holmeshe.me/05apps/avatar02

14

14

14

14

14

'https://holmeshe.me/05apps/avatar08

.jpeg’,

-jpeg’,

"https://holmeshe.me/05apps/post0l.png’,
]
H1d

let mockModel = mockData.map((obj) => { return new FeedModel (obj);

export default mockModel;
Listing 2-13 Mock data

Lastly, we encapsulate the Moment component (Listing 2-14).

import React from 'react';
import { FlatList } from 'react-native';

import FeedFactory from './feeds/FeedFactory';

import data from '../models/FeedModel';
const Moment = () => {
const renderItem = (entry) => // ===

<FeedFactory meta={entry.item.meta} // -—-————————————————
feed={entry.item.feed}
/>
return (
<FlatList // —-————=—————
data={data} // —-—————————
renderItem={renderItem} // ——————— e
/>
)i
}i
export default Moment;
Listing 2-14 Moment

1)
2)

3)
1)
1)

)

1
)The two essential props that F1atList requires are (a) data which defines its data source

and (b) renderItem () which defines how to render data in the granularity of entry.

FlatList can work out of the box with these two props set properly.
2
)FeedFactory is the same one we use in our last case study (Section 2.2.1).

3)

We use FlatList to render the whole list.

2.3.2 Key Takeaways

This section introduced the basic Scrol1Vview and its enhanced version, FlatList, which empow-
er the long list experience. As the scrolling is backed directly by the corresponding native compo-
nent, it has no difference than the native experience performance wise. Then we used a minimal set-
up of FlatList to complete the core user experience of Manyface. As mentioned, FlatList de-
serves some derivative optimization when it comes to extreme scenarios. We are going to review
some of the critical performance aspects of F1atList and common optimization approaches in
Chapter 6. Moreover, as we will see in Chapter 3, ScrollView is also the key to implement user-inter-

active animation.

2.4 Error Handling

When designing systems of any kinds, it is important to understand that every component could po-
tentially fail. A robust system is not one that does not have any failure, but the one that is always tol-
erant to setbacks and is able to degrade gradually to the next acceptable state when a failure occurs.
Bottom line, the system in design should never quit the game with a crash or any other kinds of unde-
fined behaviors (e.g., blank screen), in exception, by design. To build a system that never crashes,
the very first step is to define the boundaries for exceptions so as to confine the exceptions inside
one logic unit that causes them. As you will see very soon in this section, a clear boundary does not
only make the exceptional behavior easier to be defined but also makes the potential issue easier to

be debugged. This technique is called exactly as an error boundary.

An error boundary is very similar to a try-catch semantic that defines the exception flow along with
the normal logic flow. Unlike the traditional imperative programming paradigm where the logic flow is
grouped into functions, React is declarative and logic units are made up with presentation-oriented
components. An error boundary is an error handling mechanism catering for this paradigm and is
itself a component . More specifically, an error boundary is a container component designed with
presentation and behavior for types of exception that children could potentially throw. giiily In prac-
tice, an error boundary is strategically placed on cutting points of the domain logic unit so as to,

again, confine the exceptions inside one logic unit that causes them.

As you might be thinking of right now, HOC is the fitting technique to apply error boundaries. To be
more concrete, a HOC is an ideal place to encapsulate some of the common logic for error handling
(e.g., log, exception filtering) and to execute the custom exception presentation or behavior of a spe-
cific component in design. Those components with error boundaries enabled, in turn, are deter-
mined as the noted strategic points that are embedded with the exception flow for itself and all its

children and subcomponents.

[NoteA stand-alone error boundary is also a common practice that is suggested by the community.

We take the approach of using HOC to implement error boundaries as we see more merits in this

practice.

How to identify those strategic points mentioned earlier? Luckily, we are in the middle of implement-

ing Manyface. Let’s find out together with real-world examples.
2.4.1 Case Study: Moment (Reinforced)

Before we move forward, let’s slow down here and think about one question: Is Moment production ready?

No. Because it lacks an exception flow despite the complete and seemingly bug-free functionalities. As a
result, any hidden flaws within the component logic or the data from the model layer could cause a crash of
the app. Figure 2-12 shows how Manyface is represented in debugging mode when one metadata is undefined.

In production, it will be an instant crash.

Log 2 of 5

undefined is not an object (evaluating
'this.props.meta.avataruri')

Source

« style={[{...this.props.style}, style
w style={styles.metaContainer}>
ge style={styles.avatar} source={{

@ style={styles.infoContainer}>

t style={styles.userName}>{this.
<Text style={styles.date}>{this.prop

Component Stack

lass

FeedFactory

Vvoment.js

<RCTView

Call Stack

render

aAndCo

performSyncWorkOnRoot

[native code]

renderApplication

Dismiss Minimize

Figure 2-12 Acrash

In practice, the flaw could come from a malfunctioning endpoint, a bug from one of us programmers,
or a premature configuration flag turned on remotely. Nonetheless, a crash in any of the preceding
cases is not acceptable. We know that an error boundary is our friend. But how to use it effectively?

To answer this question, we firstly look at the nature of exception flows.

Unlike the normal logic flow where each branch pinpoints a certain expected logic case, an exception
flow targets each time an undetermined range of cases that are exceptional and could not be antici-
pated beforehand. A common narrative of an exception flow is “when one category of unexpected
happened, whatever it is, what would you do?”. Sometimes, even the error category itself is not

known. In order to deal with this uncertainty, exception flows are deployed strategically as layers of

defending lines.

We shall take a top-down approach to identify the strategic points to place error boundaries, starting
from the Moment. If anything unexpected happens inside Moment, what should we render? Correct, an error
page like a 404. Take a step down; what if the unexpected exception happens inside a Feed, should we block
the user experience of Moment with the 404 error page? No, right? We can simply make the Feed in
problem invisible. So the problem will not surprise the user. On the other hand, we should log the incident
with all the contexts within the exception flow predefined. We call this technique a silent log . We now have
two defending lines to make our component robust in a way that in any case of unexpected exceptions, it can
degrade gradually to the next acceptable state. And voila, we just defined the requirements for this case study:

1
)When an exception happens inside a Feed, the Feed should be invisible.

2)

When an exception happens inside a Moment, it should be replaced with an error page.

Firstly, let’s implement the utility component that makes our lives better. As discussed, we are going to

count on our old friend, HOC, this time again (Listing 2-15).

export default function withErrorBoundary(Comp, ErrorPage, ErrorHandler
class Error extends React.Component { // ——————————————— > 2)
constructor () {
super ()
this.state = {
error: undefined,

info: undefined

}

componentDidCatch (error, info) { // ———————————————un > 2)
this.setState({ error, info })
// Common exception related logic comes here // —-—--—- > 3)
// e.g., log, report, etc.,
if (ErrorHandler) { ErrorHandler(error, info); } // --> 1b)

}
render() {
if (undefined !== this.state.error) {
const { error, info } = this.state
if (!ErrorPage) { // ——————— > la)

return <View/>;

return (
<ErrorPage // —————— > la)
error={error}

info={info}

/>
)
}
return this.props.children; // —-——-—————————————————— > 2)
}
}
class WithError extends React.Component { // —-—-—————————- > 4)

constructor () {

super ()
}
render () {
return <Error><Comp {...this.props} /></Error> // ----> 2)
}
}
return WithError; // —-———————————mmmm > 5)
}
Listing 2-15 withErrorBoundary
1)

(a) To achieve the two requirements defined earlier, we give the protected component a
chance to define its error page in exception. If this page is passed as a nil value, nothing will be
rendered. (b) The protected component could also define its behavior when an exception hap-
pens. Normally, the behavior could drive changes outside of the component (e.g., navigation
back and forward, make a global banner (no network) visible, etc.).

Notegllly In order to avoid double fault (fault within the exception handler), a rule of thumb when

designing an exception flow is to be a minimalism.

2)Error is the error boundary that can catch exceptions thrown within its children. In normal

execution, it simply returns its children. When such an exception occurs, on the other hand,

componentDidCatch is invoked by the React runtime, and the ErrorPage defined in step 1
is rendered.

Being in the funnel position of all exception flow, the componentDidCatch is also an ideal
place for other common actions such as log, report, and debugging dialog boxes.

4)

WithError is the actual HOC that wraps the protected component inside the Error defined
in step 2.

5)

Lastly, the HOC is returned in place of the original component.

Now we can enhance Feeds using the HOC defined earlier (Listing 2-16).

class Feed extends React.Component {
render() {
return (
<>
<Text style={styles.textPost}>
{ this.props.item.feed.text }
</Text>
<Image
style={styles.imagePost}
source={{uri: this.props.item.feed.images[0]}}
/>
</>

}
const styles = StyleSheet.create({
textPost: {
fontSize: 22,
marginBottom: 20,
by
imagePost: {
width: '100%°',
aspectRatio: 4/3,
marginBottom: 20,
|
})i

export default withErrorBoundary(withMetaAndControls(Feed), undefined, 1

...// Feed2x2 definition

export default withErrorBoundary(withMetaAndControls (Feed2x2)

...// Feed3x3 definition

export default withErrorBoundary(withMetaAndControls (Feed3x3)
Listing 2-16 Feeds reinforced

, undefine

, undefin

1
)As per the requirement, when anything happens inside the Feed, we simply return an empty
view and omit the component completely.

Next, we enhance the Moment which is a bit more complex than Feed as it requires a default error page
(Listing 2-17).

const ErrorPage = () => { // === > 1)
return (
<View style={{
flex: 1,
justifyContent: 'flex-start',
alignItems: 'center',
paddingTop: 180,
paddingHorizontal: 60
}}

<Icon name={'alert-circle-outline'}
size={88}
color={"'#6c8ca5"'}
/>
<Text style={{fontSize: 28, color: '#6c8ca5'}}>
Oops but no worries!
</Text>
<Text style={{
fontSize: 20,
color: 'darkGray',
paddingTop: 15

}}

>
Our engineers are working hard at the moment. So please give an
</Text>
</View>
)i
}
const Moment = () => {
const renderItem = (entry) =>

<FeedFactory item={entry.item}/>
return (
<FlatList
data={data}

renderItem={renderItem}
/>
)i
}i
export default withErrorBoundary(Moment, ErrorPage, undefined);// ------

Listing 2-17 Moment reinforced

1
)This is the error page we now define specifically for Moment. Later, we shall move it to a global
position we see fit. jilly This page is programmed in the most rudimentary way so as to avoid

double fault as mentioned earlier.

2)

Again, we protect the Moment using the withErrorBoundary HOC. And this time, we pass it

with the error page.

Lastly, let’s see if the whole error boundary facility works. In common sense, the foremost presumption
for a safety test is to assume it's unsafe. So let’s inject some random errors to those protected components,
starting from Feed3x3 (Listing 2-18).

class Feed3x3 extends React.Component {
render() {
const errorObj = undefined;

errorObj.error(); // ——=———————— e~ > 1)

return (

<>

<Text style={styles.textPost}>
{ this.props.item.feed.text }

</Text>

<View style={styles.gridContainer}>
{this.props.item.feed.images.slice(0, 9).map(e =>
<View style={styles.cell}>

<Image style={styles.imagePost} source={{uri: e}}/>
</View>

)}
</View>
</>

}
...// styles

export default withErrorBoundary(withMetaAndControls(Feed3x3), undefine
Listing 2-18 Feed in problem

This line throws. As per the discussion, an exception thrown in a Feed will only affect the Feed
itself. Hence, the user will not sense it. The development team, on the other hand, will know it
through an exception report (Figure 2-13).

Notegdliy We call the technique a silent log that (1) makes the exception transparent from the

user’s perspective, while (2) it makes it obvious to developers with meticulous logging.

4:24

v. Kath
~ Oct10

My diet plan to loss 12 Kg.

o))
1

Figure 2-13 Make Feed in problem invisible

Next, we give some problems to the Moment (Listing 2-19).

// ErrorPage is defined here

const Moment = () => {
const errorObj = undefined; // —————————
errorObj.error();
const renderItem = (entry) =>

<FeedFactory item={entry.item}/>

return (

<FlatList
data={data}
renderItem={renderItem}
/>

//export default Moment;
export default withErrorBoundary(Moment, ErrorPage, undefined);

Listing 2-19 Moment in problem

1
)We throw the same exception here at Moment. In reality, the exception could be of any kind.

The Moment in exception gives the error page (Figure 2-14).

1)
1

5:03

Oops but no worries!

Our engineers are working
hard at the moment. So please
give another try soon later!

Figure 2-14 Give error page when Moment is in problem

2.4.2 Key Takeaways

In this section, we completed the components for Feed and Moment which make up the core user
experience of Manyface. We firstly reviewed the nature of an exception flow in general. Then we in-
troduced error boundaries and the way of handling exceptions in React. We took a step further to
use HOC as the means to implement an error boundary and apply it on Moment and Feed compo-
nents .

The most valuable part of this section is the methodology to define the critical points in a project.
Through the practice, we know that the general principle here is “least surprise to the user,” even in
the case of exceptions. To be more specific, we hide the problematic component and conduct a
silent log if possible; or we show an error page letting users know what is going on when we have no
choice. In the real scenario, navigation, alert box, toast, and status banner are all in your utility suit.
When applying the methodology in your particular cases, you could take the practical approach of

reasoning carried out in this section as well.

The scope of an exception flow in a React Native app is more extensive than what we see in this
section. In particular, two more scenarios are not covered in this section: (1) exceptions thrown within
services that enlist asynchronous operations and (2) exceptions thrown in native modules and na-
tive components. The error handling of the two scenarios will be covered in their respective chap-
ters (i.e., Chapters 4 and 5). And we are going to escalate our point of view by abstracting a more

generalized methodology for exception handling in Chapter 6.

2.5 Summary

In this chapter, we established a rock-solid foundation of React development. We started the devel-
opment journey from the Feed component with the basic understanding and skill in flexbox. We di-
versify the Feed using a technique called higher-order component (HOC) . Then we put the diver-
sified Feeds into a scrollable list using F1atList. Lastly, we set up an exception flow for all compo-
nents including categories of Feed and Moment so the core user experience can survive the errors

and exceptions in the coming iterations.

The knowledge and skill discussed in this chapter are sufficient for you to take charge of one user in-
terface module of reasonable complexity. To expand the scope to other aspects of a React Native

app, read on.

© M. Holmes He 2022
M. H. He, Creating Apps with React Native
https://doi.org/10.1007/978-1-4842-8042-3 3

3. Animation in React Native

M. Holmes He!
(1) Bucklands Beach, New Zealand

FPS delayed is UX denied.
—Holmes

Animation does not seem to belong to the core user experience of
any apps. Not true. Conversely, it is vital to do the animation correctly.
Why? Read on.

The first key usage of animation is to avoid abrupt user interface
change. For example, when an image is just loaded from the network,
a looming animation is more optimal than a sudden popping up. This
principle applies to some other user interface changes, as we will see
very soon that the text expanding transition in Feeds is made smooth

using a React Native animation technique called layout animation .

The second one is to maintain the impression that the app is being

responsive while loading. Instances are a spinning indicator that an

https://doi.org/10.1007/978-1-4842-8042-3_3

individual item is being loaded, a glimmering skeleton view in app ini-
tialization, and an animated bubble when an Al is thinking. In these
cases, the animation assures the user that the app is still active
though it is not actually responsive to any user interactions. The ab-
sence of the animation could lead to inappropriate or incomplete ex-

periences in the preceding scenarios.

The last but most valuable use of animation is the instinctive touch
screen experience, which is especially critical to mobile user experi-
ence. This type of animation should mimic real-world objects by re-
flecting its velocity and inertia and by following the user’s gesture
frame by frame. We call this type gesture-driven animation to distin-
guish it from other simpler playback animations discussed earlier.
Gesture-driven animation is in demand when multitouch is introduced
by iPhone, and fingers become the major means for the users to in-
teract with apps. In today’s mobile ecosystem, the users have already
been used to smooth touch screen experiences. Hence, doing it right,

although not easy, is just the minimal baseline.

Notelf you are looking at the home page of an iPhone, please pay at-
tention to (1) the smooth sliding that follows your finger when you

drag and swipe and (2) the natural momentum when you release.

3.1 Introduction to React Native Animation

React Native contains three types of animation targeting different
scenarios. The first one is layout animation. Layout animation is
bound to a setState (). After a successful invocation, React Native
will “guess” the most reasonable animation by comparing the layout
change incurred by the setState () . This is normally used for play-

back animation such as view fly-in or area expanding.

Layout animation cannot handle complicated and compounded lay-
out changes. When we need finer control, we shall use value anima-
tion . Technically, those values are associated to transformor
opacity of acomponent’s props.style and are changed during

runtime to facilitate playback animation.

Gesture-driven animation is different fundamentally from the first two
ways to facilitate playback animations. This is the most sophisticated
animation in that each frame needs to reflect the current position of
the user’s finger so as to give a smooth and instinctive user

experience.

Animation can be powered by either native or JavaScript.
JavaScript is not slow. But the asynchronous operation and in-
terthread communication are. We will cover native-powered anima-
tion only in that JavaScript-powered animations cannot meet the
quality bar of production-level apps more often than not. The good

news is we don’t need a single line of native code to facilitate a na-

tive-powered animation. All the functionalities are well encapsulated
within the React Native core and surface out elegantly to be in pure

JavaScript .

Next, we examine each type of animation. And you know the drill;
each learning section is followed by a practical hands-on section(s).

And Manyface will be enhanced in each iteration. Let’s go!

3.2 Layout Animation

For each relayout triggered by setState (), we can opt in an anima-
tion effect that smooths out the transition. As said, layout animation is
normally used to kick off a one-off playback animation. In some situa-
tions, it also can facilitate looping animation such as pulsating. Layout
animation works only when the layout change introduced by set-
State () is simple enough to be guessed by the runtime. That
means the layout changes should not involve correlated states nor

nested components.

3.2.1 Presets

The easiest way to invoke layout animation is to use shortcut methods
which fire a linear or bouncing animation using predefined configurations

(Listing 3-1). Since the properties in regard to the animation, for example,

velocity, springDamping, duration, create/update/delete

configs, etc., are all hard coded within the shortcuts, these methods are the

least flexible among other approaches to issue a layout animation.

LayoutAnimation.linear ()
LayoutAnimation.easeInEaseOut ()
LayoutAnimation.spring()

Listing 3-1 Shortcut methods

NoteHere, the create/update/delete configs are not straightforward
by their names, but don’t worry, we are going to cover their meanings

very soon when we go through more advanced APls.

6 The layout animation is configured for the next setState () in
code execution order. Hence, a wrongly abstracted layer of methods
could incur unwelcomed animation with layout animation configured
by accident. This kind of bug is contextual and hence is very time-
consuming to pinpoint. So (") constantly revising the layer of respon-
sibilities is vital. gy Alternatively, we shall make the architecture flat-
ten. Anyway, no abstraction could be better and less expensive than

overabstraction.

3.2.2 LayoutAnimation.create()

Normally, the preset parameters are not set with the most optimal values. If
we have higher demand on the animation elegance, we shall leverage the

finer control offered by the combination of two other layout animation

methods, LayoutAnimation.configureNext () and

LayoutAnimation.create () . Listing 3-2 gives an example.

LayoutAnimation.configureNext (
LayoutAnimation.create(
300,
LayoutAnimation.Types.linear,

LayoutAnimation.Properties.opacity

)i

Listing 3-2 Customize layout animation using .configureNext() + .create()

LayoutAnimation.create () is a handy utility method that helps
create the primary parameter config for

LayoutAnimation.configureNext (). Usually, we don’t need to

understand what is the actual format of the raw animation config tak-
en by LayoutAnimation.configureNext (). So the specializa-
tion level offered by LayoutAnimation.create () is sufficient for

most use cases.

3.2.3 Raw Animation Config

If we need finer adjustment to the animation outcome, we can create the
animation config object manually and pass it through directly to

LayoutAnimation.configureNext (). Listing 3-3 gives

LayoutAnimation.create () as a helper to assist us in understanding

the exact format of the animation config object.

function create(
duration: number,
type: Type,
property: Property,
) : LayoutAnimationConfig ({
return {
duration,
create: {type, property},
update: {type},
delete: {type, property},

}

Listing 3-3 Implementation of .create()

For the example in Section 3.2.2, the actual config object created is

given in Listing 3-4.

duration: 300, // ——————mmmmm e ——.

create: { // ===

type: LayoutAnimation.Types.linear, // ———----

property: LayoutAnimation.Properties.opacity

b

update: {
type: LayoutAnimation.Types.linear // —————--

by
delete: {

type: LayoutAnimation.Types.linear, // ----—--

property: LayoutAnimation.Properties.opacity

Listing 3-4 The result config object got created by .create()

)

The create subconfig defines the presenting animation when a
new component is created after a setState (). Conversely,
delete defines the dismiss animation for the component when
it got removed. Similarly, update defines the animation when

the same component is changed in size or position.

2)

The duration and type parameters passed to
LayoutAnimation.create () are applied to all subconfig
entries.

3)The property parameters, on the other hand, are applied to
create and delete subconfig only. This is to define a symmetric
behavior for these two opposite actions of the respective com-
ponent. In particular, we want to fade in a newly created com-

ponent and to fade out the deleted one.

NoteDespite its simplicity, layout animation is also very perfor-
|:nant. This is because after the declaration of the animation,
he actual animation is calculated and is carried out all in the

[native layer. So here only the standard performance overhead

of setState () applies.

3.2.4 Android

Lastly before we jump into hands-on, we need to add one extra line to

enable /ayout animation on Android (Listing 3-5).

UIManager.setLayoutAnimationEnabledExperimental?

Listing 3-5 Extra one line to enable layout animation on Android

3.2.5 Case Study, Read More

In Moment, we don’t want an excessive long feed to occupy the screen.
Instead, if the texts of a feed exceed a certain length, we fold the text
portion up so as to make the experience more fluent. The exact

requirements are as follows:

1)

When the number of characters is less than 180, we display the

full message without any truncation.

2)

If the number of characters is equal or greater than 180, we
truncate the text to three lines and add a three-dot symbol be-
low. This symbol gives a visual effect like a synopsis and also

works as a button that expands the message when clicked.

3
)After a long message is expanded, we switch the button to an

up arrow that folds up the message once again (Figure 3-1).

4)

We want the user experience to be smooth; hence, animation is

desired for all the moving parts.

11:19

Deepthie

Jan 12

test on a very long text, test on a
very long text, test on a very long
text, test on a very long text, test on a

Wkl =2 s :
ﬂ Kath

. Jan10
Meet joy.

Figure 3-1 Expandable message

)
1

Deepthie

Jan 12

test on a very long text, test on a
very long text, test on a very long
text, test on a very long text, test on
a very long text, test on a very long
text, test on a very long text, test on
a very long text, test on a very long
text, test on a very long text, test on
a very long text

Fal

Firstly, let’s implement the core component that enables the expandable

text (Listing 3-6).

class ExpandableText extends React.Component {

~mmama ~md aasa ~md Aaa N\ r

)
1

CUILSLLUCLUL {) {
super () ;
this.state = {
numberOfLines: 3, // ——————mmmmmm— .
displayElipsis: true, // —————c—mmmmmmm——e .
}i
}
render () {
if (this.props.text.length > 300) { // —-=-—---
return (
<View style={{...this.props.style}}>
<Text style={styles.textPost}
numberOfLines={this.state.numberOfLine:

ellipsizeMode={'clip'} // ———————————-.

{ this.props.text } // - ————————————.
</Text>
{this.state.displayElipsis &&
<TouchableOpacity onPress={this.expand.b:
<Icon name={'dots-horizontal'} // —-----
color={'grey'}
size={30}
/>
</TouchableOpacity>

}
{!this.state.displayElipsis &&

<TouchableOpacity onPress={this.fold.binc
<Icon name={'chevron-up'} // ————————-.
color={'grey'}
size={30}
/>
</TouchableOpacity>
}
</View>
)i
} else { // ————— .
return (
<Text style={[{...this.props.style}, style:
{ this.props.text } // ——————— . ———.

</Text>

);

}
expand() { // =———————— e .
this.setState({numberOfLines: null, displayE:

fold() { // ==——=————— .

this.setState({numberOfLines: 3, displayElip:

const styles = StyleSheet.create({ // —-————————-.
textPost: {
fontSize: 22,

b

})i
export default ExpandableText;

Listing 3-6 Expandable text

This is where we return different layouts according to text
length. We have seen conditional rendering in Section 2.2.1. Al-
though g the render () method should avoid fragmented JSX
in that monolithic JSX is easier to be laid out and be reasoned,
this pattern works fine only when a render () needs to return
different, complete components according to certain condi-

tions.

These props are set for the expandable text logic. Firstly, num-
berOfLines is set to three initially to truncate the text. Then
we setthe ellipsisModeto 'clip' to hide the ellipsis for
the button. Next, we use 'dots-horizontal' to render the
button.

3)Bind the expand () method to the TouchableOpacity to en-

able the pressing. In this method, we (a) remove the restriction

of three lines to fully display the message and (b) flip the state

of displayEllipsis to hide the button.

)The folding button is displayed only when the state of number-
OfLinesissettozeroand displayEllipsis is setto

false. This buttonis linked to fold () that reverses the pre-

ceding two states and hence folds back the message.

S)

The actual text set with the style is embedded in the preceding

logic.

Next, we apply the ExpandableText to the existing Feed
components (Listings 3-7 to 3-9).

class Feed extends React.Component ({
render () {
return (
<>
<ExpandableText
style={styles.textPost}
text={this.props.item.feed.text} />
<Image

style={styles.imagePost}

source={{uri: this.props.item.feed.imac
/>

</>

Listing 3-7 ExpandableText applied to Feed

class Feed2x2 extends React.Component {
render () {
return (
<>
<ExpandableText
style={styles.textPost}
text={this.props.item.feed.text}
/>
<View style={styles.gridContainer}>
{this.props.item.feed.images.slice(0, -
<View style={styles.cell}>
<Image style={styles.imagePost} sourc
</View>
) }
</View>

</>

)

Listing 3-8 ExpandableText applied to Feed2x2

class Feed3x3 extends React.Component {
render () {
return (
<>
<ExpandableText
style={styles.textPost}
text={this.props.item.feed.text}
/>
<View style={styles.gridContainer}>
{this.props.item.feed.images.slice(0,
<View style={styles.cell}>
<Image style={styles.imagePost} sour«
</View>
) }
</View>
</>
)

}
Listing 3-9 ExpandableText applied to Feed3x3

There is still one missing piece in the puzzle, that is, to make a smooth

transition when the text is expanded or folded. Listing 3-10 gives its

implementation.

expand() {
LayoutAnimation.configureNext(// —-——————————-.
LayoutAnimation.create(
300,
LayoutAnimation.Types.linear,

LayoutAnimation.Properties.opacity

)
)i
this.setState({numberOfLines: null, displayElij

fold() {
LayoutAnimation.configureNext(// —-——————————--
LayoutAnimation.create(
300,
LayoutAnimation.Types.linear,
LayoutAnimation.Properties.opacity
)
)i
this.setState({numberOfLines: 3, displayElipsis

Listing 3-10 Add animation

Yes, here we simply use the animation code from Section 3.2.3,

which effectively turns the setState () invocations to layout

animation.

Note The animation outcome is exactly what we defined. Take
expand () as an example; after the setState (), the expand-
ing button is faded out by the delete action, while the folding
button is faded in for create. The rest of the components
[move linearly to their destined position because of the update

action.

3.2.6 Key Takeaways

In this section, we learned the layout animation. It is simple and per-
formant, but it cannot deal with compounded change. As the name
suggests, layout animation can automatically animate the next layout
change that is issued by setState (). We also went through ways
of invoking layout animation, from its simplest form with a single

method call to the more complex one where you can manually fine-

tune the parameters. It is worth noting again that /layout animation
cannot handle complex animation tasks, which should be tackled with

more advanced techniques discussed in the following sections.

3.3 Value Animation

Unlike layout animation that impacts on the layout of the overall user
interface, value animation targets individual components. To enable
value animation, components need to be attached with an animation
value (Animated.Value). More specifically, after the animation val-
ue is bound to the designated component props , animation can be
driven by changing its value with APIs such as

Animated.timing () or Animated.spring (). In contrastto the
coarse-grained control offered by layout animation, value animation is
capable of driving highly sophisticated and complicated animation

behavior.

Value animation can be powered by either a native or a JavaScript
thread. Technically, animation powered by JavaScript is slow as it
requires constant involvement of the JavaScript thread and asyn-
chronous interthread calls. Native-powered animations are free of
those overheads as the computing is completely offloaded to a native
thread and hence is no different from pure native animation perfor-
mance wise. ‘ Due to the questionable quality of the JavaScript

thread, [we are going to focus only on native-powered animation. It

is also a common practice to only rely on native-powered animation

in production.

NoteDespite its low performance, JavaScript-powered animation
provides a wider range of options of props to which the animation
value can attach. For instance, ‘ one restriction of value animation
at the native level is that the width and height cannot be attached

with an animation value.

Next, let’s go through the APIs. As said, a variable that can be used as an

animation value should be initialized as Animated.Value (). Listing 3-

11 declares an animation value that controls a component’s opacity.

let opacity = Animated.Value(0);

Listing 3-11 Animated.Value, an example

A component should be animation enabled before it can be attached
with an animation value. This is achieved using
Animated.createAnimatedComponent (). As you might expect,
this method creates a HOC based on the component passed in. The React
Native animation has already encapsulated common stock components with
Animated.createAnimatedComponent () to make them directly
usable, like the View’s animation counterpart, Animated.View. Listing

3-12 gives an example.

class SomeComponent extends React.Component {

~mmama ~md aasa ~md Aaa N\ r

CUIISLLUCLUL () ¢

this.opacity = Animated.Value(0); // —-—————--

}

render () {
return (
<Animated.View style={{opacity: this.opacit

);

Listing 3-12 Animated.Value and Animated.View

)It is suggested to put the animation value directly as an in-
stance variable instead of states. The reason will be explained

very soon in Section 3.3.1.4.

After this, the value could be changed in various ways to facilitate an

animation.

3.3.1 Animate the Animation
3.3.1.1 Animated.timing()

Animated.timing () isthe most straightforward way to start a val-

ue animation. The first argument taken is the animation value, and

the second is a configuration object that controls the animation speed

and style.

What Animated.timing () creates is an actionable object which in
turn calls start () to invoke the animation defined. The start ()
accepts a callback argument which will be called after animation completes.
E Normally, this callback is used to call setState () to forward the
layout to the next stable state post the animation. giliy In general principle,
please refrain from locking/unlocking touch within this callback as fluent

user interaction should be free of lock all the time. Listing 3-13 gives a

typical invocation of an Animated.timing ().

Animated.timing(this.opacity, {
tovalue: 1,
duration: 300, —-—----—--——mmm .
useNativeDrive: true, ----------——————————————.
}).start(() => {
this.setState({

done: true

})

1)
Listing 3-13 Animated.timing()

1
)The component fades in (opacity: 1) for 300 milliseconds.

2)useNativeDrive indicates that this is a native-powered ani-

mation calculation. As said, we will always set it to true in this
book.

Animated.timing () provides other configurations such as easing
and delay for the animation. easings.net is a good place to refer to
when we want to adjust those parameters to achieve the desired

outcome.

3.3.1.2 Animated.spring()

Animated.spring () kicks off bouncing animations. With
Animated.spring (), we do not need to provide duration in the

animation configuration (Listing 3-14).

Animated.spring(this.opacity, {
tovValue: 1,
useNativeDrive: true
}).start();
Listing 3-14 Animated.spring()

The configurations provided by Animated.spring () include
damping, friction, overshootClamping, etc. Likewise, we en-

able native-powered animation with useNativeDrive: true.

http://easings.net/

3.3.1.3 Animation Cohort

Besides the methods discussed earlier, we can also combine multiple

animations together. The APIs are listed as follows:

n . . . o .
Animated.parallel () combines multiple animation objects
created using Animated.timing () or
Animated.spring () and fires them all at once using

start ().

Likewise, Animated. sequence () takes multiple animation
objects but fires them one by one in order. This method starts
the next animation only after the previous one completes.

3 . L .
)Animated. stagger () also starts multiple animations in or-

der. However, this method does not wait for the completion of
the previous animation to start the next animation. Rather, it

waits for an interval to fire them one by one in order.

loop () takes an animation object created using
Animated.timing () or Animated.spring () and repeats
it.

5)All the animation objects can be cancelled using stop (). We
can save the animation objects returned by the preceding

methods including Animated.timing () and

Animated.spring () asinstance variables and call stop ()
on it at the appropriate time.
3.3.1.4 setValue()

Animation values can be updated using a direct call of setvalue () ,
for example, this.opacity.setValue (100). The value given to
setValue () will be updated on the user interface, but this gives an
abrupt change instead of an animation. Hence, similar to

setState (), this method is used to forward a component to the

next stable state, normally after an animation transition completes.

‘ However, you can also call this method very fast (e.g., in a ges-
ture callback) to mimic an animation. As explained, this is not recom-
mended by all means due to the inevitable low animation quality (i.e.,

frame loss, shaking) at the JavaScript level.

Furthermore, setvalue () uses the direct JavaScript-to-native com-
munication channel separated from the normal React rendering and
layout pass. Hence, it is faster than the normal update issued by
setState (). Inorder to reflect this distinction, gl using instance
variables is slightly preferred for animation values than states as
mentioned. That said, feel free to store the animation values any-
where that makes sense to you. ﬁf For better performance, please
always rely on setvalue () to update animation value when we

want to opt out the associated animation.

3.3.2 Bind the Animation Value
3.3.2.1 The transform props.style

transformis another well-used props.style. We can use
transformto animate a component’s shape, size, or location. ‘ It

is worth noting that the changes taking place using transform do
not respect the flex layout. [:j Hence, in some cases, we might need
additional layout animation in parallel to cater to a component size

or position to make the general layout in order.

transform takes an array of objects. Each element of the array
takes a predefined string as the key and expresses a transform at-
tribute. Normally, an animation value is set as the corresponding val-

ue to make the attributes animatable. Nonetheless, we can use ordi-

nary states or even const variables for the values as well.

glily Anchor is an important while undocumented attribute for transform
animations. As illustrated in Figure 3-2, an anchor is the pivot point that
the animation should be carried out. For instance, scaleX and scaleY
indicate that a component should expand along the X and Y axes,
respectively. From which original point the component should expand is

defined by the anchor.

ScaleX ScaleX

D
3/

ScaleY

< ScaleY S

v

o — -

D

Figure 3-2 Anchor of transform animation

‘ In React Native, the position of the anchor is undocumented and
obscured, albeit predictable. Instead of an explicit parameter, the po-

sition of the anchor is determined implicitly by how the component in
animation is attached to its container. For example, the justify-

Content: 'center', alignItems: 'center' inthe contain-
er puts an anchor in the center of the animation, while the justify-

Content: 'flex-start', alignlItems: 'flex-start' puts

the anchor on the top-left corner.

Commonly used attributes of transform are listed as follows:

) .
scaleX and scaleY: As mentioned, width and height are
not available in native-level animation. Hence, scaleX and

scaleY are normally used instead to achieve a similar effect.

2 . .
)translateX and translateY: These two attributes define a

change in position of the component.

3
)rotateX, rotateY, and rotateZ: These attributes define the

angle on which component flips.

We will see very soon in the case study section (Section 3.3.8) how
transformis used to facilitate a spinning animation in action. Next,

we start the first hands-on.

3.3.2.2 Value Interpolation

Sometimes, an animation value cannot be mapped directly to a
transform. This is where value interpolation comes into play. For
instance, the rotateZ attribute takes a string which cannot be directly
represented by an animation value. Hence, a common practice is to use an
integer as the animation value and then interpolate it to the destined string

value. Listing 3-15 shows the interpolation from an integer animation value

to the rotate angle.

this.rotate = new Animated.Value(0);
this.rotate.interpolate({
inputRange: [0, 1],
outputRange: ['0Odeg', '360deg']
})

Listing 3-15 Value interpolation

We are going to use this technique very soon when implementing a

loading indicator that requires the rotate?z attribute in Section 3.3.8.

3.3.2.3 Value Calculation

Sometimes, one animation value alone cannot represent the destined
transform. Rather, the attribute could be calculated from two or
more animation values combined. As we will see in Section 3.4.2, the
transparency of the loading indicator depends on two animation val-
ues: the first one is used to represent whether the user is dragging,

and the second one indicates the current position of the scroll view.

Here is where value calculation comes into play. React Native provides
numerous functions to calculate animation values, for example,
Animated.add (). The return value of those methods is animation value
as well; hence, those methods can be invoked in a cascaded manner. See the

example in Listing 3-16.

Animated.add(new Animated.Value(6 / 7),

Animated.multiply(
new Animated.Value(l / 7),
Animated.add(
Animated.subtract(
this.pivotValue,

new Animated.Value((someVal - 1) * someV:

) .interpolate({
inputRange: [-bound, -threshold, 0, thres
outputRange: [1l, -threshold, 0, thresh«
}) s

new Animated.Value(threshold)

Listing 3-16 Cascading invocation of animation value calculation

NoteThe preceding code is to give the form of cascading invocation

of animation value calculation. It does not have any practical means.

In Listing 3-17, we list the value calculation methods.

Animated.add ()
Animated.subtract()
Animated.divide()
Animated.multiply()
Animated.modulo()
Animated.diffClamp()

Listing 3-17 Methods for animation value calculation

Notelt is reasonable to question the design of those calculation meth-
ods. Since animation values are essentially ordinary numbers, why

do we need methods to calculate their result? To answer this ques-

|tion, it is important to understand that those methods are not used to
calculate animation values; instead, they are for expressing a rela-
tionship between a pivot animation value(s) and the destined trans-

form attributes in a declarative fashion. We will see how this tech-

nique is used in action in Section 3.4.1.

Declarative is not a silver bullet. It has the issue of debuggability. The
[more profound reason why we need declarative animation in the first
place and the underlying mechanism of value calculation will be dis-

cussed in Chapter 6.

3.3.3 Case Study 1, Looming Animation for Image
Loading

The feed images in Manyface are loaded from online, but the popping in the
image loaded is abrupt (Figure 3-3). The exact requirements are as follows:
1) . o .
Add loading animation for feed images.

2
)Before the image is loaded, show a light gray background as

placeholders to make the loading process smoother.

11:35

.. Kath
~ Oct10

My diet plan to loss 12 Kg.

=+ [A 1

Deepthie

Jan 12

test on a very long text, teston a
very long text, test on a very long
text, test on a very long text, teston a

Figure 3-3 Before and after the images are loaded

9)
H

c))
1

11:54

ibs B 41

Deepthie

Jan 12

test on a very long text, teston a
very long text, test on a very long
text, test on a very long text, teston a

Firstly, we implement the LoomingImage component (Listing 3-18).

class LoomingImage extends React.Component ({

constructor() {

super();

this.opacity = new Animated.Value(0); // ----
}
render () {

return (

<View style={[{
...this.props.style // ———————mmmmo——e .

Po A
backgroundColor: 'lightgrey' // —-——————-.

P>

<Animated.Image // === .
style={{
width: '100%',
height: '100%°',
opacity: this.opacity // —=————————e-.
)
source={this.props.source} // ———————-.
onLoad={this.onLoad.bind(this)} // ----
/>
</View>
)i
}
onLoad() { // ===
Animated.timing(this.opacity, {

tovValue: 1,

duration: 300,

useNativeDriver: true // —-————————————————.
}).start();

}

export default LoomingImage;

Listing 3-18 Loominglmage

1
)As described, this.opacity is initialized as an

Animated.Value.

2)

We need to use the Animated version of the Image; other-
wise, the animation we apply will not be effective. The anima-

tion value created in the preceding step is attached to the
opacity prop of the Animated. Image.

3
)onLoad is a callback prop provided by ITmage that signals a

load complete of the Tmage. We leverage this prop to animate

the this.opacity to 1 and hence make the Image visible.

We emphasize on performance throughout the text; hence,
useNativeDriver: true is here for this purpose.

5)Use Animated. Image attached with opacity to implement the

loading animation (requirement 2).

6)E Lastly but most importantly, we design the LoomingImage
compatible with Image as possible; the props.styles that could
potentially be the layout information are passed through to the
container, while the source prop is passed through to the

Image. Soon we will see the benefit of this design.

Then we replace the ordinary ITmage components used in various
positions with the LoomingImage. First is the Image in Feed (Listings
3-19 to 3-21).

class Feed extends React.Component {

render () {

return (
<>
<ExpandableText
style={styles.textPost}
text={this.props.item.feed.text} />
<LoomingImage // —————————mmmm—————_ — — .

style={styles.imagePost}
source={{uri: this.props.item.feed.imac
/>
</>

Listing 3-19 Loominglmage applied to Feed

class Feed2x2 extends React.Component {
render () {
return (
<>
<ExpandableText
style={styles.textPost}
text={this.props.item.feed.text}
/>
<View style={styles.gridContainer}>
{this.props.item.feed.images.slice(0,
<View style={styles.cell}>
<LoomingImage // —=—————————————— . — .
style={styles.imagePost}
source={{uri: e}}
/>
</View>
) }
</View>

</>

T 2cdieace 2 W) | ArnminAlmann annlinAd tA EAAAYV)

Lwung J=4vu LUUVIIITNIYHTNTIAyT appIICu LU 1 TCOULAL

class Feed3x3 extends React.Component {

render () {
return (
<>
<ExpandableText
style={styles.textPost}
text={this.props.item.feed.text}
/>
<View style={styles.gridContainer}>
{this.props.item.feed.images.slice(0,
<View style={styles.cell}>
<LoomingImage // —-—————————————— — .
style={styles.imagePost}
source={{uri: e}}
/>
</View>
) }
</View>
</>

Listing 3-21 Loominglmage applied to Feed3x3

Avatars in withMetaAndControls use Image as well. We simply

need to replace the Tmage with LoomingImage. Here, we omit

supplementary components and some of the code for simplicity (Listing 3-

22).

export default function withMetaAndControls(Feed
return class extends React.Component ({

render () {

return (

<View style={][
{...this.props.style},
styles.commonPadding]}

<View style={styles.metaContainer}>

<LoomingImage // —————————mmm————— .
style={styles.avatar}

source={{
uri: this.props.item.meta.avatarl

}}
/>

<View style={styles.infoContainer}>

<Text style={styles.userName}>
{this.props.item.meta.name}
</Text>
<Text style={styles.date}>
{this.props.item.meta.date}
</Text>
</View>
</View>
<Feed {...this.props}/>

<View style={styles.controlContainer}>

</View>

</View>

Listing 3-22 Loominglmage applied to avatars

I)E We design the LoomingImage with the compatibility in
mind; hence, in the refactor we only need to replace the com-
ponent’s name and keep the rest of the props untouched. This
makes the similar refactor tasks much less error-prone. In
Chapter 6, we are going to discuss the more general and ac-

tionable principles of designing a custom component.

3.3.4 Case Study 2, Loading Indicators

A loading indicator can be used in various places when the app is being
bootstrapped or loading additional resources. Although React Native
provides a default loading indicator, we need a custom one that fits the style
of Manyface better. More specifically, we need three kinds of loading

indicator:

1)A quarter circle that rotates: This could be used as part of a
placeholder view when an individual Ul element loading is pro-
longed (e.g., a video). In this section, we are going to apply the
loading indicator to images. This is the variant that is the most
similar to the default loading indicator.

2
)A spinning envelope: This special loading indicator will be used

by the pull down loading animation.

3)A skeleton view of any size: This loading indicator is used as a
placeholder itself when a view (e.g., Image) is being loaded.
Unlike a loading indicator, this loading style is applied to the
whole page, so as to make the whole loading experience inte-
grated. We also need a glimmering animation to assure the

user that the app is not frozen.

oteSome of the components implemented in this hands-on

ill not be used straightaway. For example, a rotating circle is

ml\f'\+|\l L] Iﬁf\"l II f\hl\l llllf\f\n +I¢\f\ IﬂﬁA:hﬂ f\" N VAAO/ALIVAAN VM I:Vf\ﬁ ~N\s

[IHIUDLY USTIUL VUIIy WIICHT UIC 1vaullly VUl a I1SoVUUILT ITUYUIITO TA™

cessive time, for example, a video; a skeleton view is normally
[needed during bootstrap when the critical logical path is being
blocked by network fetching or other bootstrap steps. The prac-
tical use of the loading indicators implemented in this section

will be discussed in Chapter 5.

First, let’s implement the simplest variant, the rotating quarter circle
(Listing 3-23).

import Icon from 'react-native-vector-icons/Mate:
const AnimatedIcon = Animated.createAnimatedCompc
class RotatingCircle extends React.Component ({
constructor() {
super();
this.rotate = new Animated.Value(0); // -----

}

componentDidMount () {
Animated.loop(// =————— e
Animated.timing(this.rotate, {
tovalue: 1,
duration: 1000,
easing: Easing.linear, // —————————————-.
useNativeDriver: true // ———————————————.

})
) .start();

render () {
const size = this.props.size ?? 58;
const color = this.props.color ?? 'white';
return (
<View style={][
{...this.props.style}, styles.stablizer ,
1}>
<AnimatedIcon // ————————mmmm———_ — .
style={{
transform: [{rotateZ: this.rotate.inf
inputRange: [0, 1],
outputRange: ['Odeg’', '360deg']
})]
}}

name={'loading'}

color={color} // —————————————— .

size={size} // —-—————— .
/>

</View>

const styles = StyleSheet.create({
stablizer: { // —————— .
justifyContent: 'center',

alignItems: 'center'

}o

})i
export default RotatingCircle;
Listing 3-23 Loading indicator — RotatingCircle

)We initialize an animation value this.rotate which is set to
loop from zero to one in a one-second interval. Note that we set
easingto Easing.linear (the default value
Easing.inOut is jumpy when used in a loop) in order to give
an even animation transition. Again, we set useNativeDriv-

er 10 true to gain the performance point.

Instead of directly using the Icon from react-native-vector-icon,
we create a HOC that enables the animation using
Animated.createAnimatedComponent. So the following
transformsetinthe props.style can be effective.

3 : . :
)Here come our protagonists of this section, transform +

interpolate (). interpolate () takes an animation value
range as the input and output range of values that is acceptable
by the transform attribute.

4)We expose two props as the interface of this component so it

can be further customized by the user, size and color.

5)

Lastly, we apply another layer of components as a stabilizer.
This component becomes the container; hence, it also ac-

cepts the layout information the user might want to let it know

using {...this.props.style}.

Now we can apply the RotatingCircle as part of the
LoomingImage (Listing 3-24).

import RotatingCircle from './loadingIndicators/l
class LoomingImage extends React.Component {
constructor () {

super();

this.opacity = new Animated.Value(0);
this.state = {loaded: false}; // ——————————-.
}
render () {

return (

<View style={[{
...this.props.style

Poo A

backgroundColor
P1}k>
{this.state.loaded === false && // —-———--
<View style={styles.overlay}>
<RotatingCircle size={28}/>
</View>
}
<Animated.Image // —-——————————————— —————.
style={{
width: '100%°',
height: '100%°',
opacity: this.opacity
)
source={this.props.source}
onLoad={this.onLoad.bind(this)}
/>
</View>
)i
}
onLoad () {
this.setState({loaded: true}); // —-—————————ao—-.

Animated.timing(this.opacity, {
toValue: 1,

duration: 300,

useNativeDriver: true
}).start();

}
const backgroundColor = 'lightgrey’;

const styles = StyleSheet.create(({
overlay: { // ——————— .
backgroundColor,
justifyContent: 'center',
alignItems: 'center',
position: 'absolute',
left: O,
right: 0,
top: O,
bottom: O,
by
})i

Listing 3-24 Loominglmage with a loading indicator

1
)We use position: ‘absolute’ to put an overlay that populates the

loading indicator.

2
)The Image is put after the loading indicator to make sure that it
is on top of it when being rendered.
3)When the graphic has been loaded, we do away with the load-

ing indicator completely by forwarding the state to the next

phase (i.e., 1oaded) along with the animation.

Next, let’s implement the spinning envelope using a similar technique of
RotatingCircle (Listing 3-25).

import Icon from 'react-native-vector-icons/Mate:
const AnimatedIcon = Animated.createAnimatedCompc
class SpinningEnvelope extends React.Component {
constructor() {
super();
this.rotate = new Animated.Value(0);
}
componentDidMount () {
Animated. loop(
Animated.timing(this.rotate, {
tovalue: 1,
duration: 2000,
easing: Easing.linear,
useNativeDriver: true

})
) .start();

}

render () {
const size = this.props.size ?? 58;
const color = this.props.color ?? 'white';
return (

<View style={[{...this.props.style}, styles

<AnimatedIcon
style={{
transform: [{rotateY: this.rotate.ini
inputRange: [0, 1],
outputRange: ['0Odeg', '360deg']
P}

H}

name={'email-outline'} // ——————————-.
color={color}
size={size}

/>

</View>

}
const styles = StyleSheet.create({

stablizer: {
justifyContent: 'center',

alignItems: 'center'

}o
})i

export default SpinningEnvelope;
Listing 3-25 Loading indicator — SpinningEnvelope

This implementation is similar to that of RotatingCircle, ex-
cept for (a) the rotation that is pivoting on Y axis instead of Z

and (b) an envelope symbol.

Notegilly Why don’t we converging the rotating logic into a sin-
gle, generalized component if the two components are so
similar? This is to avoid overabstraction. Overabstraction could
lead to a rigid code base in that a change in one place could
potentially have an effect on the other. Moreover, you are oblig-
ated to test feature(s) completely irrelevant to the current

change. So a healthy level of duplication could make software

projects more flexible and hence more extensible.

Lastly, let’s start implementing the skeleton view (Figure 3-4). When

doing so, it is tempting to implement a generalized component that can
magically transform any layouts into a designated animated skeleton view.
However, this idea only sounds good but is not practical. @ More
specifically, it’s neither feasible to derive the complete layout of a
component nor to orchestrate animation across placeholder components
that could be scattered within the view hierarchy. So this time again, let’s
refrain from designing a brilliant high-end abstraction, but opt in an ad hoc,

down-to-the-ground way (Listing 3-26).

L

7:45

Figure 3-4 A skeleton view

Noteai, The general idea of a skeleton view is to give an expectation
to the user how the view looks like when fully loaded. The blocks in a
skeleton view are not the one-to-one placeholders, so their positions
do not need to be exact. In contrast, making exact placeholders of
the real Ul elements sometimes gives weird visual outcomes. This is

another reason why deriving a skeleton view from a normal compo-

|nent layout is not practically feasible.

class Skeleton extends React.Component {
constructor() {

super();

this.lightPos = new Animated.Value(0); // ---
}
constructor() {
super();
this.lightPos
}

componentDidMount () {

new Animated.Value(200); // -

Animated.loop(// ——————— .
Animated.timing(

this.lightPos, {
tovValue: -Dimensions.get('window') .widi
duration: 1200,
delay: 500,
easing: Easing.linear,

useNativeDriver: true

)
) .start();

}
render () {
return (
<View style={{...this.props.style}}>
<FakeFeed/> // -=-=-———————— .
<FakeFeed/>
<Animated.View style={[styles.light, {
transform: |
{translateX: this.lightPos},

1,

}1}y/>
<Animated.View style={[styles.light, { /.

right: -50,
width: 30,
transform: |
{translateX: this.lightPos},

1,
}1}/>

</View>

}
const styles = StyleSheet.create({

light: {
position: 'absolute',
top: O,
right: 0,
width: 60,
opacity: 0.3,
height: 1500,
backgroundColor: ‘'white',
transform: |

{translateX: this.lightPos},

1,

by

})i
export default Skeleton;

Listing 3-26 A skeleton view

1)

We use Animated. loop () to repeatedly move this. -
lightPos that determines the position of the reflection of light.
2)

We omit the code for FakeFeed here as it is a pure flex layout
similar to that of a Feed.

3 :
)Agaln, we attach this.lightPostoan Animated.Viewto

make the position animatable.

3.3.5 Key Takeaways

We have examined how to create various types of animation using an
animation value. We firstly covered timing () and spring () to fa-
cilitate animations targeting particular components. Then we learned
how to combine those animations in serial or in parallel using anima-
tion cohort techniques. # We also explained why setvalue () is
more efficient than setState () when it comes to the animation val-
ue and offered a general practical guide for using it. Lastly, we cov-
ered the basics of value transform, which, combined with value inter-
polation and calculation, can be used to express a very complex rela-
tionship between user gesture and the visual outcome. This tech-
nique will be especially useful when we use native events to imple-

ment gesture-driven animation.

We dedicated two hands-on subsections and implemented four com-
ponents for Manyface for a better coverage of aspects of animation

value usage. Some were applied straightaway to enhance the user

experience of Manyface. The rest will be integrated eventually when

the time comes.

g, Throughout the section, we always use native-powered animation
in order to maintain the quality bar for all animations applied. It is a

suggested practice in real projects as well.

3.4 Gesture-Driven Animation

This is the hardest type of animation which makes mobile experience
special. Basically, we need to mimic real-world objects that do not only
give real-time response to the user touch but also display attributes such as
resistance, quality, and inertia. The goal is to conform to the user's
expectation to the physics in their subconscious to avoid attention we don’t
want.

| thought that the dream space would be all about visual but, it’s

more about the feel of it.
—Inception

Generally speaking, gesture-driven animation enlists two parts corre-
sponding to the two phases of a gesture, (1) gesture animation and
(2) release animation. The gesture animation reflects the current po-
sition of the user’s gesture frame by frame. For instance, a pan ges-
ture animation should be able to move the Ul element along with the

user’s finger, and to perform a finish off animation when the user re-

leases the gesture. We normally call the user interface in a transition-
al stage during gesture animation and call the user interface in a sta-
ble stage after release animation completes. The release animation
should account for the current velocity of the swiping gesture. More-
over, it should be redirectable whenever the user changes their mind.
So release animation, as a vital link between those two stages, is crit-
ical and hard to implement. Luckily, React Native has provided us
with the right tool, the Scrol11View, to make the whole transition

natural.

NoteWe don’t categorize all animations triggered by user gestures as
lgesture-driven animation. When being triggered by simple gestures,
such as a tap, what gets involved is simply a playback animation and
can be implemented using the value animations or layout

animations. This kind of animation does not enlist a transitional state,

|nor should it be redirectable.

As said, a release animation leads to the next stable stage. Hence,
we also need a threshold to determine what the next state is, a mov-
ing forward or a folding back. This threshold is the key to make the

gesture transition redirectable.

Technically, React Native provides two means to carry out gesture-
driven animation, the gesture responder system and the

ScrollView. The gesture responder system relies on the

JavaScript thread and is only good for playback animation once a
gesture is determined. Another common option is provided by a third-
party library, react-native-gesture-handler which supports native
event (Section 3.4.1) for gesture animation. However, it imposes a
subtle performance penalty to be used to implement the release ani-

mation, which can be noticeable by the users with very sharp eyes.

Notereact-navigation is one of the mainstream third-party libraries
that relies on react-native-gesture-handler. Since react-native-ges-
ture-handler only accounts for the gesture animation, the release ani-
[mation is required to be implemented separately in JavaScript (us-
ing value animation). Though both animations are implemented us-
ing a native driver and are performant, we need to pass the current
velocity from the native to the JavaScript thread. And this communi-
cation gives a very subtle halt in the middle of the gesture

experience.

A Scrollview, though sounds animation irrelevant, is one of the
key components in mobile ecosystems to achieve smooth gesture-
based experiences in various occasions. To better understand the

reason, read on.

3.4.1 Native Event

Native events are designed for high-performance gesture-driven ani-

mation. To enable the pure native-powered animation, the events are

firstly bound, in the form of an animation value, to a certain compo-
nent (event source) like a ScrollvView. Then, a value calculation
(Section 3.3.2.3) is derived from the animation value, to define the ani-
mation behavior which can be in turn executed in the native layer.
Value calculation effectively forms a native-to-native communication
channel which we will discuss in Chapter 6. Lastly, on the other
side(s) of the communication channel reside the event receivers,

which are components that take the calculation results as props.

|deally, gesture animation must be completely offloaded to the native
level in order to give an acceptable FPS. The principle is similar to
that in value animation . Due to the high performance bar of gesture-
driven animation, JavaScript-powered animation is not capable of
this kind of task. As mentioned before, the bottleneck is the in-

terthread, asynchronous communication mechanism.

Since the JavaScript thread should be excluded completely through-
out the animation procedure, the output of the native eventis made a
single animation value and will not be attached with any logic (or call-
back). As mentioned, value calculation and interpolation are required
as this value cannot be used directly. More specially, value interpola-
tion and calculation define the animation behavior by declaring the

relationship between an animation value and the destined trans-

form. After the animation behavior is defined completely in one go,

the React Native runtime will be able to carry out the animation pure-

ly in the native layer.

3.4.2 Case Study, a Pull Down Load Experience

This time, we are going to implement another feature involving gesture-
driven animation — a pull down load effect. For now, we simply implement
the animation effect only for the pull down, which will be used for the

actual content network loading in Chapter 3. Let’s look at the requirements
first:
1) . L
When the user pulls down the list, a loading indicator (the
SpinningEnvelope we implemented in Section 3.3.8) ap-

pears on the top blank area.

2
)The opacity of the loading indicator is determined by the posi-
tion of the pull down gesture, meaning the more the user pulls

down the list, the more opaque the loading indicator becomes.

3)

When the user releases the gesture and the current position
doesn’t exceed a threshold, the list folds back to where it starts

from.

4
)When the user releases and the gesture position exceeds the
threshold, the list starts folding back and is locked to a position
for one second. Then the list folds back to the start position.

5)When the user is pulling, we want the maximum opacity to be

50%.
6)

When the user releases the gesture, we want the value to be
100% when it’s in phase 4 and to fade out during the list folding
back.

Figure 3-5 shows how it looks.

10:49

.)?
1

My diet plan to loss 12 Kg.

Cocn g

s B (41

Deepthie
Jan 12

test on a very long text, test on a
very long text, test on a very long
text, test on a very long text, test on a

e LAY Sl

Figure 3-5 Pull down load

Listing 3-27 is the code snippet to tune up Moment. Though the
structure 1s the same as the old Moment, the bulk of code 1s added to

implement the pull down load experience. This can also give a hint on how

much effort it takes to implement proper gesture-driven animation.

const LoomingSpinningEnvelope = Animated.createA:
class Moment extends React.Component {
constructor() {
super();
this.pullDownPos = new Animated.Value(0);
this.autoScrolling= new Animated.Value(0);
this.userPulling = new Animated.Value(0);
this.scrollViewRef = undefined;
this.state = {

loading: false,

}

renderItem(entry) {

return (
<FeedFactory item={entry.item}/>
)i
}
beginDrag() { // —-———=—=————— .

}

this.userPulling.setValue(1l);

this.autoScrolling.setValue(0);

endDrag(evt) { // —————— .

this.userPulling.setValue(0);

this.autoScrolling.setValue(1l);

const y = evt.nativeEvent.contentOffset.y;

if (y < -loadingIndicatorOffset) { // —————————-.

}

this.setState({loading: true});
setTimeout(() => {
this.scrollvViewRef.scrollToIndex({ // ---
index: 0,
animated: true
}) i
}, 1000); // ===

onReset(evt) { // —————— .

}

if (evt.nativeEvent.contentOffset.y === 0) {
this.userPulling.setValue(0);
this.autoScrolling.setValue(0);
if (this.state.loading) {
this.setState({loading: false}); // —-——--

getScrollvViewRef (ref) {

this.scrollViewRef = ref;

}

render () {
return (
<View style={{flex: 1}}>
<Animated.FlatList // ——————————m—_.—— . — .
data={data}
renderItem={this.renderItem.bind(this)
contentInset={{ // —-——————————————————.
top: this.state.loading ? 5: 0
)
onScroll={ // === .
Animated.event ([{
nativeEvent: {
contentOffset: { y: this.pullDow:
}1, { useNativeDriver: true })
}
onScrollBeginDrag={this.beginDrag.bind
onScrollEndDrag={this.endDrag.bind(this
ref={this.getScrollvViewRef.bind(this)}
onMomentumScrollEnd={this.onReset.bind
/>
<View style={styles.overlay}> // —-—————-.

<LoomingSpinningEnvelope // —-————————-.

color={"'#6291f0"'}
size={45}
style={{
opacity:
Animated.add(// ———————————————.

Animated.multiply(// --—-————--
this.userPulling,
this.pullDownPos.interpolate

inputRange: [-loadingIndic:
outputRange: [0.5, 0]
})

) s
Animated.multiply(// —-—=—————--

this.autoScrolling,
this.pullDownPos.interpolate
inputRange: [-loadingIndic:
outputRange: [1l, 0]
})
) 1

}}
/>
</View>
</View>
)i
}
}i
const loadingIndicatorOffset = 50;

const styles = StyleSheet.create({ // —-————————-.
overlay: {
position: 'absolute',
top: O,
left: O,

width: '100%°',
height: loadingIndicatorOffset,
justifyContent: 'center',

alignItems: 'center',

}o

})i
//export default Moment;

export default withErrorBoundary(Moment, ErrorPac

Listing 3-27 Moment

1)First things first, we bind the animation value to the scrolling po-
sition of the F1atList. In order to enable the binding in the na-
tive level (useNativeDriver: true), we need to use
Animated.FlatList instead of plain FlatList.

2)This is the core logic that translates the pivot animation value to
the destined transform props.style. We use two flags to indi-
cate the list's current state, being dragged or scrolled automati-
cally. (a) We use Animated.multiply () to simulate an
“AND” operator, so when the user is dragging (this.user-
Pulling), we use 0to 0.5 as the opacity range. (b) Likewise,
after the user releases the gesture (this.autoScrolling),
we use 0 to 1 as the opacity range. Here again,

Animated.multiply () is used to simulate an “AND” opera-

tor. Lastly, Animated.add () is used to simulate the “OR” op-

erator as only one of the flags will be true at a given time.

3)The opacity value calculated earlier is attached to
LoomingSpinningEnvelope. Itis worth noting that though
SpinningEnvelope contains an animation effect, the com-
ponent itself is not animatable as is. Hence, we need to use

createAnimatedComponent to enable animation.

4
)We update the preceding flags in the corresponding events,
that is, when the user starts pulling (beginDrag), the user

ends pulling (endDrag), and after the FlatList folds back

(onReset).

5
)After the user ends pulling, we also want to (a) stay to a posi-
tion for one second, (b) fold back to the beginning position, and
(c) after the list folds back, we reset the state indicating the

loading is taking place (1oading).

6
)Lastly, we make some space sticking on top for the loading

indicator.

3.4.3 Key Takeaways

In this section, we took a step deeper in native-powered animation by
applying value animation combined with native events. This gives the
gesture-driven animation as a result. To implement the task in this
section, native-powered animation becomes more essential because
gesture-driven animations have excessive demand in performance.
We also examined why animation interpolation and calculation are

used in practice and how to use those techniques in action.

In terms of Manyface, we implemented the pull down load effect for
Moment and made use of the SpinningEnvelope developed in
previous sections. In this case study, we applied in action the tech-

niques of gesture-driven animation.

3.5 Summary

In this chapter, we went through the animation facilities provided by
React Native. In particular, only native-powered animations were

used to maintain a healthy level of quality bar. Nonetheless, if com-
promise of quality is acceptable, for example, in a prototype phase,
JavaScript-powered animation can be used in a very similar way —

we only need to set useNativeDriver t0 false in SOme cases.

In the sense of choosing hands-on practices, we used practical ani-
mation effects rather than fancy ones, and we emphasized on perfor-

mance all the time. We also dove into detailed requirements which

could be set by real-world product managers, and we excelled the
React Native animation techniques learned to fulfill them. As a result,

we enhanced the experience of Manyface to the next level.

Not all animation options in the React Native ecosystem are covered
in this chapter. For instance, lottie-react-native brings to React Na-
tive the existing iOS and Android Lottie facility that offers control-
lable, predefined animations. react-native-reanimated and react-na-
tive-gesture-handlerimprove the existing React Native animation
and gesture response system by leveraging native events extensive-

ly. Please refer to their respective GitHub pages for more information.

Again and again, performance is a big deal in animation. Though we
covered some of the techniques to utilize the React Native anima-
tion, it will be helpful to understand the underlying mechanisms of
useNativeDriver and native events, especially when you want to
create a customized, high-performance animatable component. For
that matter, we will analyze the mechanism and the performance im-

plication of native-level animation in Chapter 6.

© M. Holmes He 2022
M. H. He, Creating Apps with React Native
https://doi.org/10.1007/978-1-4842-8042-3 4

4. Native Modules and Components

M. Holmes He!
(1) Bucklands Beach, New Zealand

React Native is to app developers as ship is to sailors. Sailors
still need to master swimming for critical tasks though they don't

have to swim all the way through with a ship.
—Holmes

In this chapter, we are going to program majorly in the native layer
using the languages of native platforms. Wait, isn’t React Native a
cross-platform that eliminates all needs of native development? True
and false. Indeed, the React Native core bridges the native rendering
system so the Ul layout can be carried out on the JavaScript layer,
like what we have accomplished in the previous chapters. Native lay-
er programming comes into play when our app needs to access ad-
vanced functionalities (e.g., geolocation) or requires specialized ren-
dering systems (e.g., SVG). For that purpose, React Native provides
two ways — native modules and native components. A plethora of

third-party projects have created native modules and native com-

https://doi.org/10.1007/978-1-4842-8042-3_4

ponents catering for most of the commonly used functionalities. So
in most cases, we just need to import them as dependencies to fit our
needs. And this is for free. However, it is ideal for React Native de-
velopers to master a certain level of native programming, preparing
for very specialized requirements and challenges that haven’t been
resolved yet. In this chapter, we are going to equip you with the tech-
nique by fully examining and discussing this native programming on
both iOS and Android.

As mentioned, React Native provides us with two means to access
the underlying native system, native modules and native compo-
nents. Native modules expose functions to the JavaScript layer, so
it fits in functionalities that are Ul irrelevant. Examples are geoloca-
tion, file downloading, and Bluetooth. After proper initialization, func-
tions exposed by native modules can be used as ordinary
JavaScript functions. On the other hand, native components ex-
pose Ul elements to JavaScript in the form of components which
are integrated in the React life cycle and rendering routines. Hence,
they are more suitable for Ul features. Examples are video player,
cached images, and specialized renderers like SVG and Lottie.
Native modules can also actively push events to the JavaScript lay-
er with external events for example, a new Bluetooth connection or a

push notification.

Noteln practice, the boundary of native modules and native com-
[ponents is not so clear in some cases. Let’s take haptic as an exam-
ple. On iOS, haptic is exposed as an APl method; on Android, how-
ever, haptic is attached to a certain view to determine the haptic posi-

tion. So it could be reasonable to expose the functionality as both a

native module and a native component in order to cater to the plat-

orm variance.

Native modules and native components are, as their names sug-
gest, programmed in native languages. And inevitably, they need to
be developed twice on iOS and Android. As such, giily it is crucial to
keep a consistent interface for both platforms so the native module
or native component can be used in the JavaScript layer in a unan-
imous way. That means the signature of native methods and props
of native components are supposed to be implemented exactly the
same on both platforms. In most cases, this is absolutely achievable.
But when it is not possible due to the disparate implementation of the
two underpinning platforms, we will need platform-specific logic in the
JavaScript layer. We call this kind of logic a “hard fork,” and it should

always be our last resort and be avoided whenever possible.

Next, we look at how to program native modules and native com-
ponents. We are going to use Swift and Kotlin for iOS and Android,

respectively, as the major programming languages in this chapter.

4.1 Native Modules

Native modules are used to bridge native APIs to the JavaScript
layer. This is very similar to cross-language communication technolo-
gies like JNI. A more comparable technology is WebView which sup-
ports native APls and objects to be registered as JavaScript func-

tions and variables.

oteCordova and lonic are implemented based on the JavaScript-

o-native communication abilities of WebView.

Like other cross-language communications, native types of function
arguments are required to be mapped to JavaScript types. ‘ Failing
to pass the correct type across the bridge incurs an exception which
leads to a crash. An ordinary native function call in the JavaScript
layer is technically a cross-thread communication. Hence, it is asyn-
chronous. More specifically, all the JavaScript code is running on a
JavaScript thread, while native modules are running on another
dedicated thread. And the function calling is eventually translated to
messages sent through an interthread communication queue. ‘ Soit
is unsafe for direct Ul manipulation or to send notifications to Ul con-

trollers in native module functions.

oteTurbo module makes the native method invocation more perfor-

mance by calling it synchronously directly on the JavaScript thread.

One of the drawbacks of native modules is singleton. As you will see
very soon, all of the native modules are singleton in both iOS and
Android, which is far from ideal in terms of the design pattern. In
more concrete words, singleton classes have intrinsic concurrent and
life cycle issues, especially when asynchronous operations are in-
volved and when designed as stateful. More specifically, the state of
a singleton could be messed up easily with unwanted reentrant calls
and overlapped responses from asynchronous actions. Hence, we
should avoid using native modules beyond the purpose of bridging.
dily When you are designing your own native modules, it is recom-
mended to avoid handling asynchronous operations directly inside
the native module and to make native modules stateless as possi-
ble. If asynchronous operations and native layer states are inevitable,
it is better to delegate those out to other modules or frameworks that

can handle more sophisticated logic and states.

Now let’s see some code. We need to create a native module class and
register it along with all the methods that are required to be exported using
the React Native runtime. This native module will be available to the

JavaScript side and can be imported in a platform-agnostic way (Listing 4-
1).

import { NativeModules } from 'react-native';
const { OurAwsomeNativeModule } = NativeModules;

Listing 4-1 Native module on the JavaScript side

dily Again, it is highly recommended to keep the consistent function
signatures exported by the native module. This is the magic that
turns the JavaScript logic that consumes native modules into fully
cross-platform. However, ‘ this could be tricky due to platform dis-
crepancies and particularities. And we are going to cover some of the

down-to-the-ground techniques to fulfill this principle in the hands-on.

4.1.1 iOS Native Module
4.1.1.1 Setup

To create the native module , we firstly open in Xcode the React Native

project (Figure 4-1). The project file (*. xcworkspace) is located at the

ios/ subdirectory.

i ios
Recents

Applicati... M __tests @ ManyFaces

Desktop M android B ManyFaces-tvOS

B App.js B ManyFaces-tvOSTests
@ app.json B ManyFaces.xcodeproj
Downloads babel.config.js ManyFaces.xcworkspace

«' hh M components B ManyFacesTests

Documents

Pictures _a fodexa B Podfile

M ios B Podfile.lock
B metro.config.js W Pods

) Music B models

Movies

M node_modules ManyFaces.xcworkspace

< s = [package-lock.json Xcode Workspace - 27 KB
< iCloud Diri... e)

Cancel Open

Figure 4-1 Open the xcworkspace in Xcode

Right-click the iOS project root group and click new file (Figure 4-2).

Choose a template for your new file:

Swift File Cocoa Touch Unit Test Objective-C File
Class 55 Case Class

i]

Header File

User Interface

B R B

SwiftUl View Storyboard View Launch Screen

Cancel Next

Figure 4-2 Add a new Swift file to the project

Select Swift which is the major programming language on iOS as

mentioned (Figure 4-3).

As: | HelloWorldManager |

m ios

Group | i ManyFaces

Figure 4-3 Add the HelloWorldManager

Then we change the name to HelloWorldManager. Here, xxx—
Manager iS a haming convention of native modules both on iOS
and Android.

Xcode will then prompt a message box asking to create a bridging

header file; select Create Bridging Header (Figure 4-4).

Would you like to configure an
Objective-C

Figure 4-4 Automatically create a bridging header file

Xcode then will automatically create a file named “ProjectName-
Bridging-Header” along with a configuration building-settings »
Objective-C Bridging Header. This configuration entry activates the
header file that bridges Objective-C to Swift. With this file, Swift can
make use of classes in the React Native core which is written in
Objective-C.

The last file we need to create is an Objective-C file that creates the

JavaScript bridge with the native module written in Swift (Figure 4-5).

Cocoa Touch Ul Test

Class Case Class

Header File

SwiftUl View Storyboard View Empty Launch Screen

Cancel

Figure 4-5 Add a new Objective-C file to the project

This time, we name it HelloWorldManagerBridge (Figure 4-6).

Choose options for your new file:

Fila: | HolloWoridManagorBridgd

File Type: | Empty File

Class:

Figure 4-6 Add the HelloWorldManagerBridge

In short, we need to create three files for the native module: one Swift
file which is the main implementation, one JavaScript bridge written in
Objective-C that registers the Swift implementation to the JavaScript
layer with the React Native runtime, and an Objective-C to Swift bridging
header which is created automatically by Xcode to export Objective-C

written classes to Swift. Figure 4-7 illustrates this relationship. The

architecture applies to both native modules and native components.

xxxManager
- (Swift)
RCTEventDispatcher
RCTView
RCTViewManager
etc..
ProjectName- xxxManager
Bridging-Header Bridge
E— ———— ST EXTERH_IVIODIAE
: React Native Core RCT_EXTERN_METHOD
(Objective C) : UiER]
. E etc..
e P T T T
‘VV
JavaScript

Figure 4-7 JavaScript and native communication

NoteThe React Native core is written in pure Objective-C. The dy-
[namic nature of this language is essential for framework code that

emphasizes on performance and flexibility. However, Swift suits bet-

er for application logic by providing better code quality and readabili-

y. Additional bridge headers are required as a necessary trade-off

o we can use Swift for the better good.

4.1.1.2 Implement the Native Module

Firstly , let’s see the main logic of the native module in Swift (Listing 4-
1a).

Qobjc (HelloWorldManager) // ———————— oo

class HelloWorldManager: NSObject { // -—-—-—————-.

Qobjc(hello) // ===
func hello() -> Void {
print ("Hello World!")

}

Listing 4-1a HelloWorldManager.swift

1
)To export Swift classes to Objective-C, we need to extend the

class from NSObject and decorate it with Robjc.

To export Swift functions to Objective-C, we need to use

@objc.

Then we look at the JavaScript bridge (Listing 4-2).

#import <React/RCTBridgeModule.h>
@interface RCT_EXTERN MODULE (HelloWorldManager, 1
RCT EXTERN METHOD (hello) [/ =
@end

Listing 4-2 HelloWorldManagerBridge.m

1)

Use the macro RCT EXTERN MODULE to export the class to
JavaScript.

2)

Use the macro RCT_EXTERN METHOD to export the function to
JavaScript.

Next, let’'s see how a native module looks on Android.

4.1.1.3 Async Calls

Native method invocations discussed in this section are all asynchronous.
Hence, we need a way to communicate back (with results) when the
invocation completes. One way is callback. By passing in a parameter of
type RCTResponseSenderBlock, we can invoke the callback within
the native layer when the operation completes.
RCTResponseSenderBlock takes an array of strings as its parameter.

This array will be transformed in order to the parameters of the callback in

the JavaScript layer. As a rule of thumb, the first parameter of the callback
populates the error of this invocation, where an empty string indicates a

success. See Listing 4-3.

RCT EXTERN METHOD (someWork: (RCTResponseSenderBloc«
@objc(someWork:)
func someWork(cb: RCTResponseSenderBlock) -> V¢
print ("Done some work")
cb(["", "result data"])

}

Listing 4-3 Use a callback to complete a native method invocation

A callback is hard to manage especially when deeply nested. This
scenario is commonly referred to as a callback hell. A promise is
considered a more elegant way. To make a native method compatible with a
promise chain (or its await parity), we need to pass
RCTPromiseResolveBlock and RCTPromiseRejectBlock as the
last two parameters. Listing 4-4 gives an implementation of such
translation. We are going to discuss in detail the promise and await in
Chapter 3.

RCT EXTERN METHOD (someWork: (RCTPromiseResolveBloc«
rejecter: (RCTPromiseRejectBlocl

@objc(someWorkWithPromise:rejecter:)

func someWorkWithPromise(_ resolve: RCTPromiseRe:
print ("Done some work")

resolve (["result data"])

Listing 4-4 Make native method promise compatible

And make sure both methods are registered within the bridge (Listing 4-
5).

RCT EXTERN METHOD (someWork: (RCTResponseSenderBloc
RCT EXTERN METHOD (
someWorkWithPromise: (RCTPromiseResolveBlock *)
rejecter: (RCTPromiseRejectBlock *) 1
Listing 4-5 Make native methods available through the bridge

NotePlease try to make the method names explicit to the bridge. ‘

[Please refrain from overloading methods, which confuses the bridge

and gives undefined error when the method got invoked.

4.1.2 Android Native Module

Now let’s implement the Android version of HelloWorldManager.

4.1.2.1 Setup

Firstly, we open the Android project in Android Studio

android (Figure 4-8).

Recents
Applicati...
Desktop
Documents
Downloads
hh

Pictures

Movies

5 iCloud Diri...

¢ Music

Photos

Movies

D ~
i __tests__
M android
App.js
B app.json
B babel.config.js
8 components
B HellowView.js
index.js
M ios
metro.config.js
B models
¥ node_modules
B package-lock.json
[package.json

New Folder

#® android

™ app

B build.gradle
gradle

B gradle.properties
B gradlew

B gradlew.bat

B local.properties
B settings.gradle

Figure 4-8 Open the Android project in Android Studio

. The subdirectory is

build.gradle

Information
22 March 2021 at

Cancel Open

Next, right-click the source code directory under the project; choose
new Kotlin Class/File (Figure 4-9).

android = app @ src = main @ java ' com & Bl manyfaces o app ¥ [l Pixel 4a APIS

=] Project 2 —
v BRapp

W 1: Project

I src
I debug
B main
v ava
J NEVENSEES
iz Kotlin Class/File
%, Android Resource File
Android Resource Directory
B Sample Data Directory

@ 0: Commit

com.manyface

MainActivit)
MainApplic: &< Cut

zres Copy
= AndroidManifest. O paste :

File

d _BUCK Find Usages i Scratch File
build.gradle Find in Path... Bu Package
build_defs.bzl Replace in Path...

Build Variants Analyze : C++ Class
C/C++ Source File
Refactor C/C++ Header File

New

@
a
7
o
3
=3
@
(4
S
a
Iq

Module

Add to Favorites Image Asset
Vector Asset

% Resource Manager

Reformat Code
Optimize Imports ¥ Kotlin Script
Delete... IE Kotlin Worksheet

Z: Structure

Reveal in Finder Activity (Project not ready)
B3 Open in Terminal % Fragment (Project not ready)
Folder (Project not ready)

Figure 4-9 Create a new Kotlin class

Again, we type Hel loWorldManager for the class name (Figure 4-
10).

New Kotlin Class/File

z HelloWorldManager

» Class

gz File

g Interface

¢ Sealed Interface
g Data Class

¥ Enum class

» Sealed Class

¢ Annotation

2 Nlia~s

Figure 4-10 Add HelloWorldManager

Next, we create a package class where all native modules are
registered. This package class is specific to Android. We name the package

MomendCardPackage (Figure 4-11).

New Kotlin Class/File

» ManyFace

Class
ix File

- Interface

¢ Sealed Interface
- Data Class

- Enum class
 Sealed Class

- Annotation

Nhkiaad

Figure 4-11 Add ManyfacePackage

4.1.2.2 Implement the Native Module

Firstly , we need to export the module to the JavaScript layer. This is the
same step as the RCT EXTERN MODULE macro in iOS (Listing 4-6).

override fun getName(): String {

return "HelloWorldManager"

}
Listing 4-6 Export the module to the JavaScript layer

Next, we can go ahead and implement the he11o method as in iOS
(Listing 4-7).

@ReactMethod
fun hello() {
Log.d("HelloWorldManager", "Hello World!");

Listing 4-7 Implement hello()

4.1.2.3 Register the Native Module

Next, we need to register the newly created native module with the
ManyfacePackage and then register the ManyfacePackage with the

application (Listings 4-8 and 4-9).

class ManyfacePackage: ReactPackage {

override fun createViewManagers(// —————————--
reactContext: ReactApplicationContext):
MutableList<ViewManager<out View, out ReactShadox

{

return mutableListOf<ViewManager<View, React!
}
override fun createNativeModules(// —-—-=-=————--
reactContext: ReactApplicationContext):
MutableList<NativeModule>

{
return mutableListOf (HelloWorldManager (react(

}

Listing 4-8 Register the native module with ManyfacePackage

1
)We return an empty list for createviewManagers. The list
will be populated very soon in Section 4.2.2.

2
)createNativeModules is the method to register native

modules.

3 : . .
)We instantiate the native module HelloWorldManager and

populate the list with it.

override fun getPackages(): List<ReactPackage>
val packages = PackageList(this).packages
packages.add(ManyfacePackage())
return packages

}

Listing 4-9 Register the ManyfacePackage with the application

4.1.2.4 Async Calls

The same as in iOS (Section 4.1.1.3), we can use either callbacks or
promises to resolve asynchronous native calls. Firstly, let’s see how a
callback is used by implementing the Android counterpart of
someWork () (Listing 4-10).

@ReactMethod
fun someWork(cb: Callback) {
Log.d("HelloWorldManager", "Done some work");

cb.invoke("", "success")

}

Listing 4-10 Use a callback to complete a native method invocation (Android vel

Next is the approach using Promise (Listing 4-11).

@ReactMethod
fun someWorkWithPromise(promise: Promise) {
Log.d("HelloWorldManager", "Done some work");

promise.resolve("result data'")

Listing 4-11 Make native method promise compatible (Android version)

4.1.3 Use the Native Module in JavaScript

As we deliberately make method signatures exported from iOS and

Android the same, we can call these methods in a unanimous way as given

in Listing 4-12.

import { ..., NativeModules } from 'react-native
const HelloWorld = NativeModules.HelloWorldManage
HelloWorld.hello(); // ==——————mm—— .
NativeModules.HelloWorldManager.someWork((err, re
console.log('Result of the callback:' + res);

})i
NativeModules.HelloWorldManager.someWorkWithProm:
.then((res) => {

console.log('Result of the promise:

}):

Listing 4-12 Use the native module in JavaScript

+ res);

1
)The name of the native module will be the same as the class

name in Swift. This is guaranteed by the

RCT EXTERN MODULE macro.

)This invokes the Swift implementation of the same method.

3)

The callback param could be either in the form of an arrow

method or a normal JavaScript function.

4
)As discussed, the native method can be designed as part of an

ordinary promise chain.

4.1.4 Key Takeaways

In this section, we looked at how to implement native modules that
export native methods to the JavaScript layer. We firstly listed the
files required by both iOS and Android to enable a full-fledged native
module. Then we made a dummy native module to demonstrate how
exactly a method is exposed from both platforms. Lastly, we dis-
cussed the asynchronous nature of native method calls. Although we
adopted both callback and promise ways to implement asynchronous

method calls, the promise is always the go-to approach in practice.

We also make a checklist of files required to create native modules

as follows:

iOS

HelloWorldManager.swift
ProjectName-Bridging-Header.h

HelloWorldManagerBridge.m

Android

HelloWorldManager.kt
MomendCardPackage.kt

4.2 Native Components

Involved with the Ul, native components are more complex than na-
tive modules. Native components turn existing native Ul elements
into ordinary components. For example, you may want to expose the
system AirPlay button to the JavaScript layer. For teams who want
to integrate React Native to their existing app, it is also a good prac-
tice to expose existing battle-ironed native Ul elements out in the

form of native components so as to reuse the wheel.

The native component is also the technique applied by the React
Native community to create various third-party libraries. Some of
them are the go-to component for their designated task. react-native-
fast-image is by far the best image cache library based on
SDWeblmage and Glide; react-native-video is the most commonly
used video library; and react-native-vector-icons allows for using vec-
tor icons on mobile apps, which largely enhance the development
speed especially in the phase of PoC. With those libraries in place,
you don’t need to deep dive to the native layer as the work has been

done for you in most cases.

Technically, a native component is composed of two parts, a view
manager and a custom native view. The view manager works as a
proxy for the native component. The view manager defines the

props and methods and exposes them to the JavaScript layer on

behalf of the native view. The JavaScript layer can access the native
view only through the corresponding view manager. After being
properly exported, native components are no different than ordinary
components; they can be set with background color and border ra-
dius and be incorporated into the layout with flexbox. They can also
be assigned with children, which are populated as subviews of the

underlying native views of the components.

The layout and other styles of the custom view (e.g., background col-
or) are managed by React Native. It is worth noting that the native
view returned by the view manager is merely a blueprint, which is
not the real view rendered. gy So please refrain from keeping a refer-
ence of a native view for further manipulation. It is also pointless to
attach a gesture handler to the native view for the same reason. #
Use a react tag (Section 4.3.2) to get the correct component in-

stance for such manipulation.

Lastly, a view manager cannot be used interchangeably as a native
module. For example, ‘ on iOS, view managers cannot be used to
send events (Section 4.3.1), while on Android, view managers can-

not expose native methods.

4.2.1 iOS Native Component

4.2.1.1 Setup

The files required by a native component are similar to those for a native
module. Firstly, we need a manager that exports the view to the JavaScript
layer. Likewise, we right-click the project root group and select a new file.

This time, we change its name to HelloViewManager Swift (Figure 4-
12).

Figure 4-12 Add HelloViewManager

We omit the bridge file for Objective-C to Swift since it has already
been created for the native module. And we continue creating the

JavaScript bridge file for the manager that has to be in Objective-C.

This time, the name should be Hel1loViewManagerBridge (Figure
4-13).

File Type: Empty File

Class:

Figure 4-13 Add HelloViewManagerBridge

The same as a native module, we need three files, one Swift imple-

mentation and two bridge headers for a native component.

4.2.1.2 Implement the View Manager

As usual, firstly, let’s see the main logic of Hel1loViewManager which is

in Swift (Listing 4-13).

@objc(HelloViewManager)

class HelloViewManager: RCTViewManager { // —----
@objc(view)
override func view() -> UIView { // —-————————-.

returr—oEvrewty // —————————— .

let view = HelloView()

view.backgroundColor = UIColor.purple

return view

}
class HelloView: UIView { // —————— oo

}

Listing 4-13 HelloViewManager.swift

)

Subclass the RCTViewManager.
2) o
Override its view () methods.

Create a custom view with the view manager.

INote Though it is tempting to return a library native view as is
in the view (), it causes chaos in the context of cross-platform.
This is because native views always have different interfaces
(i.e., properties and methods) on different platforms. giify Hence
on i0S, it is a good practice to always create a custom native
view together with the view manager as another layer of ab-

straction, so as to keep the interface the same to the

|JavaScript layer. We will see it very soon in Section 4.2.1.3.

Directly compiling the preceding source code will give an error that

RCTViewManager does not exist in the Swift realm. Again, this is where

the Objective-C to Swift bridge header (ProjectName-Bridging-

Header) comes into play. We need to expose the required React Native
class (RCTViewManager) to Swift by adding the line shown in Listing 4-
14 to the bridge header.

#import <React/RCTViewManager.h>
Listing 4-14 Expose the RCTViewManager to Swift

Lastly, we bridge the component out to the JavaScript layer in
HelloViewManagerBridge (Listing 4-15).

#import <Foundation/Foundation.h>
#import <React/RCTViewManager.h>

@interface RCT EXTERN MODULE (HelloViewManager, R(
@end

Listing 4-15 HelloViewManagerBridge.m

)

Here, we need to export the module as RCTViewManager.

4.2.1.3 View Property

The view manager is responsible for exporting view properties of
the native view to the JavaScript layer. More specifically, properties

are made available to the JavaScript layer with the macro

RCT EXPORT VIEW PROPERTY. After the export, the properties of
the native view can be passed in with values as an ordinary prop.
Lastly, the prop name exported is the same as the name of the corre-

sponding view property.

Now we change the view manager a bit to expose a view property

called bgColor to the JavaScript layer (Listing 4-16).

@interface RCT_EXTERN MODULE (HelloViewManager, R(
RCT EXPORT VIEW PROPERTY (bgColor, int) // —--—-——--
@end

Listing 4-16 Export a view property in the view manager

Next, we make a custom native view to respond to the property change
(Listing 4-17).

class HelloView: UIView {
func setBgColor (color: int) { // —-——=-=———————-.
self.backgroundColor = UIColorFromInt(color)
}
func UIColorFromInt(_ rgbValue: Int) -> UIColo:
let red = CGFloat((rgbvalue & O0xFF0000) >>
CGFloat((rgbValue & 0x00FF00) >>
(
(1

let green
let blue = CGFloat(rgbValue & 0x0000FF) / O:
let alpha

CGFloat 0)

)

return UIColor(red: red,
green: green,
blue: blue,
alpha: alpha)

Listing 4-17 Export a view property in the native view

Here, we export the bgColor as int instead of UIColor in
order to make the interface consistent with Android. As you will
see repeatedly in this book, giily keeping the interface consistent
by finding the common factor is a good practice in the context

of cross-platform.

)As such, we need another native method to convert the int to

UIColor. From the structure, we can see that it extracts RGB
values from different portions of the int value and assigns them
to the UIColor. But for now, we don’t have to understand its

implementation details.

3
)Lastly, we can use the preceding method to convert the int

view property to the UIColor as required by the back-

groundColor.

NoteAfter being exported, the native view is converted to an ordinary
lcomponent by the React Native runtime. Hence, the background
color can be set with the style props. So the bgColor here is for
demonstration purposes only. In practice, we don’t need to export a

stand-alone view property for the background color.

As mentioned before, giilly it is always more desirable to have a cus-
tomized native view designed with the same properties instead of
exporting the original native view as is. This is critical to provide a
unanimous JavaScript interface for different platforms. One example
is AirPlay and Chromecast. The properties of the two native views are
completely different. In our example, we use a wrapper view to recon-
cile the differences. Another approach is to use the

RCT REMAP VIEW PROPERTY macro to achieve the same.

One special type of a view property is the callback. After the export,
this property accepts a JavaScript function or closure as the input
props. The callback then is stored in the native view and gets in-
voked when a certain condition is met. For instance, a video native
view might need to notify the consumer in the JavaScript layer when
an exception occurs. We can use RCTBubblingEventBlock (not
the RCTResponseSenderBlock used in the native module) as the

property type to make the property callable.

4.2.2 Android Native Component

4.2.2.1 Setup

The files required by native components on Android are similar to those
for native modules. Here, we only need to add one additional file,

HelloViewManager. kt, for the view manager. We can reuse the
ManyfacePackage. kt created before for view manager registration
(Figure 4-14).

New Kotlin Class/File

g HelloViewManager

- Class
ix File

z Interface

g Sealed Interface

g Data Class
g Enum class
r Sealed Class

Annotation

Figure 4-14 Add HelloViewManager

4.2.2.2 Implement the View Manager

The way of implementing the view manager is very different from
that in iOS. But the critical points are the same. To recap, we (1) ex-
port the module to the JavaScript layer with a name, (2) we create a
custom native view for the unanimity of the API, and (3) we instanti-

ate the native view in the view manager. See Listing 4-18.

NoteWe create a custom native view the same as in iOS to keep
[these two examples more comparable. However, this cannot be

achieved easily in practice. We could add the abstract layer on set-

ers of view properties to maintain the unanimity of the APl if that is

he case.

class HelloViewManager: SimpleViewManager<HelloV:
companion object {
val REACT CLASS = "HelloView" // —-—————————-.
}
var mCallerContext: ReactApplicationContext? =

fun HelloViewManager (reactContext: ReactApplic:

mCallerContext = reactContext

}

override fun getName(): String { // —————————-.
return REACT CLASS

}

override fun createViewlInstance(// ——-———————-.
reactContext: ThemedReactContext
): HelloView {

return HelloView(mCallerContext)

}

class HelloView: View { // === .
constructor(context: ReactApplicationContext?)

{
}
}

Listing 4-18 HelloViewManager.kt (Android version)

Like the native module, we also need to register the native component

with the ManyfacePackage. This time, we populate the list returned by

createViewManagers in ManyfacePackage (Listing 4-19).

override fun createViewManagers (
reactContext: ReactApplicationContext

): MutableList<ViewManager<out View, out React

{

return mutableListOf (HelloViewManager (reactCc

}

Listing 4-19 Register the native component

We have already registered the ManyfacePackage with the

MainApplication, SO we can omit the step here.

NoteHere, we need to declare the template variables view and
ReactShadowNode as out. SO ViewManager<out View, out
ReactShadowNode<*>> can be compatible with the returned

SimpleViewManager<HelloView>.

4.2.2.3 View Property

Next, we export the same bgColor property for the Android version of
HelloView. Firstly, in the view manager, we export the view property

and assign the setter with it (Listing 4-20).

@ReactProp(name = "bgColor")
fun setBgColor(view: HelloView, color: Int) {
view.setBgColor (color)

}

Listing 4-20 Export a view property in the view manager (Android)

Next, we implement the setBgColor in the custom native view
(Listing 4-21).

class HelloView: View {
constructor(context: ReactApplicationContext?)
{}
public fun setBgColor(color: Int) {

this.setBackgroundColor (color)

Listing 4-21 Export a view property in the native view (Android)

Unlike iOS, we cannot simply indicate the type as Callback to make
a callback view property on Android. Rather, we need to mimic the
callback using the event system (Section 4.3.1). For example, if we want to
implement an onComplete callback view property, we need to define an

event with the same name in the view manager (Listing 4-22).

override fun getExportedCustomBubblingEventTypeCc
mapOf (
"onChange" to // ———————— e ——.
mapOf (
"phasedRegistrationNames" to // ——————-.
mapOf ("bubbled" to "onChange")

Listing 4-22 Callback view property in the native view (Android)

1
)This is the event name that will be used in the native layer to

invoke the callback view property.

2)This is the view property name mapped with the event name.

With this setup, the native side can invoke the callback view property

with the code in Listing 4-23.

val event: WritableMap = Arguments.createMap()

event.putString("data ", "Data content") //

reactContext?.getJSModule (
RCTEventEmitter::class.java

)?.receiveEvent(//
id,

onChange", //

event

Listing 4-23 Invoke the callback view property (Android)

This is the event name registered in step 1.

4
)Here, we can also put the parameters for this callback.

5)

Call the JavaScript layer to receiveEvent, which means
sending the event from the native layer.

As mentioned, we are going to make use of the callback view prop-
erty when implementing the video native component later in Sec-
tion 4.5. At that time, we are going to see some real and workable

code.

4.2.3 Use the Native Component in JavaScript

Let’s see how the native component we created can be used in the

JavaScript layer. Next, let’s see how it looks.
4.2.3.1 The Easy Way

requireNativeComponent is the method provided by React Native
to “import” a native component. The return value of
requireNativeComponent is an ordinary component that can be

used directly inside the render () method. See Listing 4-24.

import { requireNativeComponent } from 'react-naf
let HelloView = requireNativeComponent('HelloViex
const App: () => React$Node = () => {
return (
<SafeAreaView style={{width: '100%', height:
<HelloView
bgColor={processColor('red')} // ——=———--
style={{width: “100%’, height: 50}}
/>

</SafeAreaView>

}i

export default App;
Listing 4-24 A modified version of App.js

1
)Import directly from the native component.

2
)Here, we use the processColor to convert the CSS style col-

or values to int as defined by the view property.

4.2.3.2 The Right Way, Abstraction on the JavaScript Layer

In practice, however, it causes confusion when debugging by using
requireNativeComponent directly in the user component. More
specifically, in the case where fast refresh is enabled, the require-
NativeComponent Will be called whenever the user code is

changed, which eventually will give the “Tried to register two views

with the same name” error.

To mitigate this issue, it is better to encapsulate the native compo-
nent in its own file which will not be touched after being created in

normal cases.

This wrapper can also serve as another layer of abstraction that eases

out any potential differences on the two mobile platforms when necessary
(Listing 4-25).

import React from 'react'’;

import { requireNativeComponent } from 'react-naf
let HelloView = requireNativeComponent('HelloViev
export default HelloView;

Listing 4-25 A native component in its own file

Then the view can be used unchanged. The only difference is that the

component should be imported from this file (Listing 4-26).

let HelloView = requireNativeComponent('HelloViex

import HelloView from './HellowView';

Listing 4-26 Import from the isolated file

4.2.4 Children of a Native Component

A native component can also be added with children (Listing 4-27).

<HelloView style={{
width: '100%',
height: 50,
flexDirection: 'row',

bgColor={processColor('red')} // ---
T}

<View style={{flex: 1, backgroundColor: 'green

<View style={{flex: 1, backgroundColor: 'blue’'’

<View style={{flex: 1, backgroundColor: 'yellos
</HelloView>

Listing 4-27 A native component with children

1
)We use bgColor to dye the container component so it’s more

standout in the view inspector.

2)

We add three children to the container which is essentially a

native component.

On iOS, children are added as subviews. This useful characteristic can
enable advanced visual effects such as gradient and mask to any ordinary

components with a customized native component (Figure 4-15).

Figure 4-15 Native view with children

On Android, we need to adjust the view manager to support children
under the native component. This is because Android differentiates View
and ViewGroup, and only the latter can contain subviews. This is how the

newer version of the view manager looks in order to support children
(Listing 4-28).

class HelloViewManager: ViewGroupManager<HelloVic
companion object {
val REACT CLASS = "HelloView"
}

var mCallerContext: ReactApplicationContext? =

}

constructor (reactContext: ReactApplicationConte

super () {
mCallerContext = reactContext

}

override fun getName(): String {
return REACT CLASS

}

override fun createViewInstance(
reactContext: ThemedReactContext

): HelloView {
return HelloView(mCallerContext)

}

@ReactProp(name = "bgColor")

fun setBgColor(view: HelloView, @ColorInt colo:

view.setBgColor (color)

class HelloView: ViewGroup { // ————————— .

constructor(context: ReactApplicationContext?):

super (context)

{}

override fun onLayout(changed: Boolean, // —-—----.
1l: Int,
t: Int,
r: Int,
b: Int) {

}
public fun setBgColor(@ColorInt color: Int) {

this.setBackgroundColor(color)

Listing 4-28 Support ViewGroup

1 : :
)The view manager needs to inherit from ViewGroupManager

instead of SimpleViewManager.
)The custom native view needs to inherit from ViewGroup.

3
) The custom native view needs to override onLayout of the
ViewGroup. We don’t need to do anything for this method as

React Native will handle all the layout for us.

NotePlease always consider using ViewGroupManager first instead
of SimpleViewManager whenever possible since it is always pre-

[ferred that components can work as containers. In practice, this is

not feasible because some stock views on Android are derived from
IView or SurfaceView. In such a case, we can design the wrapper

lcomponent in JavaScript (Section 4.2.3.2) if we need it to work as a

|container.

This way, we can achieve the same view hierarchy as on iOS (Figure 4-16).

Figure 4-16 Native view with children (Android version)

4.2.5 Key Takeaways

C5 @id/action_...

X Odp
y 49dp
width Odp
height Odp

v Declared Attributes
> id @id/action_mode

v Layout

layout_width match_parent

layout_height wrap_content
layout_grav... clip_horizontal|clif
layout_mar...

layout_mar...

layout_mar...

layout_mar...

In this section, we looked into native components. At the core of

each native component are view managers. We learned that a

view manager needs three key steps to be fully functional: (1) de-

clare a name to be exported, (2) declare a custom native view, and

(3) instantiate and return the native view. Moreover, we can define

view properties to be used in the JavaScript layer.

We also saw how the custom native views can be used interchange-

ably with other ordinary components; they can be nested as chil-

dren within components or the other way around. Moreover, to en-

joy this perk on Android, we need to use ViewGroup and

ViewGroupManager. It is worth noting again that viewGroup and

ViewGroupManager are always more preferred to be aligned with

React Native stock components.

Table 4-1 provides a quick summary to implement native components

on both platforms.
Table 4-1 Summary of native components

iOS
Export
module RCT_ EXTERN MODULE
name
Custom
native extends UlView

view

Android

override
fun getName

String

extends Vice

Instantiation

View

properties

Callback
view

properties

Work as

container

i0S

override

func view () -> UlView

RCT EXPORT VIEW PROPERTY

RCTResponseSenderBlock

Naturally supported

Android

Override
fun
createView]
reactContes

dReactConte

@ReactProp

getExportec
BubblingEwve

stants

extends

ViewGroupM:

We have discussed all the basics in native modules and native

components. Next, let’s look at some advanced techniques.

4.3 Advanced Techniques

4.3.1 Event

The JavaScript-to-native communications we saw in the previous
sections are all requests initialized from the JavaScript layer, or
“pulls.” An event allows for a “push” from a native module to the
JavaScript layer. There are other ways, such as retained callbacks
and set properties, with which native modules can send updates to
the JavaScript layer actively. For example, a native module can re-
tain a callback argument and invoke it when an event of interest oc-

curs. Nonetheless, using explicit events is the most intuitive way.

NoteAs discussed in Chapter 3, frequent communication (e.g., frame
by frame) between JavaScript and native is far from ideal and
should be avoided at all times. The same principle applies for call-
back props (Sections 4.2.1.3 and 4.2.2.3) which virtually “push”

events from a native component. As a quick reminder, we resort to

|native-to-native events for such scenarios.
4.3.1.1 Send Events from iOS

As mentioned, only native modules can post events to the

JavaScript layer. On iOS, a native module needs to inherit

RCTEventEmitter. Itis impossible for a native component to send

an event in that a native component has to inherit from

RCTViewManager.

To post events to the JavaScript layer, a native module calls [self
sendEventWithName:body:] that is inherited from the base class
RCTEventEmitter. Next, let’s modify the HelloWorldManager to
send back an event (Listing 4-29).

@objc(HelloWorldManager)
class HelloWorldManager: RCTEventEmitter { // ---
@objc(hello)
func hello() -> Void {
print("Hello World")
self.sendEvent(// —-———————— .
withName: "HELLO EVENT", // —-————————————-.
body: ["data": "hello() got called"] // ---

Listing 4-29 Send

an event within hello()

RCTEventEmitter is a special native module that can emit
events.

2)We send the event at the end of a native method.

We name the event HELLO EVENT. The JavaScript layer can

in turn use this identifier to register the listener for the event.

We also provide some payload as the event body.

4.3.1.2 Send Events from Android

On Android, we use a similar way to send events to the JavaScript
layer. We can use the following line to send events from anywhere,
and it does not require a native module to inherit from a special

superclass.

Next, we change the Android version of the hello () method the
same way as on iOS (Listing 4-30).

@ReactMethod
fun hello() {
Log.d("HelloWorldManager", "Hello World");
val params = Arguments.createMap() // —--—-————-.
params.putString("data", "hello() got called")
mCallerContext?.getdSModule<
DeviceEventManagerModule.RCTDeviceEventEmitte
>(
DeviceEventManagerModule.RCTDeviceEventEmitte
)?.emit ("HELLO EVENT", params) // —-——————————-.

Listing 4-30 Send

an event within hello() (Android version)

)

Construct the parameter for the event. This is equivalent to the

event body of the iOS counterpart.

2
)Indicate the event name HELLO EVENT as on iOS. And pass in
as payload the params constructed earlier. This line can be

used anywhere to send events from the native side.

4.3.1.3 Receive Events in JavaScript

To receive events in the JavaScript layer, we need to instantiate a

NativeEventEmitter from the native module. And register a callback

with the event name that is of interest (Listing 4-31).

const receiver = new

NativeEventEmitter (NativeModules.HelloWorldManage

receiver.addListener ('HELLO EVENT', (params) =>
if (params['data'] !== undefined) { // —-—————--

console.log("received event from native: " +

}
})

Listing 4-31 Receive events in the JavaScript layer

1 . .
)Here, we instantiate a NativeEventEmitter based on our

HelloWorldManager.

2 :
)Then we attach a listener to the NativeEventEmitter for
HELLO EVENT.
3) L
We process the event payload when it arrives.
Here, the HELLO EVENT and params are the first and second para-

meters of the [self sendEventWithName:body:] and emit ()

on iOS and Android, respectively.

4.3.2 React Tag

As said, the view returned by the native component is not the
UlView rendered. Although it is tempting to retain the UlView in-
stance with a native component instance variable, it is futile to
change its attributes or to operate on it, for example, change its back-
ground color. To manipulate the actual UlView instance, we must re-

sort to a react tag, a unique identifier allocated by the React Native

runtime to identify a particular UlView. We need to get a react ref be-

fore we can fetch a react tag. So let’s start from there.
4.3.2.1 React Refs

The beauty of React is found in its extensive adoption of composition
and unanimous way to interact with components. Nevertheless, in
very rare cases, we need to regress to the traditional Object-Oriented

paradigm and invoke an instance method. One example is

ScrollView.scrollTo ().

It is not straightforward to fetch the reference of the component in-
stance as the instantiation and life cycle are managed by React Na-
tive. But we can retrieve a component instance from the VDOM tree

in the render () method with ref which is a special callback prop.

Note‘ The ref is not supported by functional components.

Before we dive in, let’s take Scrol1View as an example. Listing 4-32

demonstrates how to retrieve the react refofa ScrollView.

<Scrollview ref={ref => {

this. scrollvViewRef = findNodeHandle(ref)
}}>
</Scrollview>

Listing 4-32 Retrieve a ref

Then scrollTo () is ready for use as given in Listing 4-33.

this. scrollvViewRef.scrollTo({ x: 0, y: 0, animaf

Listing 4-33 Call an instance method of a ScrollView

ScrollView is a stock component. Eventually, scrol1To ()
needs to call the native function to complete the action. This step is
encapsulated inside the Scrol1View, and underneath a technique

called a react tag is used to achieve that.

NoteSometimes, a component is wrapped within an HOC(s). This
obscures react tag fetching in that the ref obtained by the consumer
will be the react ref of the HOC instead of the real component being

consumed semantically. This issue can be resolved using ref for-

|warding which we are going to apply in Section 4.5.3.4.

4.3.2.2 React Tags

In the native layer, the instances of components are in the form of concrete
UlView. Again, the instantiation and life cycle of native views are managed
by React Native. As given in Listing 4-34, this time we use a react tag, a
unique identifier that is associated with a particular UIView to retrieve the
instance. A react tag can be retrieved in the JavaScript layer using

findNodeHandle passed with a react ref retrieved in the last section.

import { NativeModules, findNodeHandle } from 're
<View ref={ref => {
this. viewTag = findNodeHandle(ref)
}}>
</View>
Listing 4-34 Retrieve a react tag

Now in a native view manager (or a native module), we can use this
react tag to retrieve the UI'View instance for further operations. Listings 4-

35 to 4-37 give the implementation on iOS.

@objc(setBlue:)
func setBlue(reactTag: Int) {
self.bridge.uiManager.addUIBlock({ // ———=————-.
(uiManager: RCTUIManager?,
viewRegistry: [NSNumber: UIView]?) in
let view = viewRegistry? [NSNumber.init(value

view?.backgroundColor = UIColor.blue // —-----

})

Listing 4-35 Manipulate UlView with a react tag

1 :
)Use[RCTUIManager addUIBlock] to execute the logic on

the main thread.

Retrieve the UIView from viewRegistry which stores all

UIView in use.

3)

Apply the Ul operation on the UIView, for example, set its

background color.

Next, we bridge out the setBlue method in

HelloViewManagerBridge.m.

RCT EXTERN METHOD (setBlue: (int)reactTag)
Listing 4-36 Add setBlue in HelloViewManagerBridge.m

Lastly, we bridge in the missing dependency Objective-C class
RCTUIManager in ProjectName-Bridging-Header.h.

#import <React/RCTUIManager.h>
Listing 4-37 Add the Objective-C dependency in ProjectName-Bridging-Hes

‘ We need a completely different implementation to manipulate a
native view on Android. Unlike iOS, we don’t have an exposed
viewRegistry that keeps records of instances of native views and
their corresponding react tags. Moreover, native components lack
the ability to export methods to the JavaScript layer. Rather, we

need to make use of a command system designed on Android.

Though the command system still relies on the react tag implicitly,
the use of such a system is completely different and is less elegant

compared to that on iOS when achieving the same end purpose.

Let’s explain the command system . Basically, the commands are
strings defined in native components together with their associated
procedures. These predefined commands in turn can be sent from
the JavaScript layer. The command is required to be attached with a
react tag to indicate which native view it is meant for. Then the com-
mand system translates the react tag to the view instance and pass-

es the instance into the mentioned procedure.

Next, we implement the same “set blue” functionality on Android to

see how this command system looks (Listing 4-38).

class HelloViewManager: ViewGroupManager<HelloVie

companion object {

val REACT CLASS = "HelloView"
private const val COMMAND SET BLUE = "setBlue
private const val COMMAND SET BLUE VAL = 1

}

override fun getCommandsMap() = mapOf(// —--—--

COMMAND SET BLUE to COMMAND SET BLUE VAL
)

override fun receiveCommand(// —-————————————-.

view: HelloView, // ———————— .
commandId: String, args: ReadableArray?)

{

when (commandId) {
COMMAND SET BLUE -> {
view.setBlue() // ———————— o — .

class HelloView: ViewGroup {

public fun setBlue() { // ——————————m—o—— .
this.setBackgroundColor (Color.BLUE)

Listing 4-38 Add the setBlue as a command in HelloViewManager

1
)Declare the constant command string.
2) .
Export the command to React Native.

3
)Declare the procedures for each command exported. Here, we

have only one command, COMMAND SET BLUE.

4)The command system translates the react tag into the native

view instance and passesiitin.

S)

With the instance of the native view, we can operate on it.

4.3.2.3 Reconcile React Tag Implementation on JavaScript

The implementation difference we have seen earlier is not well aligned. To
reconcile a platform difference, we add a JavaScript abstraction layer of
the native component. As mentioned, the common critical information
shared between iOS and Android is the react tag; hence, the arguments

taken on both platforms can be made the same. Listings 4-39 and 4-40 give

the implementation of such reconciliation.

class HelloViewManager ({

static setBlue(reactTag) {

if (Platform.0S === 'ios') {
NativeModules.HelloViewManager.setBlue (rea«
} else {

UIManager.dispatchvViewManagerCommand(// --

reactTag, 'setBlue', []

);

}
}i
export default HelloViewManager;

Listing 4-39 Make a wrapper of the native module

1)

When the platform is iOS, invoke native method setBlue in

the ordinary way.

2)

When the platform is Android, send the corresponding com-

mand together with the react tag.

class App extends React.Component {

constructor () {

super();
}
componentDidMount () {

setInterval(() => {

if (this. viewTag) ({
HelloViewManager.setBlue(this. viewTagq);

}
}, 1000);

}
render () {
return (
<SafeAreaView style={{width: '100%', heighf
<HelloView ref={ref => {
this. viewTag = findNodeHan«

}}
bgColor={processColor('red')}

style={{width: '100%', height
/>

</SafeAreavView>
)i
}
}i
export default App;

Listing 4-40 Call the native method using a react tag

D

Fetch the react tag using findNodeHandle and react ref as
discussed.

2)

Call the setBlue () method exposed from

HelloViewManager, which eventually call the corresponding
native method.

4.3.3 Direct Manipulation

When carrying out Ul operations that are out of scope to the React
rendering process, we want to circumvent rerendering of the compo-
nent tree. This is helpful for use cases where (1) most of the Ul logic
is offloaded to the native layer and (2) smooth, continuous animation

is involved. More specifically, the updates on props of an animation

component, video states (e.g., pause/play) of a pure native video
player, and content of a Text Input are considered to belong to the

preceding cases. This is where direct manipulations come into play.

To carry out such operations, we firstly need to get the react ref of
the component as discussed in the last section. Then we can invoke

setNativeProps () of the component instance with the react ref.

oteThough a direct manipulation is more lightweight than an ordi-
nary prop update (which triggers a rerender), it still imposes the over-
head for JavaScript-to-native communication. Please refrain from us-
ing it for frequent updating which, again, better be carried out using

echniques discussed in Chapter 3.

4.3.4 Synchronous Method Call

The invocations of a native method from JavaScript can be made
synchronous. More specifically, the binary execution of such method
calls is directly on the JavaScript thread. This technique is useful
when multiple sources of asynchronous events get involved (such as
user interaction and network events), and the results for all events
are critical to the subsequential logic flows. Using synchronous
method calls can significantly reduce complexity and makes the over-

all logic less error-prone.

The synchronous method call is optimal in that (1) it is executed di-
rectly on the JavaScript thread; (2) all interthread communication
and serialization for data passing between native and JavaScript
layers have been done away. As we will see in Chapter 6, all syn-
chronous calls are essentially made effective with a C++ method na-

tiveCallSyncHook.

There are some caveats with using it. Firstly, it does not support re-
mote debugging on Chrome. Secondly, since synchronous methods
are executed on the JavaScript thread, we need to consider race
conditions when they need to share resources with other native meth-
ods running on the native thread. Other than that, synchronous meth-

ods give lower latency than their asynchronous counterparts.

On iOS, we use RCT EXPORT BLOCKING SYNCHRONOUS METHOD

to export synchronous methods.

On Android, we use @ReactMethod (isBlockingSynchronous-

Method = true) to export methods of such kind.

On the JavaScript layer, we can use those methods like ordinary

ones exported from native modules.

4.3.5 Export Constants

When we want to pass some native-level configuration to the
JavaScript layer, we can export constants to do so. Those constants
are determined during the bootstrap phase and cannot be changed
throughout the app life cycle. As we will see in Chapter 6, constants
are stored originally in RCTModuleData and are gathered when the
native modaule is referred to for the first time. gilly The scope of con-
stants is the module, so they are more suitable to define module-spe-

cific values.

6 The drawback of export constants is that they cannot be used to
reflect a configuration that can only be determined during runtime, for
example, fetched from remote. In the next section, 4 we will use ini-

tial properties for such use cases.
43.5.1 i0S

To export constants from a native module or a view manager , we simply

override the constantsToExport method (Listings 4-41 and 4-42).

@objc(constantsToExport)
override func constantsToExport() -> [AnyHashable¢

return ["Version": "0.0.1"]

}

Listing 4-41 Export constants by overriding constantsToExport

4.3.5.2 Android

override fun getConstants(): Map<String, Any>? {

return mapOf("Version" to "0.0.1")

}

Listing 4-42 Export constants by overriding getConstants

4.3.5.3 Access Constants in JavaScript

Constants exported on both platforms can be accessed using the native

module’s getConstants () method (Listing 4-43).

const { Version } = NativeModules.HelloWorldManac

console.log('Version is: + Version);

Listing 4-43 Access the constants exported

4.3.6 Initial Properties

As said, once determined in bootstrap, constants cannot change af-
terward. Initial properties come into play when we need values that
can only be determined during runtime, for instance, feature flags
fetched from remote, endpoints that are determined after speed rac-

ing, and domain configurations. gilly Unlike constants, the scope of

initial properties is the application, which makes it more suitable for

the mentioned tasks.

On iOS, initial properties are passed from the native layer to the

RCTRootView during initialization (Listing 4-44).

"holmeshe.me/debug"]

let params = ["endpoint":
self.bridge, 1

let rootView = RCTRootView(bridge:

Listing 4-44 Pass initial props to the init method of RCTRootView

On Android, we can pass the initial properties in a similar way. One
particularity here is that we use Bundle to populate the key and values this
time, and we need to perform the initial properties in MainActivity.

Next, we pass the same attributes as on iOS (Listing 4-45).

class MainActivity: ReactActivity() {
override fun getMainComponentName(): String? {

return "ManyFaces"

}

override fun createReactActivityDelegate()

: ReactActivityDelegate? {

return object : ReactActivityDelegate(

this, getMainComponentName ()

) A

override fun getLaunchOptions(): Bundle? {
val bundle = Bundle()
bundle.putString("endpoint"”, "holmeshe.me

return bundle

Listing 4-45 Pass initial props to the init method of the main activity (Androic

On the JavaScript layer, initial properties are received as the props of
the top-level component (normally, App) which is registered with the
AppRegistry. As such, using setProperties to update these
properties on the native layer is treated as a prop update, which triggers

rerendering (Listing 4-46).

componentDidMount () {
console.log('initial properties:', this.props).

}

Listing 4-46 Access initial properties on the JavaScript layer

4.3.7 Dependency Injection

We all know that dependency injection is a million-dollar pattern. It

helps decouple the software modules and make tests much easier.
This section is not meant to explain dependency injection but to ex-
amine how to support dependency injection of native modules and

native components on the iOS platform.

The instantiation of native modules and native components is per-
formed implicitly using the RCT EXTERN MODULE, and the life cycle
is managed by the React Native runtime ever since. This makes the

dependency injection not feasible.

oteWe always manually instantiate the native modules and native
omponents on Android; hence, the difficulty only exists on the i0S

platform.

Luckily, React Native provides a way to manually control the life cy-
cle of native modules and native components on iOS. In order to
do so, we need to rely on the second option of initializing the bridge,
that is, instead of initializing the bridge directly, we pass in a
RCTBridgeDelegate instance to the bridge init method. This dele-
gate provides the necessary information such as the location of the
JavaScript bundle. Here, if we implement extraModulesFor-
Bridge () ofthe RCTBridgeDelegate, this delegate becomes re-
sponsible for provisioning extra native modules and native compo-

nents. At this point, we shall perform proper dependency injection.

Let’s look at the implementation details to have a better understand-
ing. The RCT EXTERN MODULE (1) turns an ordinary class into a na-
tive module and (2) registers it with React Native. Here, we only

want step 1. As given in Listing 4-47, let’s implement a macro to

achieve that.

NoteThe internal mechanisms of RCT EXTERN MODULE will be fully

examined in Chapter 6.

#define CREATE MODULE (objc name, objc supername)
objc name:
objc_supername @
end @interface objc name(RCTExternModule)<RCTB:
@end
@implementation objc name (RCTExternModule)
RCT EXTERN void RCTRegisterModule(Class);
+(NSString *)moduleName
{

return @ #objc_name;

}

Listing 4-47 Custom macro to create a module

Next, in Listing 4-48, we use the CREATE MODULE instead of
RCT EXTERN MODULE for the HelloWorldModule.

dintertace RCT EXTERN MODULE (HelloViewManager, R(
RCT EXTERN METHOD (hello)

RCT EXTERN METHOD (setBlue: (int)reactTag)

RCT EXPORT VIEW PROPERTY (bgColor, int)

@end
Listing 4-48 Use the new CREATE_MODULE

Lastly, we need to implement ext raModulesForBridge in our

AppDelegate which is also a RCTBridgeDelegate (Listing 4-49).

@objc
func extraModulesForBridge(_ bridge: RCTBridge!)
return [HelloWorldManager()]

Listing 4-49 Use the new CREATE_MODULE

This is how we can gain full control of HelloWorldModule by in-

stantiating it ourselves.

4.3.8 Key Takeaways

In this section, we covered some of the advanced techniques of na-
tive modules and native components. Firstly, we introduced the
event system, a native-to-JavaScript communication mechanism.

Then we demystify how to adopt a react tag to manipulate a specific

component, which is required when designing advanced native
components. We also covered some less common practices such
as direct manipulation and synchronous method call, which are de-
signed as an escape hatch that is only useful in certain situations.
Moreover, we examined two ways to pass a configuration to the
JavaScript layer, constants and initial properties. The former way is
simple, while the latter is more versatile when the configuration can
be determined or is required to be changed during runtime. Lastly, we
introduced how to manually manage the life cycle of native modules
and native components specifically on iOS, which is vital to imple-

ment dependency injection on the native layer.

Despite the diverse support of those features on both platforms, we have
seen that it is always possible to make unanimous logic on the JavaScript
layer, which is the key to cross-platform. In each section, we highlighted
those differences in implementation and the best practice to mitigate them.
Table 4-2 is the summary as a reminder.

Table 4-2 Summary of advanced native techniques

Native module
(i0S)

Events

React

tag

Direct

manipulation

Native module
(i0S)

Inherits from RCTEventEmitter

N/A

N/A

Native module
(i0S)

Synchronous

RCT_EXPORT_BLOCKING_SYNCHRONOUS M
method call - - B -
Export

Override constantsToExport
constants
Initial

properties

Native module
(i0S)

Dependency Override

injection extraModulesForBridge

Before we move on to the hands-on, the last missing piece is the ex-

ception handling in the native layer. Let’s get straight to it.

4.4 Exception Handling

Like on the JavaScript layer where all errors are translated into ex-
ceptions that need to be captured carefully, in the native layer exists
a different set of exceptions. On i0S, some of those exceptions can-
not be caught locally at all (e.g., BAD _ACCESS). Whenever occur-
ring, they crash the app and hence are much riskier. If we enlista C
layer using techniques such as JNI, we also introduce another layer
of exception flow. Now that we know that exceptions occurring in
each layer (i.e., JavaScript, native, C) cannot be caught by another,

we need to handle them separately and notify the upper layer when-

ever possible. The fact is that inappropriately handling exceptions in

the native layer is one of the main causes of crashes.

One of the approaches is presented by react-native-excep-
tion-handler. Basically, it provides functions that can install a re-
placeable global exception handler that is responsible for all native
exceptions. However, global exception handlers are less preferred
than local ones as only the latter can maintain the current app state
and can better offer graceful degradation or recovery (the principles

of exception handling will be fully discussed in Chapter 6).

otereact-native-exception-handler is among the awe-

ome third-party libraries that are not used in our case studies. We
reinvent some wheels for educational purposes. For example, rather
han using react-native-video directly, we create a simplified version
of a video component to better illustrate the critical parts of a native
lcomponent, Here we decided to implement our own solution for ex-

ception handling so as to offer fine-grained exception boundaries.

Here, we escalate the responsibility of ErrorBoundary to catch not
only Ul exceptions but also exceptions from the native layer. To un-

derstand this design, let’s consider Manyface that eventually evolves
into a super app. In its ultimate form, Manyface includes not only mo-
ments but also payment, mini apps, instant messaging, and QR code

discovery. Each feature resides in a stand-alone tab. Each tab is

backed a full fledged team consisting of front end, back end, PM,

testers dedicated to the feature. The last thing we want to see is that
exceptions from one feature propagate to another. And we shall con-
sider ErrorBoundary as the key to avoid such cross-module trans-
gression. And we want to capture all exceptions within the native lay-

er if the corresponding module knows how to handle it.

Another way to understand this design is to look at real-time strategy

games, for example, StarCraft (Figure 4-17). One of the effective defending

strategies 1s called a wall-in, in which defensive facilities are placed in the
narrowed pass-throughs, a.k.a. critical points. So those reinforced, densified
defense lines (or points) can take effect regardless of which directions or
dimensions the rush i1s from. Here, we define ErrorBoundary as those
strategic points, and exception rushes could be from both Ul rendering in

the JavaScript layer or from native.

Figure 4-17 Wall-in in StarCratft

Noteln the next chapter, we will see the exception could also be from
asynchronous calls of slow operations such as network fetch. And
we are going to introduce patterns to capture those exceptions in

ErrorBoundary as well.

In the next section, we are going to apply the preceding design to the

implementation of the video component.

4.5 Case Study — a Video Component

We have covered pretty much everything we need to know about native
modules and native components . Now it’s good timing to get back to
Manyface. This time, we are going to support multimedia moments or video

moments. Let’s look at the requirements first (Figure 4-18):

Video clips are playable within the moment stream.

2)

When the video card enters the viewport, the video playback
starts automatically. Conversely, when the video card leaves

the viewport, the video is paused.

4])
]

7:30

N

| HAD NEVER seen a match like that
before!

iz BEs [Fo :

Figure 4-18 A video feed

We take a bottom-up approach by implementing the native compo-
nents first. For the second requirement, we rely on the react tag

(Section 4.3.2) to control the video component.
4.5.1 iOS Implementation of a Video Component

First, let’s look at the iOS implementation (Listing 4-50).

@objc(VideoViewManager)
class VideoViewManager: RCTViewManager {
@objc(play:)
func play(reactTag: Int) -> Void { // —-—=————-.
self.bridge.uiManager.addUIBlock (
{(uiManager: RCTUIManager?,
viewRegistry: [NSNumber: UIView]?) in
guard let view =
viewRegistry? [NSNumber.init(value: reactTac
as? VideoView else {
print("VideoView is nil in VideoViewManac
return

}
view.play()

})

}
@objc(pause:)

func pause(reactTag: Int) -> Void { // ——————-.
self.bridge.uiManager.addUIBlock (
{(uiManager: RCTUIManager?,
viewRegistry: [NSNumber: UIView]?) in
guard let view =
viewRegistry? [NSNumber.init(value: reactTac«
as? VideoView else {
print (
"VideoView is nil in VideoViewManager:
) /) —— e
return
}
view.pause()
})
}
@objc(view)
override func view() -> UIView {
let view = VideoView(); // —-—————————mmo—oee-.

return view

}

class VideoView: UIView {
var player: AVPlayer?
var playerLayer: AVPlayerLayer?
@objc(setSrc:)

func setSrc(_ src: String) { // -—————————————.

guard let url = URL.init(string: src) else {

print("url is nil in VideoView::setSrc()")

return

}

if player == nil { // ———————— .
player = AVPlayer(url: url)
assert(playerLayer == nil)
playerLayer = AVPlayerlayer (player: player
playerLayer! .masksToBounds = true
self.layer.addSublayer (playerLayer!)

} else { // ———————— e .
assert(playerLayer != nil)
playerLayer?.removeFromSuperlayer ()
player = AVPlayer(url: url)
playerLayer = AVPlayerlayer (player: player
playerLayer! .masksToBounds = true

self.layer.addSublayer(playerLayer!)

}
func play() { // ——————— .

guard let player = player else {
print("player is nil in VideoView::play()"
return

}

player.play()

}
func pause() { // —————— .

guard let player = player else {

print("player is nil in VideoView: :pause()'

return

}

player.pause()

}

override func layoutSubviews() { // ———=—————-.
super.layoutSubviews ()
guard let layer = playerLayer else {
print("layer is nil in VideoView::layoutSul
return

}

layer.frame = self.bounds;

}

Listing 4-50 The video component

1
)Implement both methods that take a react tag as in Section
4.3.2.3, which in turn invoke the customer view’s corresponding

methods.

2
)Return a custom view that wraps the original native view as dis-
cussed in Section 4.1.1.2. And we are going to do the same on

Android and keep a consistent interface and properties.

3)

Implement the src property.

4 ,
)Initialize the AVPlayer and its AVPlayerLayer counterpart

when the src is set the first time.

I 2 2" _ 3 . aee—=n PR B R e - - - 1

5)|nSIanI|aIe new AvrPlayer analiIts AvrPlayerlayer anare-

place the old ones with them.
6) o
Implement the custom view’s play () and pause () methods.

7
)layoutSubviews () is invoked when the React Native en-
gine has completed the layout of the native views. We use this
callback to lay out the AvPlayerLayer that is not aware of

React Native.

8
)We leave the exception handling as simple logs for now. Later,

they will be replaced with real handling mechanisms.

We also need to remember exporting the native component along with

its property from the bridge file (Listing 4-51).

@interface RCT EXTERN MODULE (VideoViewManager, R(
RCT EXPORT VIEW PROPERTY(src, NSString)

RCT EXTERN METHOD(play: (int)reactTag)

RCT EXTERN METHOD (pause: (int)reactTag)

@end
Listing 4-51 Export the video component

4.5.2 Android Implementation of a Video
Component

Next, let’s continue by implementing the Android counterpart (Listing 4-

22).

class VideoViewManager: SimpleViewManager<Video>

companion object {

val REACT CLASS = "VideoView" // —-—-————————-.
private const val COMMAND PLAY = "play" // --
private const val COMMAND PLAY VAL = 1

private const val COMMAND PAUSE = "pause" //

private const val COMMAND PAUSE VAL = 2
}
private var mCallerContext: ReactApplicationCo:
constructor (reactContext: ReactApplicationConte
mCallerContext = reactContext
}
override fun getName(): String {
return REACT CLASS // —-—————=—————— .
}
override fun createViewInstance(
reactContext:ThemedReactContext
): Video {
return Video(mCallerContext)
}
override fun getCommandsMap() = mapOf(// -----
COMMAND PLAY to COMMAND PLAY VAL,
COMMAND PAUSE to COMMAND PAUSE VAL
)

override fun receiveCommand (

view: Video, commandId: String, args: Readal
) {
when (commandId) { // ——————— .
COMMAND PLAY -> {
view.play()
}
COMMAND PAUSE -> {

view.pause/()

}

@ReactProp(name = "src") // ——————mmmmmmmm .
fun setSrc(view: Video, src: String) {

view.setSrc(src)

}

class Video: VideoView { // ———————mmmm—— .
private var mCallerContext: ReactApplicationCo:
constructor(context: ReactApplicationContext?)
: super(context) {

mCallerContext = context
}
override fun onLayout (

changed: Boolean,

1l: Int,
t: Int,
r: Int,

b: Int

) {}
fun play() { // - —————— == .

this.start()
}

override fun pause() { // ——————————————— —————.

super.pause()

}
public fun setSrc(src: String) { // —————————-.

val uri: Uri = Uri.parse(src)

this.setVideoURI (uri)

}

Listing 4-52 The video component (Android version)

|
)Export the view named videoView, the same as on iOS.

2
)Declare all the commands the native component supports.

This is the equivalent of the native methods on iOS.
3
)Apply the commands to the concrete custom native view.

) Export the src view property, the same as on iOS.

5)Create the custom native view. We name the class video as
VideoView is used by the Android stock view we want to in-
herit from. Note that the name exported in step 1 to the

JavaScript layer is still videoView.

6)
Implement the native methods and view properties for the

custom native view, the same as on iOS.

You might have noticed here that the view manager inherits from
SimpleViewManager; ‘ hence, the component backed by the na-
tive view exported cannot work as a container. This limitation is
caused by the fact that the Android Videoviewis a SurfaceView
instead of a ViewGroup. We are going to mitigate this issue with an
abstraction on the JavaScript layer (Section 4.2.3.2). And that will be

our first task when implementing the JavaScript layer of this feature.

4.5.3 JavaScript Layer
4.5.3.1 Native Component Wrapper

As a reminder, a JavaScript wrapper of native components (Section

4.2.3.2) is recommended for easing out platform discrepancies (Listing 4-
53).

let VideoView = requireNativeComponent ('VideoVien

class Video extends React.Component {
constructor () {

super();

render () {
return (
<View style={this.props.style}> // ——————-.
<VideoView
{...this.props} // === — .
style={StyleSheet.absoluteFill} // ----
ref={this.props.videoRef} // —-———————-.
/>
{this.props.children} // ———————mmmmmeee-.
</View>
)i
}
}i
export default Video;

Listing 4-53 JavaScript wrapper of the native component

1
)The container accepts styles passed from the outside. So the
consumer can lay out the component in design.

2
) VideoView accepts the specialized props, for example, src,

to work properly.

3
)Vi deoView overrides any styles accidentally passed down

through props with StyleSheet.absoluteFill. This
makes the component a background layer of the component

in design.

4)Forward any refs passed in using videoRef.

5)

Lay out the children as always.

4.5.3.2 View Manager Wrapper

Next, we encapsulate the view manager (Listing 4-54).

class VideoViewManager {

static play(reactTag) {

if (Platform.0S === 'ios') {
NativeModules.VideoViewManager.play(reactT:
} else {
UIManager.dispatchViewManagerCommand (react’
}
}
static pause(reactTag) {
if (Platform.0S === 'ios') {
NativeModules.VideoViewManager.pause(react’
} else {
UIManager.dispatchViewManagerCommand (react’
}
}

}i

export default VideoViewManager;

Listing 4-54 JavaScript wrapper of the view manager

4.5.3.3 Video Feed

Next, we add a new feed category that is designed to populate video

content. Let’s create the feed component (Listing 4-55) first.

class FeedVideo extends React.Component {

constructor() {

super () ;
this.videoTag = undefined;
}
render () {
return (
<>
<ExpandableText

style={styles.textPost}
text={this.props.item.feed.text}
/>
<Video style={styles.videoPost} // —-——-—-.
src={this.props.item.feed.videoUri} //
videoRef={(ref) => { // ——————————————.
this.videoTag = findNodeHandle(ref);

}}
/>

onVisible() { // ——————— .
if (this.videoTag) {

VideoViewManager.play(this.videoTagqg);

}
onHidden() { // ===

if (this.videoTag) {

VideoViewManager.pause(this.videoTagqg);

}
const styles = StyleSheet.create({ // —-————————-.

textPost: {
marginBottom: 20,

by

videoPost: {
width: '100%',
aspectRatio: 4/3,
marginBottom: 20,

by

})i

export default withErrorBoundary (
withMetaAndControls (FeedVideo), undefined, unde

) ;

Listing 4-55 JavaScript wrapper of the native component

1)

Use the video component created in the previous steps.

2)Apply a different set of props as we are creating another layer

of abstraction.
3),,. :
Hide the videoRef and carry out the actual native method call

at this layer.

4)Encapsulate the native method call here. This layer of abstrac-
tion transfers the concerns from play/pause to onVisible/onHid-
den ones which are more relevant to a feed. Actually, other
feeds can implement those same methods when required.
Eventually, these two methods are called by the Moment when

appropriate.

5)

The rest of the code is the same as an ordinary feed.

NoteAgain, we believe that wrong abstraction is more expensive than
[no abstraction at all. So we only introduce a layer of abstraction

when absolutely necessary.

And we add the provisioning logic of the newly created feed type in the
FeedFactory (Listing 4-56).

export default function FeedFactory(props) {
let numOfImages = props.item?.feed?.images?.lel

+ if (props.item?.feed?.videoUri) { // -———————-.
+ return <FeedVideo {...props}/>
+ }

if (numOfImages > 4 && numOfImages <= 9) { // -

return <Feed3x3 {...props}/>;
} else if (numOfImages > 1 && numOfImages <= 4

return <Feed2x2 {...props}/>;

} else if (numOfImages === 1) {
return <Feed {...props}/>;

}

return null;

}

Listing 4-56 Provisioning of a video feed

)

Use the existence of videoUri as an indicator of a video feed.

2
)The rest logic in the FeedFactory is kept the same.

4.5.3.4 Ref Forwarding

We hide the video component and its corresponding native module
inside the Feedvideo. This is the correct layer of abstraction. How-
ever, this design leads to a challenge; the method of video cannot
be called directly in Moment. This is because of the several interme-

diate proxies such as FeedFactory and HOCs (Section 2.2) that

hide the actual react ref we want to obtain.

We need to apply the technique called ref forwarding to all the
intermediate proxies to resolve this issue. The method in use is
React. forwardRef. It is worth noting that the implementation detail of
ref forwarding is slightly different for class components and functional
components working as the intermediate proxy. Let’s look at

FeedFactory first which is a functional component (Listing 4-57).

+-const FeedFactory = React.forwardRef ((props, r¢
let numOfImages = props.item?.feed?.images?..:
if (props.item?.feed?.videoUri) {

+- return <FeedVideo {...props} ref={ref} /> .,
}
if (numOfImages > 4 && numOfImages <= 9) {

return <Feed3x3 {...props} ref={ref}/>;

} else if (numOfImages > 1 && numOfImages <=

return <Feed2x2 {...props} ref={ref}/>;

} else if (numOfImages === 1) {
return <Feed {...props} ref={ref}/>;
}
return null;
})i

export default FeedFactory;

Listing 4-57 Enhance FeedFactory with ref forwarding

1)A functional component accepts the ref directly from

React.forwardRef.

2)

Pass the ref down to the product components.

Next, we look at withMetaAndControls which is a HOC based on

class components (Listing 4-58).

export default function withMetaAndControls (Feed
class ElemComponent extends React.Component {
render () {
return (
<View style={][
{...this.props.style},

styles.commonPadding]}

<View style={styles.metaContainer}>
<LoomingImage
style={styles.avatar}
source={{uri: this.props.item.meta
/>
<View style={styles.infoContainer}>
<Text style={styles.userName}>
{this.props.item.meta.name}</Tex!
<Text style={styles.date}>

{this.props.item.meta.date}

</Text>
</View>

</View>

+- <Feed {...this.props} ref={this.props.:
<View style={styles.controlContainer}>
<NumberedWidget
style={{flex: 1}} type={widgetType:
number={this.props.item.meta.numOf]
/>
<NumberedWidget style={{flex: 1}}
type={widgetTypes.COMMENT }
number={this.props.item.meta.numOf(
/>
<NumberedWidget style={{flex: 1.5}}
type={widgetTypes.SHARE}
number={this.props.item.meta.numOf
/>
<Widget type={widgetTypes.MORE} />
</View>

</View>

}

+ return React.forwardRef ((props, ref) => <ElemCc
+ innerRef={ref} {...props} // ——————mm——— ———.
+ />);

}

Listing 4-58 Enhance withMetaAndControls with ref forwarding

1)

Use innerRef to avoid conflict with the re f prop of a class

component.

2)

Pass the innerRef down as ref to the designated compo-

nent.

The withErrorBoundary is enabled with ref forwarding in the

same way. Hence, we omit the code here.

4.5.3.5 Video Feed in Moment

We need to fetch the react refs of all feeds so we can control them in
accordance with their visible state as in the third requirement. With ref
forwarding explained in the last section, we can simply pass the react ref
as if there are no intermediate proxy. Technically, this is done in the

renderItem method of Moment which is in turn passed in as a prop to

the FlatList (Listing 4-59).

class Moment extends React.Component ({

renderItem = (entry) => {
return (
<FeedFactory
ref={(ref) => {
this.feedRefs[entry.index] = ref;

+ }}

item={entry.item}

/>

Listing 4-59 Obtain the refs of all feeds

We use the onViewableItemsChanged of FlatList to be
notified of the visibility state of each feed. Let’s have a look at its
implementation. The logic is straightforward and hence will not be further

explained (Listing 4-60).

onViewableItemsChanged = (result) => {
let {changed, viewableItems} = result;
for (item of changed) {
let visible = false;
for (i of viewableItems) {
if (item.index === i.index) {
visible = true;

break;

}

if (visible){
if (
typeof this.feedRefs[item.index]?.onVis

'"function'

) A

this.feedRefs[item.index]?.onVisible()

}
} else {

if (typeof this.feedRefs[item.index]?.onl

'"function'

)

this.feedRefs[item.index]?.onHidden();

Listing 4-60 Provisioning of a video feed

This method is passed as a prop of the same name of FlatList.

4.5.4 Reinforced Video Component

This is a follow-up of the theoretical part of exception handling of the
native layer (Section 4.4). We are going to use the callback view
properties (Sections 4.2.1.3 and 4.2.2.3) to implement the exception

flow that is across JavaScript and native layers.

As usual, now that all visible requirements are implemented, we need

to continue with the hidden requirements. Again, let’s recall one of the

most important principles for implementing a robust exception flow:

clear boundary.

In that spirit, we can now derive the end goal. Whenever exceptions
occur in the videoView in the native layer, we want it to trigger the
predefined exception flow of an ordinary feed, that is, to hide it. More
specifically, this design decision is because exceptions thrown in a
feed should be captured by the feed and be treated equally in regard
to the visual and UX. This is regardless of which layer the exception
comes from. After all, the feed component processes the best knowl-
edge of the UX of the feed. Thus, it holds the final call to what should

be presented to the user when an exception occurs within.

After we define the requirements, we need to force the native com-
ponent throws to the JavaScript layer. The best way is to add an
onException callback view property to the component (Sections
4.2.1.3 and 4.2.2.3).

NoteNow the key points discussed throughout the chapter seem to
come together.
4.5.4.1 Protect the iOS Component

Let’s get into the code directly and see how a well-protected view

manager looks like.

Firstly, let’s add a utility function to throw the exception to the
JavaScript layer (Listing 4-61).

func throwToJdS(_e: Error) {
if self.onException == nil {

self.unThrownException = e

}

+
+

+

+ return
+

+ self.onException? (["exception": "\(e)"])
+

}

Listing 4-61 Provisioning of a video feed

This method temporarily stores the exception if the onException is
yet not sent. Otherwise, it simply fires the exception to the
JavaScript layer using props. The stored value will be used in step 5

of when we further the implementation of the VvideoviewManager.

Then we can leverage this method to protect the

VideoViewManager (Listing 4-62).

+enum VideoViewManagerError: Error { // —=——————-.

I case runtimeError (String)
+}

@objc(VideoViewManager)
class VideoViewManager: RCTViewManager {

var player: AVPlayer?

var playerlLayer: AVPlayerLayer?
@objc(play:)
func play(reactTag: Int) -> Void {
self.bridge.uiManager.addUIBlock (
{(uiManager: RCTUIManager?,
viewRegistry: [NSNumber: UIView]?) in
guard let view =
viewRegistry? [NSNumber.init(value: react’
as? VideoView else { // ———=———-.
print("VideoView is nil in VideoViewMal

return

do { // ===
try view.play()
} catch {

view.throwToJS(error) // ———————mm—m—-—ew-.

}
})
}
@objc(pause:)
func pause(reactTag: Int) -> Void {
self.bridge.uiManager.addUIBlock(
{(uiManager: RCTUIManager?,
viewRegistry: [NSNumber: UIView]?) in

guard let view =

viewRegistry? [NSNumber.init(value: react’
as? VideoView else { // ———————-.

print("VideoView is nil in VideoViewMal

}

return

do { // ——————— .
try view.pause()
} catch {
view.throwToJS(error) // ——————————a--.
}
})

@objc(view)

override func view() -> UIView {

let view = VideoView();

return view

}

class
var
var
var

var

)

+ + + + + + +

+ +

VideoView: UIView {

player: AVPlayer?

playerLayer: AVPlayerLayer?
onException: RCTBubblingEventBlock?

unThrownException: Error?

Qobjc(setOnException:) // ————————mmmmmmmoe .
func setOnException (

__ onException: @escaping RCTBubblingEventBloc

if let e = self.unThrownException {

onException(["exception": "\(e)"])

return

+ + +

+

self.onException = onException

}

@objc(setSrc:)

func setSrc(_ src: String) {
do { // - ——— = ————————— .

guard let url = URL.init(string: src) else

}

throw VideoViewManagerError.runtimeError

if player == nil {

}

player = AVPlayer(url: url)
if (playerLayer != nil) {

throw VideoViewManagerError.runtimeErr(
}
playerLayer = AVPlayerlayer (player: playzs
playerLayer! .masksToBounds = true
self.layer.addSublayer (playerLayer!)
else {
if (playerLayer == nil) {

throw VideoViewManagerError.runtimeErr¢
}
playerLayer?.removeFromSuperlayer ()
player = AVPlayer(url: url)
playerLayer = AVPlayerlayer (player: playe

playerLayer! .masksToBounds = true

self.layer.addSublayer (playerLayer!)

} catch {

+ self.throwToJS(error) // ————————mmmm——— ——.

}
+-func play() throws {

guard let player = player else {

+- throw VideoViewManagerError.runtimeError ("}

}
player.play()
}

+-func pause() throws {
guard let player = player else {
+- throw VideoViewManagerError.runtimeError ("}

}

player.pause()

}

override func layoutSubviews() {
super.layoutSubviews ()
guard let layer = playerLayer else {

+- self.throwToJS (VideoViewManagerError.runtir
return
}
layer.frame = self.bounds;
}
}

Listing 4-62 Protected view manager

1
)Define the Error type for this view manager.

2)

Log and do nothing for now since even the native view is not
available. In practice, this is also an unrecoverable system error
when a view cannot be retrieved using a react tag. This kind of
error could be treated the same as a BAD ACCESS that aborts
the app.

3
)Wrap every entry point of our own logic in the view manager.

4)

Call the throwTodJs of the corresponding native view whenev-

er an exception occurs.

5)

Implement the callback view property. Here, if an exception
occurs prior to this point, for example, in the setter of other view

properties, fire the exception immediately.

6)

Throw the exception whenever unexpected conditions are met.

And the logic eventually flows to step 4 which is handled by

throwTodJS.

4.5.4.2 Protect the Android Component

Next, we implement the Android version (Listing 4-63).

class VideoViewManager : SimpleViewManager<Video:

companion obiect {

E S - T - .

val REACT CLASS = "VideoView"

private const val COMMAND PLAY = "play"
private const val COMMAND PLAY VAL = 1
private const val COMMAND PAUSE = "pause"

private const val COMMAND PAUSE VAL = 2
}
private var mCallerContext: ReactApplicationCor
constructor (reactContext: ReactApplicationConte
mCallerContext = reactContext
}
override fun getName(): String {
return REACT_ CLASS
}
override fun createViewInstance (
reactContext: ThemedReactContext
): Video {
return Video(mCallerContext)
}
override fun getCommandsMap() = mapOf (
COMMAND PLAY to COMMAND PLAY VAL,
COMMAND PAUSE to COMMAND PAUSE VAL
)
override fun receiveCommand (

view: Video, commandId: String, args: ReadableAr:

+ throw Exception()

+ when (commandId) ({

+ + + + + + + 4+ + +

+ + + + + + + +

COMMAND PLAY -> {
view.play()

}

COMMAND PAUSE -> {

view.pause()

}
} catch (e: Exception) {

view.throwsToJds(e) // ————————mmmmmmmo—— .

}
override fun getExportedCustomBubblingEventType¢

mapOf(// -—-———— .
"onException" to
mapOf (
"phasedRegistrationNames" to
mapOf ("bubbled" to "onExc

)

@ReactProp(name = "src")
fun setSrc(view: Video, src: String) {
try { /) -~————————————— . — —— - ———-— .
view.setSrc(src)
} catch (e: Exception) {

view.throwsToJds(e) // ————————mmmmmmmo—— .

class Video : VideoView {

private var mCallerContext: ReactApplicationCor
constructor(context: ReactApplicationContext?)
super (context) {

mCallerContext = context

}

override fun onLayout (

changed: Boolean, 1l: Int, t: Int, r: Int, b: Int

+
+
+
+
+
+

+

) {}
fun play() {

this.start()

}

override fun pause() {
super.pause()

}

public fun setSrc(src: String) {
val uri: Uri = Uri.parse(src)
this.setVideoURI (uri)
this.start()

}

public fun throwsToJs(e: Exception) { // —=——---
val event: WritableMap = Arguments.createMap
event.putString("exception", e.localizedMess:
mCallerContext?.getJSModule (
RCTEventEmitter::class.java)?.receiveEvent (

id,

"onException",

event

+)
+ }
}

Listing 4-63 Protected view manager (Android version)

Declare the onException callback view property (Section
4.2.2.3).

2
)Wrap every entry point of the view manager with try catch.

Call the throwsToJs of the corresponding native view to noti-

fy the JavaScript layer that something went wrong.

3)

Implement the throwsTodJs using the command system on
Android (Section 4.2.2.3).

4.5.4.3 JavaScript Layer

The last piece is the JavaScript layer. Here, we simply throw an exception
that can be caught by the ErrorBoundary with the predefined behaviors
(Listing 4-64).

let VideoView = requireNativeComponent ('VideoViev
class Video extends React.Component {
constructor () {

super();

}
onException = (e) => {
this.setState(() => { // ===,
throw {
name: 'Video Error',

description: e?.nativeEvent?.exception

}
})i
}

render () {

+
+
+
+
+
+
+
+

return (
<View style={this.props.style}>
<VideoView
{...this.props}
style={StyleSheet.absoluteFill}
ref={this.props.videoRef}
+ onException={this.onException}
/>
{this.props.children}
</View>
)i
}
}i
export default Video;

Listing 4-64 Throw the exception to ErrorBoundary

1)Rethrow the native exception with the message populated.

Now we have connected the exception flow from the native layer to
the JavaScript layer, and all the nice redefined behaviors of
ErrorBoundary can now be activated to also account for native ex-
ceptions. As a reminder, for feeds, whenever an exception occurs
within its boundary, the feed card will be made invisible to not bother

the user while applying the silent logging in the meantime.

4.6 Summary

We have covered everything you need to know about native develop-
ment. Though a typical React Native team should work mostly on
JavaScript for business logic and Uls, the fluid part. It is still desired
for you, or some mates on your team, to dominate the hardcore mo-
bile development and to clear the technical blockers on the path to a

05 app.

In this chapter, we went through discrete points spanning from basics
to topics that are quite advanced. We firstly learned how to create na-
tive modules and native components and got to know some partic-
ularities on each platform. Based on that, we continued examining
some of the advanced topics of native modules and native compo-
nents as well as the bidirectional communication between

JavaScript and native layers. Then, with a dedicated section, we ex-

panded our exception handling pattern by including the native layer in

the picture, and we found it a cool name, wall-in.

And, oh! Manyface supports video feeds now. Yeah!!!

© M. Holmes He 2022
M. H. He, Creating Apps with React Native
https://doi.org/10.1007/978-1-4842-8042-3 5

5. Network Programming

M. Holmes He!
(1) Bucklands Beach, New Zealand

Most modern apps would be useless without a network. This is true
for Manyface and other real-world apps alike. A network, on the other
hand, is complex and is rough at times. This is especially true for a
mobile network where even the connectivity could be nondeterminis-
tic and intermittent. This scenario of weak connection continuously
challenges mobile apps, and the solution logic flow cannot be easily
tested, verified, or validated. A network also contributes a large bulk
of waiting time, and anxiety, to the users. This is because network la-
tency (approximately tens to hundreds of milliseconds for WAN RTT
(round-trip time)) is by magnitude greater than that imposed by logic
or the Ul (~16.6 milliseconds). Without the content fetched from a net-
work, any discussion on rendering time optimization is futile. To make
peace with the network, we need to understand its nature, and this is

the purpose of this chapter.

https://doi.org/10.1007/978-1-4842-8042-3_5

NoteAlways checking using the network conditioner is a good prac-

tice to make sure the app is working well in critical network

conditions.

Network programming is a broad topic. Covering everything in such
an area is neither the best interest of nor feasible for this book. In the
meantime, network programming is sophisticated. It’s hard to grasp
the “why” of practical techniques without the understanding of its ba-
sic building blocks, the fundamentals. In order to make the best out of
it, we take an approach by only striking through the critical points of
network programming that are directly related to app development. In
terms of network fundamentals, we are going to emphasize two pro-

tocols, TCP and HTTP, throughout our discussion.

This chapter is divided into four parts: (1) TCP/IP 101, (2) network
programming in JavaScript, (3) network programming on the native

layer, and (4) new updates on the modern Internet.

The first few sections start with a refreshment on the basics of net-
work protocols. Those have been around since the good old days.
Based on that, we discuss some of the new updates of network proto-
cols and practices aiming to improve performance and/or versatility.
In the meantime, we are going to equip ourselves with diagnostic
tools such as tcpdump, tcptrace, and mitmproxy. Another goal we set

for this section is to help you to fully understand some of the frequent

albeit enigmatic network terms used in various tech talks such as
bufferbloat.

The second section focuses on the JavaScript layer. In particular, we
are going to focus on the asynchronous operations in JavaScript and
one of its instances, fetch, which is the major JavaScript method
for fetching network resources. We conclude the second part with a
case study by moving all the data used for Manyface online. So, from

that point on, Manyface will need to fetch feeds from an endpoint.

The third part is the native layer. Again, native programming is need-
ed for critical tasks such as big file downloading and connectivity de-
tection. For the latter task, we are going to introduce and examine an-
other third-party library, react-native-netinfo. This section concludes

with a cross-platform download module for videos.

Let’s march forward.

5.1 A Very Brief Introduction to TCP/IP

NoteAs the name of TCP/IP implies, there are two major purposes for
[network engineering: (a) to identify a node on the network (IP) and
(b) to deliver data (TCP). Combined with network types (i.e., WAN

and LAN), we can derive the metrics of protocols that are currently in

|use on today's Internet.

In the sense of software engineering, a network stack is a software
module, and protocols are its submodules. From the network commu-
nication point of view, protocols define sets of rules so that the sender
and receiver can talk to each other. It’s like you fill this field with a
magic number, and | know what you mean. So, we can think of proto-

cols as the “black speeches” in the network world.

A network stack 1s designed in layers. A network layer is an abstract
concept, and each of them is assigned with a general purpose. For instance,
layer 4 is assigned with transmitting data on WAN; layer 3 is to identify a
node on WAN; and layer 2 is designed to both identify a node and to
transmit data on LANs. The following are the layers in the TCP/IP stack:

1
) Physical layer

2)

Ethernet layer
3)

IP layer
4)

Transport layer

5
)Application layer

A layer might consist of one or more protocols. A protocol defines a
concrete way or “how” to achieve the “purpose” assigned to the layer
the protocol belongs to. For instance, in layer 2, ARP is responsible
for node identifying, and Ethernet is for packet delivery. Both proto-

cols work on LANSs. In layer 3, we have a sole protocol, IP, that is

used for node identifying in WAN; and in layer 4, TCP and UDP are
the two main protocols for packet delivery in WAN. Although belong-
ing to the same layer, TCP and UDP achieve the purpose of data de-
livery in completely different ways. TCP tries its best to deliver pack-
ets in order as a stream. Meanwhile, it accounts for network conges-
tion and retransition in case of packet loss. On the other hand, UDP

tries its best to send packets, and then "\ (¥/) /.

Due to the seemingly unreliability of UDP, it has been dwarfed by its
accountable brother TCP. However, everything has a flip side to it.
This time, the flip side is performance overhead. For years, the indus-
try has been exploring UDP for reliable connection while demanding
less system resources than TCP. And we will see soon in this chapter

such an initiative from Google.

Layers 2—4 are all general-purpose layers. Based on that foundation,
layer 5 (a.k.a. the application layer) thrives in vast diversity. The most
important one is HTTP. Based on TCP, HTTP is designed to transmit
text-based data between the server and web browsers. Due to its
simplicity, HTTP is also one of the most commonly used protocols
that facilitates traffic not only for the Web but for many apps like
Manyface. Another important application layer protocol is DNS which
provides a domain name to IP address translation. DNS is based on

UDP. SSH is another commonly used protocol based on TCP. ltis

designed to offer secured communication for administrators to oper-

ate network servers and devices.

All the data transmitted on the network needs to go through the net-
work stack, or, more specifically, layers of protocols. So the network
stack also works as a pipeline that decorates and dismantles data

that are either received from the previous layer or sent to the next.

Each protocol is a processing unit on this pipeline. Programmatically,
protocols are defined in headers which are attached to the data pay-
load layer by layer. The structure and information embedded in proto-
col headers varies a lot due to the different tasks each protocol is de-
signed for. For example, an ID (MAC address) is required to identify a
machine on a LAN, so the ID is included in the layer 2 ARP header.
Similarly, an IP address, another ID, is included in layer 3 IP to identi-
fy a machine on a WAN. Like data structures in any other program,
protocol header fields can reflect how a packet is organized and
transmitted (logically and physically) and how it is processed by each

protocol.

Next, let’s follow a trip of a pseudo packet. As illustrated in Figure 5-1,
when an outbound packet is sent by an application, it goes downward
to the network stack. Each time the packet reaches a layer, it is selec-
tively processed by a certain protocol and is filled with the protocol

header. Then the header is attached to the packet before it is pushed

down to the next layer. All the involved protocols concatenate their
respective headers during the process and form the final outgoing
data frame that is eventually transmitted on the physical medium. To
recap, the headers are attached to the front of the packet in a top-
down manner in the order of layers. That means the header of layer 4

is attached first, and that of layer 2 is attached last.

When an inbound packet arrives, it travels from the NIC hardware

upward through layers. As depicted in Figure 5-1, protocols in each layer

(1) read the headers that are populated by the same protocol on the sender
side, (2) process them using the information extracted, (3) strip the header
that has been processed, and (4) push the packet upward to the next layer.

This occurs for every layer until the payload reaches the application layer.

L5 (Application) Payload Payload L5 (Application)
L4 (TCP) Tcp | Payload TcP | Payload L4 (TCP)
L3 (IP) [1P] 7cp | Payioad | [1 [1ce | payioad | L3 (IP)
L2 (Ethernet) (e [ip [1co [rayioad | [en[1p [1ce | payioad L2 (Ethernet)
Sender > Receiver

Figure 5-1 Processing of protocol headers

For each of the layers beneath the application layer, the operating
system (or libraries) is responsible for handling packets sent from/re-
ceived by the host. So the IDs in those layers are used to identify the

host itself (in different networks). In the application layer, however,

there are multiple executable instances (i.e., applications such as
postfix, nginx, ssh server, Manyface, etc.), so we need yet another ID

to identify them.

In order to deliver packets meant for a specific app, that is, an incom-
ing email to postfix, an HTTP request to an Nginx, an ssh prompt
message to an Xshell client, and a feed to Manyface, we use port
numbers that are agreed on between the clients and servers. Be-
cause a network stack needs to know the destination process of a
packet before it reaches the application layer (layer 5), port numbers

are defined in layer 4.

There are default port numbers for common servers, and all clients
that want to talk to those servers implicitly include the predefined port
numbers in the outbound packets (dest port) sending to the server
process running in a remote host. For example, 80 is used for HTTP,
22 is used for SSH, and 25 for SMTP (email). A process, either a
server or a client, can listen to any port number provided the number
has not been bound by another. Otherwise, a “port conflict” exception

will be raised by the port binding API so the process should fail.

Because of the ephemeral nature of client side, apps use temporal
port numbers (of very big numbers to avoid port conflict). The port is
allocated when a client process initializes and is released when the

process terminates. The client tells a server its temporal port in the

first packet (source port) on the run as all network sessions are al-
ways initialized from the client of this kind; otherwise, there is no way

for a server to know the client’s port number.

Now we have covered some IDs that are used to indicate packets’
destination. In summary, MAC addresses in layer 2 and |IP addresses
in layer 3 are used to locate machines; port numbers in layer 4 are
used to identify processes within a host. This is pretty much all the

network IDs we need to know. Easier than thought, eh?

In the following, we are going to go through in detail each of the im-
portant protocols one by one. To deepen the understanding of the
core concepts, we also prepare some hands-on experiments by in-
specting the packets. It is highly recommended to set up the tools for

network inspecting and carry on those experiments.

5.1.1 TCP

The purpose of TCP is to provide continuous and reliable data deliv-
ery between two nodes. Let’s take an example; the data is sent as
“abc” (in reality, it is binary instead of ASCII) from one side, and
somehow it is received as “bac.” This is a case of out-of-order pack-
ets. Another example, the data is sent as “abc,” and it is received as
“abbccc.” It is called duplication. Last one, the same “abc,” then only

“ac” is received. This is a packet loss. Worse, all the preceding cases

could compound due to the unpredictable temperament of the net-

work. The purpose of TCP is to recover the received data back to

“abc” regardless of the situation.

The solution of TCP is straightforward — to tag packets. In doing so,

each packet is marked with an ordered unique number, a.k.a. a sequence

number. With those numbers, TCP can recover the original data by

reordering the out of order, deduplicating the duplicates, and asking for

retransmission in packet loss. To agree on those numbers, the three-way

handshake comes into play. The sequence number is contained in the TCP

header which is attached to every TCP segment.

Offset Octet

0

1

2

3

Octet Bit

7/6[5]4

[3]2]1]o]7]6]5]4a]3]2]1]0

7]6[s5]a[3]2]1]o]7]6[5]4a]3]2]1]0

0

0

Source Port

Destination Port

4

32

Sequence number (SEQ)

8

64

Acknowledgeme

nt number (ACK)

12

96

Data offset

Reserved

. A

C
K

p
S
H

R
S
T

S
Y
N

F
|
N

Window size
(Sliding window)

16

#i#

Checksum

Figure 5-2 TCP header

The TCP header is given in Figure 5-2. We have covered very briefly

what (source and destination) ports are. The other fields that are of

interest are the acknowledgment number, SYN, ACK, FIN, and Win-

dow size. We will cover them in the following sections.

5.1.1.1 Three-Way Handshake (Opening Connection)

The three-way handshake is the preamble of all TCP connections. As
mentioned, the major purpose of the three-way handshake is to
agree on the sequence number attached to the segments from both
sides. Let’s observe a real network request. In the process, we will
also map the output of tcpdump and the corresponding fields in the
TCP header.

Firstly, we open two command-line windows and execute curl
holmeshe.me and sudo tcpdump -ntS host holmeshe.me on

each window, respectively. Listing 5-1 gives the tcpdump output.

IP 10.10.0.194.64608 > 104.248.189.33.80: Flags
IP 104.248.189.33.80 > 10.10.0.194.64608: Flags
IP 10.10.0.194.64608 > 104.248.189.33.80: Flags

Listing 5-1 Three-way handshake

The first three segments are the three steps of the three-way hand-
shake. They are SYN, SYN-ACK, and ACK. SYN and ACK are flags
in the TCP header that mark the type of the segment. Next, we ex-
plain each step in detail to understand the mechanism. To give a con-
crete idea of the setup, we have two endpoints involved: a client, the
laptop on which this text is written, and a server which is hosting the

author’s personal blog.

The three-way handshake is normally initialized from the client side:

1)The first step is called SYN. This request is issued by the client
to initialize the connection by announcing its initial sequential
number, that is, seq 271799524, which is the sequence num-
ber filed in the TCP header. This step is indicated by the Flags

[S] in the tcpdump output, which means the SYN flag in the
TCP header is set.

The second step is called SYN-ACK, a response from the first

SYN by the server. This step (a) acknowledges the first SYN
request by increasing the sequential number by 1 (i.e., ack
271799525) and sending it back and (b) announces the se-
qguential number of the server (i.e., seq 417121955). Here, the

Flags [S.] meansboth SYN and ACK flags have been set in
the TCP header, which indicates a SYN-ACK segment.

3)The last step is called an ACK. This is issued again from the
client to acknowledge the last SYN (from the server). Again,
this is done by increasing the received sequential number by 1
(i.e., ack 417121956) and sending it back. This time, only the
ACK flagis set (Flags [.]).

After the exchange of sequential numbers, both sides can set the ex-

pectation to the coming packets and, with that information, can take

action on the mentioned abnormal network behavior properly. In do-
ing so, the application layer can be always delivered with a reliable

stream of packets in sequential order.

Computer science is full of trade-offs. TCP is one of them, and the
trade-oft for reliable delivery is latency. The operations for reordering and
deduplicating take time. The retransmission and three-way handshake take
more time due to the Internet RTT, that is, again, tens to hundreds of
milliseconds. Actually, the three-way handshake is one of the most
noticeable performance hits in that (1) it multiplies the RTT by 3, and (2) it
blocks the first screen experience. Table 5-1 lists some empirical values.

Table 5-1 Latency and its consequences

100—200 milliseconds Noticeable

> 200 milliseconds && < 1 second Lagging

> 1 second Approaching failure

The three-way handshake needs to complete before everything
else can even happen. Now let’s do a simple math; within a continent,
the latency could be somewhere between 30 and 100 milliseconds. s
Latency introduced by the three-way handshake alone exceeds the
first threshold, which gives a lagging impression to the user instantly
after they open the app. No, not instantly, with a delay of about 90 ~

300 milliseconds, which doesn’t make it any better.

We have two ways in general to mitigate this performance bottleneck:
(1) optimize the protocol itself; (2) optimize the app (e.g., using offline
content). We are going to discuss some of those protocol heuristics in

Section 5.1.5. The offline mode will be implemented in Section 5.3.1.

5.1.1.2 Sliding Window

In the tcpdump output, win is called a sliding window. Basically, a
sliding window is an indicator of the server's load; the larger this num-
ber, the lesser the load and hence the better. A zero in win means
the server is fully loaded, and all clients should stop sending any

packets.

Technically, a sliding window is the size of the available buffer. This
buffer works as an intermediate place that holds the incoming pack-
ets. When the server process is active, it reads the packets from the
buffer and processes them. This action gradually depletes the buffer.
Thus, if the server process is under high load and cannot pick up the
packet in the buffer in time, the available buffer size will decrease.
This scenario, in turn, is reflected in the decreasing win, and clients
will slow down the request sending speed after picking up this signal

in the response TCP header.

Bufferbloat is one of the common misconfigurations of the buffer

size potentially on all hops on the routes and all layers on the network

stack. This includes the TCP buffer. Sometimes, bufferbloat is a mis-
take with good intention, that is, ‘ to reduce packet loss and to make
the performance data look good. Bufferbloat effectively exaggerates
the processing power which leads to overcommitment of the server.
This causes unstable latency and, sometimes worse, a complete ser-

vice collapse. Let’s elaborate a bit.

We consider the server process(es) now is being overloaded with an
elephant flow, hence not being able to respond to any newly arriving
packets in time. In the setting of bufferbloat, this situation is covered by the
exaggerated buffer size; hence, the client will continue sending requests.

Some of the hardest challenges in network programming are

caused by the inconsistent perception of the same situation be-

tween client and server.
—Holmes

This causes latency spikes. In the worst scenario, when the server is
in a very high load, at a certain point all packets in the buffer will time
out, and so are all successive requests sent from clients, causing the
mentioned service collapse which is, basically, 0 availability, the com-

plete opposite of our goal of 0 crash.

[:_;' So if your app has any of the preceding scenarios, remind your

devops to check bufferbloat first.

5.1.1.3 Congestion Control

It’s like reversing your car and only stopping when you hear the

collision.

—Holmes

A sliding window is designed to throttle the client request so as to
avoid overloading the server; congestion control is to throttle the
client request so as to avoid overloading the network. Technically,
congestion control adopts another window called congestion window
(CWND). Unlike a sliding window, the congestion window exists only
in the algorithm, the state of which is not reflected in the TCP header.
Basically, this algorithm (1) sends packets very slowly in the begin-
ning, (2) increases the request speed gradually, and (3) slows down
on certain signals such as packet loss, then repeats from 1. This is

how the bottleneck of the network is being tested iteratively.

The first step is called a slow start. For a payload that is relatively large,
a slow start imposes some extra RTTs for the initial few requests. We

give the congestion control in Figure 5-3.

Sequence Numbers (tcptrace) for 104.248.189.33:443 -» 10.16.96.12:55133
congestionWin10.pcapng
50000000 - /]
40000000 - /
8 t
5 30000000 -
2 b
€
3
3
s
g 20000000 - /
@ t =
=
=
> ,—,
t P
10000000 izt
b s
._I-""
I =
L "
0 25 5 75 10 125 15
Time (s)

Figure 5-3 TCP flow under initewnd 10

If we increase the congestion window manually by running the

following commands:

sudo ip route change default via 104.248.176.1 d¢

it gives a more steep curve and better initial velocity in terms of

throughput. The graph is given in Figure 5-4.

Sequence Numbers (tcptrace) for 104.248.189.33:443 - 10.16.96.12:55208
congestionWin150.pcapng

50000000 - v

40000000 | /

30000000 | /

& 20000000 - ,-/

quence Number (B)

10000000 | o

Time (s)

Figure 5-4 TCP flow under initcewnd 150

Besides the slow start that inflicts some initial RTTs, s another perfor-
mance hit of congestion control inherits from its mechanism for con-
gestion detection, packet loss. This is because packet loss is a signal
of something already occurring, instead of something is about to oc-
cur. It’s like reversing your car and only stopping when you hear the

sound of collision.

5.1.1.4 Four-Way Handshake (Closing Connection)

A four-way handshake is the counterpart of the three-way handshake, which
severs a TCP connection. In this process, one side (a) when done sending
data should issue a FIN segment, and the other side (b) needs to
acknowledge it after receiving it. Then at some point, (b) sends FIN when
its sending also completes, and lastly (a) should acknowledge it to
completely finalize the connection. A four-way handshake is shown in
Listing 5-2.

IP 10.10.0.194.51255 > 104.248.189.33.80: Flags |
IP 104.248.189.33.80 > 10.10.0.194.51255: Flags |
IP 10.10.0.194.51255 > 104.248.189.33.80: Flags |
Listing 5-2 Four-way handshake

First, like SYN and ACK, FIN is also among the flags in the TCP

header to indicate the packet type.

As described earlier, the textbook version of the four-way handshake
is (1) FIN, (2) ACK, (3) FIN, (4) ACK. This leaves the option half-
closed where the passive closing side can send more data even after
receiving a FIN. However, in the real world, the tcpdump output looks
something like the ones given earlier, where the ACK and FIN are ag-
gregated, rendering it’s effectively a three-way handshake exactly

symmetric to the three-way handshake for opening a connection.

5.1.1.5 Miscellanies

Next, we briefly cover some other header flags:
1) . .
PSH means bypass the buffer and deliver the segment directly
to the receivers (could be either a server or a client) process.
2)RST is similar to FIN. The difference is that it stands for abnor-

mal closing of a connection. Situations include no process lis-

tening to the port indicated, sending packets to a closed con-

nection, duplicated FIN, etc.

3
)Data offset means from where the payload of the TCP segment

starts.

Lastly, we look at the “stream” nature of TCP. In case you need to write
a socket in your app, please note that TCP traffic sometimes aggregates
individual segments, meaning ‘ the size each read () returns could vary
from that by send (), which could be caused by various intermediate
factors. As a result, all TCP-based application protocols are required to
indicate the length for each of its request segments, just like HTTP has a
Content-length header (HTTP headers will be discussed in Sections
5.1.2.2 and 5.1.2.3). Let’s look at one example of TCP aggregation in
Figure 5-5. Note that HTTP will be discussed in the next section.

Sent
HTTP reque st one HTTP reques | [ttwo
segments:
Received
HTTP request one HTTP reques | | t two
segments:

Figure 5-5 TCP packet aggregation

In the preceding fictional example, the receiver should (1) read HTTP
request one forthe first read () with the Content-length head-

er, (2) save the HTTP reques in the application buffer and wait for

the next segment, and (3) concatenate the saved value with t two

when the last segment arrives.

5.1.2 HTTP/1.1

Simplicity wins. It’s that simple.
—Holmes

HTTP/1.1 is an application layer built on top of TCP (in the following
section, HT TP will be used for simplicity). It was originally designed
as a plain text-based protocol for a very simple purpose — hypertext
web page presentation. Thus, it is text based and hence less perfor-
mant than binary-based network transmission such as raw TCP and
Protocol Buffers. However, due to its extreme simplicity and versatili-
ty, the use of HTTP and its derivative protocols (HTTPS, HTTP 2.0,
etc.) has been extended from websites, its original territory, to almost
all parts on today’s Internet; video streaming, mobile, and desktop

apps of all sorts are all using it.

NoteJavaScript is yet another example of primary albeit extremely
simple and flexible technology that succeeds. React Native is

another.

5.1.2.1 HTTP Is Text Based

In HTTP, the client sends requests to the server to fetch resources. In
general, there are two types of resources, static and dynamic. Texts
and images are examples of static resources that can be located with
a resource identifier, a.k.a. URI. On the other hand, dynamic re-
sources are more complex. They could be an HTML rendered from
the server side or a JSON response composed from a database. So
a client normally needs to attach the request with additional informa-
tion, so the server can respond with the data in demand. That addi-

tional information is called query parameters.

Let’s observe an HTTP request in action using our old friend tcpdump.

This time, we add - A to observe the full payload (Listing 5-3).

// 3-way handshake is omitted
IP 10.10.0.194.57805 > 104.248.189.33.80: Flags |

PS. .2R6GET / HTTP/1.1 // == .
Host: holmeshe.me

User-Agent: curl/7.64.1

Accept: */*

/] ===
IP 104.248.189.33.80 > 10.10.0.194.57805: Flags |

...E..4i.@."'..Dh..!
S - T SR - S
.2S2PS.

IP 104.248.189.33.80 > 10.10.0.194.57805: Flags |

50 0186 6 0abclls 5 colilo o

550126 51805 6 6 GG 66 00 6 G 35000 ¢

.2S2PS. HTTP/1.1 301 Moved Permanently // ——-—-—-.
Server: nginx/1.14.0 (Ubuntu)
Date: Mon, 04 Oct 2021 11:18:48 GMT
Content-Type: text/html
Content-Length: 194
Connection: keep-alive
Location: https://holmeshe.me/// - ————-----"-"-————.
<html> // ===
<head><title>301 Moved Permanently</title></head:
<body bgcolor="white">
<center><h1>301 Moved Permanently</hl></center>
<hr><center>nginx/1.14.0 (Ubuntu)</center>
</body>
</html>

// 4-way handshake is omitted

Listing 5-3 An HTTP request

1)The beginning of the HTTP header of the request. We can see
that itis a GET request under HTTP 1.1. Note that in the TCP
header, a PSH flag is set, which means this packet needs to by-

pass the buffer and be handled immediately.

2
)The end of the HTTP request header. In HTTP, new lines are

used to mark the header end. We are going to examine the

HTTP request header very soon in Section 5.1.2.2.

3
)The beginning of the HTTP response header (Section 5.1.2.3).
4)

The end of the HTTP response header, which is also marked

with new lines.

5
)The body of the HTTP response. We can see that it is HTML in

plain text.

As shown in the preceding example, the most common HTTP request
method is called a GET. In this method, parameters are attached di-
rectly to a resource identifier (URI). A typical HTTP dynamic request

looks like this: https://holmeshe.me/05apps/feeds?

count=5&by=1ily.

And let’s examine its parts:

)https : // is called a schema.
2) . .
holmeshe.me is the domain name.

3
)/OSappS/feeds is called a path, or an API.

count and by are the query parameters.

https://holmeshe.me/05apps/feeds%253Fcount%253D5%2526by%253Dlily

Another method is POST. In POST, parameters are attached in the
request body after the HTTP headers. This can effectively avoid para-
meters that are too long to be populated inside a URI. Other types of
HTTP requests are PUT and DELETE that are used for requests

modifying the server’s state.

Certain characters in a URI are reserved. For instance, the new line is
used as a separator between the HTTP header and the body, / is
used as a separator for components in a path, ? is the separator be-
tween a path and parameters, = is the connector of a parameter key
and its value, & is the separator among parameters, and so forth. So
we need a way to escape those characters when they appear in a pa-
rameter value as an ordinary string. In JavaScript, we can use en-

codeURIComponent for this purpose.

It is also possible to use binary data in the request. Say, send the
content of an image in a PUT request. An easier way is to use the
Baseo64 algorithm which can transfer a binary blob into a piece of
plain text in an efficient way. Besides Base64, HTTP by design sup-
ports using a binary as its body, which will be briefly discussed in
Section 5.1.2.3. We can also attach the binary directly after the HTTP

header which is less common practice.

HTTP headers are also text based and hence are directly readable.

However, it is still a bit clumsy to read from tcodump the HTTP pay-

load which is mixed with binary output. For a web developer, a brows-

er is all they need to inspect the traffic when debugging a web appli-

cation. For us app developers, we can use utilities such as Fiddler or

Charles to proxy the HTTP traffic in order to conveniently inspect the

traffic. In this text, we are going to use mitmproxy, an open source

HTTP proxy and inspector.

Let’s observe a typical HTTP request with mitmproxy and use it to

discuss some of the header fields to better understand this protocol (Figures

5-6 to 5-8).

Flow Details

Request
Host:
Connection:
Cache—-Control:
sec—-ch-ua:

sec—ch-ua-mobile:
sec—ch—-ua-platform:
Upgrade-Insecure-Requests:
User—Agent:

Accept:

Sec—-Fetch-Site:
Sec—-Fetch—-Mode:
Sec—-Fetch-User:
Sec—-Fetch-Dest:
Accept-Encoding:
Accept-Language:

Cookie:

No request content

2021-10-03 18:26:04 GET https://holmeshe.me/
¢ 200 OK text/html 11.27k 204ms

Response Detail
holmeshe.me
keep-alive
max-age=0
"Google Chrome";v="93", " Not;A Brand";v="99",
"Chromium";v="93"
2?0
"macO0S"
al
Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_15_7)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/93.0.4577.82 Safari/537.36
text/html, application/xhtml+xml, application/xml;q=0.9,1
mage/avif,image/webp,image/apng,*/%;q=0.8,application/s
igned-exchange;v=b3;q=0.9
none
navigate
21
document
gzip, deflate, br
en-NZ,en;q=0.9,zh-CN;q=0.8,zh;g=0.7,en-6B;g=90.6,en-US;qg
=0.5
_0a=GA1.2.677349877.1633090242;
_0id=GA1.2.384090364.1633090242; __gads=ID=3b3b5alb6d99
8a21-224e7f6b0BdccOB5a:T=1633090242:RT=1633090242:S=ALNI
_Mb7TQCugXNiwZNuD70c3NFfxCgSjQ; _gat=1

[:auto]

Figure 5-6 A typical HTTP request

2021—16—03 18:26:04 GET https://holmeshe.me/
< 200 OK text/html 11.27k 204ms

Request Detail
Server: nginx/1.14.0 (Ubuntu)
Date: Sun, @3 Oct 2021 10:26:05 GMT
Content-Type: text/html
Last-Modified: Mon, ©1 Feb 2021 12:45:48 GMT
Transfer—Encoding: chunked
Connection: keep-alive
ETag: W/"6017f7fc-f26a"

Content-Encoding: gzip

<!DOCTYPE html>
<html>
<head>

<meta name="generator" content="Hexo 3.9.0">

<meta charset="utf-8">

<title>Holmes He</title>

<meta name="viewport" content="width=device-width, initial-scale=1,
maximum-scale=1">

<meta name="viewport" content="width=device-width, initial-scale=1,
maximum-scale=1">

<meta property="og:type" content="website">

<meta property="og:title" content="Holmes He">

<meta property="og:url" content="https://holmeshe.me/index.html">

<meta property="og:site_name" content="Holmes He">

<meta property="og:locale" content="default">

<meta name="twitter:card" content="summary">

<meta name="twitter:title" content="Holmes He">

<link rel="icon" href="/gallery/air-balloon.svg">

<link href="//fonts.googleapis.com/css?family=Source+Code+Pro" rel="stylesheet"
type="text/css">

<link href="https://fonts.googleapis.com/css?family=0pen+Sans|Montserrat:7ee"
rel="stylesheet" type="text/css">

Figure 5-7 A typical HTTP response (first part)

2021-10-03 18:26:04 GET https://holmeshe.me/
< 200 OK text/html 11.27k 204ms
Request Response .~ Detail

Server Connection:

Address holmeshe.me: 443

Resolved Address 104.248.189.33:443

HTTP Version HTTP/1.1

ALPN http/1.1

Figure 5-8 A typical HTTP response (second part)

From the traffic inspected, we can see that the requests and respons-

es are populated with key-value contents, for example, Host :

holmeshe.me. Those are HTTP headers. The values of the headers
are called directives that define certain properties of or behaviors for
the traffic.

Next, we go through some of the common headers and their associ-

ated directives.

5.1.2.2 Common Request Headers

We look at some of the common request headers first:

The foremost information we should care aboutis 200 OK. This
is called an HTTP status code, and 200 means success. We are
going to discuss more about status code very soon in Section
5.1.2.4.

2 .)
)HTTP Version HTTP/1.1 indicates the current version of

HTTP. We are going to talk about the drawbacks of this version
and introduce briefly HTTP 2.0. in Section 5.1.5.

3
)Host means the hostname being requested.

4
)User—agent is the signature of the client (browser).
5
)Accept is the format that this client is expecting, such as
HTML and XML.
6)Cookie is where to store the cross-request data. These data

are sent back and forth usina the same header. hence cross-

requests. In common practice, a user session is represented by

the Cookie on the client side.

7)Another very common header that is not included in this re-
quest is X-Forwarded-For, a.k.a. XFF. This header can only
be observed from the server side as it is attached by a non-
anonymous HTTP proxy (or a reverse load balancer) to indicate
the original IP address.

8)Another interesting header is Connection: keep-alive.In
the traditional HTTP paradigm, each request initiates a new
TCP connection, each of which, as said, imposes a three-way
handshake and is subject to the slow start. By indicating
Connection: keep-alive, all requests to the same host-
name will share a single connection, which saves a few RTTs
for the successive requests. For sure, the server needs to sup-
port persistent connections to enable this optimization. As
shown in Figure 5-7, servers declare it can accept persistent
connections by including the same header in the HTTP

response.

Note Here, if you run tcpdump at the same time, you will no-
ice that the FIN will not be observed even after the last re-

sponse. We can observe FIN only when killing the browser (or

[the nginx server). This is the side effect of Connection:

bAam~nrm—_—ali<rz~ Nnta that eandina FINl nn hahalf Af a tarminatad

J\CCJ:J AL 1LyVvCT. INVLU L11dal uul IUIIIH I 1IN VI VUl IAll VI A wWwolliinniawltvyu

process is the behavior of major operating systems.

5.1.2.3 Common Response Headers

Next, we look at the HTTP response:
1) . .
Server is the web server signature that serves the response.
Here, we are using Nginx.

2
)Content—type is the actual format of the response body that

conforms to one of the expecting formats in the request header,
Accept. It is also called a MIME type. As said, HTTP is highly
versatile. Besides text/html, it even supports a binary pay-
load as an HTTP body as briefly mentioned. To adopt this, we
firstly set application/octet-streamasthe Content-
type. Then we can use our favored binary format, for example,
Protocol Buffer, as the payload. This way, we can enjoy the
easy setup of an HTTP server and the efficiency of a binary
data transportation. Best of the two worlds.

3
)Content—encoding means the content has been com-

pressed using gzip so the client will know it needs to unzip it be-
fore reading the response body.
4)We have covered Connection: keep-alive inthe last

section.

5
)Another interesting header is Transfer-Encoding: chun-
ked. This is an optimization in HTTP 1.1. to divide a single big
request into chunks. Thus, less buffer is required for both sides

when processing the request. In an otherwise situation, the

mentioned Content-Length is required in the header.

Note For chunked requests, the size of each chunk is includ-
dinthe HTTP request so the Content-length thatis for

he whole request size can be omitted.

5.1.2.4 HTTP Status Code

We have seen the 200 that means a success. However, most of the
status codes are used to indicate the reason when something goes
wrong. We categorize the status code as follows. Here, we only list
the common ones in practice, and things related to teapot or coffee

machines are omitted.

2xx series means “all good”:
1)
200 Ok (seen before).

2
)2 01 Created means “created,” a success of a PUT request.

3xX series are a redirection:

oteA web page can also return a JavaScript file to carry out the re-
irection. So we don’t always expect a 3xx status code when observ-

ing a redirection.

D

301 Moved Permanently means the resource in request
has been moved permanently. All successive requests should
use the new URL indicated in the response header Location.
301 could be the most common 3xx series code that is used for
the purposes such as standardizing domain name, forcing
HTTPS, migrating old domain to a new one, etc.

2
)302 Found is less common than 301. It means the resource in

request has been moved temporarily. Upon receipt of this sta-

tus code, successive requests could still use the old URL.

3)

304 Not Modified means the resource has not been un-
changed since last fetching; hence, the client could use the
cached value. We are going to discuss cache control in detail in
Section 5.1.2.5.

4xx series are client-side errors:

1)400 Bad Request means the request format failed the sanity

check.

2)

401 Unauthorized means unauthorized.

3)

403 Forbidden is similar to 401. It could mean the authorized

permission is not sufficient.

4)
404 Not Found.

5
)429 Too Many Requests means the number of requests

sent by a client exceeds the threshold.

5xx series are server-side errors:

1 . :
)500 Internal Server Error iSa generic status (error)
code. All unknown exceptions occurring on any layers of the

server side could be surfaced by this status code.

2)

502 - 504 These errors are more relevant to the server-side
debugging. They occur when the worker processes behind the
proxy crash or are overloaded. For the app side, we can only

retry the failed request after receiving this status code. We are

going to examine the retry mechanism in Section 5.4.

5.1.2.5 Cache Control

RTT is the most critical bottleneck for network performance. So, it’s

better to bring the content close to the users so as to reduce or com-

pletely eliminate RTT. A cache is one of the most efficient ways to do

SO.

HTTP generally enlists two layers of caches, local and remote. The
local cache holds the data requested by the user, so successive re-
qguests from the same user for the same data can benefit from it by
retrieving the data directly from the cache. For example, a browser
cache may save an image that has been requested before and dis-
play it directly whenever this image is referenced from the same or

other web pages.

Remote caches, on the other hand, are running on servers that are
normally deployed very close to the users. The most prominent re-
mote cache is CDN that is deployed on the edge network. Each CDN
server is responsible for a group of users within the same geoproxim-
ity and is populated with data requested by any of the users in the
group. So all successive requests from all other users in the same
group can benefit from it. Besides CDN, HTTP proxies can enlist a
cache that serves the users using the same proxy. Generally speak-
ing, a cache shortcuts the requests which would hit on the remote

server(s) in an otherwise situation.

NoteA cache gives simultaneously two benefits: (1) it reduces latency
by bringing the content closer to the users, and (2) it reduces the

server load by shortcutting the requests. For that matter, utilizing

ache systems is one of the most worthy topics in a server-side ar-
hitecture as server capacity is always a scarce resource. A draw-

back of a cache is that it can only serve static content.

The cache control headers affect both local cache and CDN. It can be
included in both request and response HTTP headers. The following are

some common derivatives for cache control:
DI .
private means the content should only be saved in local
caches and not in intermediate caches such as CDN. Normally,
this indicates privacy-sensitive data.

2
)public means the content can be saved anywhere.

3
)no—cache is quite misleading by its name ‘ It does not mean

“forbid cache,” but “read from cache but always check with the
server for the validity.” That means the request marked with
no-cache is still sent to the server which, in turn, could return
a 304 response if the content is not changed. This can spare
some RTTs for the payload of the server response. One of the
cache validity flags is ETag.

4)ETag is not a cache control directive but a stand-alone HTTP
header. This tag is given by the origin server when the resource
is fetched. And it is changed when the resource is updated.
ETag can be used to validate the content in the cache. More

specifically, the server returns a full response with content only

when the ETag embedded in the request and that on the server
do not match.

5
)no—store is the actual “forbid cache” flag. When set, all re-

quests will always hit the origin server. This flag could only be
of good use in the debugging phase.

6
)max—age indicates how long the content will be considered

stale and must be refetched from the origin server.

5.1.2.6 HTTP API Design

Eventually, the network tech stack is surfaced to app developers in
the form of web APIs. Technically, a web APl is a predefined HTTP
request and response with which the app communicates with the

server. As a reminder, the HTTP request and response are a com-

posite of a URI, the payload, and HTTP headers.

REST is one way to structure the HTTP-based API. The idea of
REST is to utilize the different building blocks of HTTP to further sep-
arate the concerns in an HTTP request: the URI is used to indicate
the resource (noun); the request method (Section 5.1.2.1) is used to
indicate the action (verb). Moreover, the HTTP status code (Section

5.1.2.4) can indicate the result by nature.

In terms of the resource, we need to use

https://holmeshe.me/05apps/feeds to indicate the resource.

Adding any verb to the URI, for example,

https://holmeshe.me/05apps/getFeeds, could be

inappropriate.

On the other hand, actions should be represented by HTTP methods.
In REST, GET is used to indicate a fetch request, and POST is for
creating entry requests. DELETE and PATCH are used for deleting

and updating requests, respectively.

Instead of putting constraints on the HTTP protocol itself, GraphQL
works on only the payload to optimize the API structure. GraphQL de-
fines a graph query language that is comparable to SQL. The HTTP
query is categorized into query, mutation, and subscription, which are
marked in the payload. The names are self-explained. The major im-
provement GraphQL gives over traditional APIs (REST or not) is its
dynamic granularity in terms of response payload. In GraphQL, the
data response is dynamically constructed catering for the requests in

an on-demand manner.

GraphQL introduces another dimension of partition between the
client and the server, which is agnostic to how services are grouped.
The layer provides great potential in engineering flexibility as well as

performance improvements. As frequent demands can be met with

https://holmeshe.me/05apps/feeds
https://holmeshe.me/05apps/feeds

GraphQL with low cost, (1) to aggregate multiple requests into one to
save RTTs or (2) to remove unused fields by the app to save
bandwidth.

Versioning is another important aspect in a web API. An HTTP proto-
col gives three places where we can put version information: HTTP
header, URI path, and parameters. We shall choose one which we
think is the coolest. What’s more important in versioning is actually
two scenarios, that is, when releasing and when deprecating. Let’s

examine them one by one.

When releasing a new API support from the app side, the server side
should have the API 100% released. Then what we do is to (1) embed
supports of the two versions (current and the target) both inside the
app executable, (2) make the newer version inactive, and (3) resort to
a remote config (i.e., Firebase) to gradually release the newer

version.

When deprecating an old API, the server might have been running
multiple versions simultaneously to support users who are reluctant
to upgrade. At some point, the user population of the oldest API re-
duces to a threshold, and the server side decides to free the comput-
ing and devops resource for the API. At this point, we (1) turn off the

API support from the remote config, and (2) the users running on this

API will be forced to upgrade. Then we can sunset the API from the

server side safely.

5.1.3 DNS

DNS is an application layer protocol. DNS is responsible for translat-
ing the easy-to-remember domain name to the actual IP address.

Let’s see the DNS query in action.

Firstly, we need to clear the DNS cache:

sudo dscacheutil -flushcache; sudo killall -HUP 1

Next, we run the t cpdump on port 53:

sudo tcpdump -nt -s 502 port 53

On another terminal, visit holmeshe .me using curl:

curl holmeshe.me

Then the output is printed on the terminal running t cpodump (Listing 5-

IP6 2404:£801:10:102:8000::223.58923 > 2001:4898

IP6 2404:£801:10:102:8000::223.56909 > 2001:4898

IP6 2001:4898::1050:5050.53 > 2404:£801:10:102:8(
Listing 5-4 Inspect the DNS query result

DNS is across the data center. This trait gives it an advantage over
other protocols when it comes to system resilience design. So it is
very useful for geolocation distribution for disaster recovery. Basical-
ly, we can set multiple values for a DNS record and remove the ones
selectively for data centers that are malfunctioning. More specifically,
data centers with dedicated cables broken by incidents such as con-
struction activities or earthquakes can be inactivated using DNS. With
this mechanism, clients can fail over to the healthy data center auto-

matically and hence survive in those unexpected events.

DNS has three major drawbacks, #*: initial latency similar to that in
TCP three-way handshake, ‘ DNS hijacking, and ‘ single (or very
few) point(s) of failure. The third one is the most disastrous since fail-

ure of the DNS could lead to massive outage of Internet services.

2 One solution in practice is to, well, do away with DNS completely
by using direct IP address(es). This is not an easy task in that we
need (1) to maintain an IP list file both in the app bundle and remote-
ly, (2) to sync versions of this list in the app cache and remote using
certain rules, and (3) to apply a speed racing algorithm for available
data centers, so the app side can selectively connect to the ideal data

center while imposing the least overhead to all other data centers.

We will also discuss some modern improvements on DNS in Section
5.1.5. Since most of the heavy lifting is applied on the system level for
those improvements, they are much less involved than the custom

roll direct IP mentioned eatrlier.

5.14 TLS

TLS is on the application layer. The purpose of TLS is to encrypt the
data transition so it cannot be either read or modified by any proxy in
the middle of the two communicating endpoints. When combined with
HTTP, we get HTTPS running on port 443.

Working on top of TCP, TLS imposes more RTTs for handshakes
which are used to establish a secure communication tunnel between
two endpoints, more specifically, to agree on a secret with which all
the data transmission post handshakes can be encrypted. These

handshakes are also called a key exchange.

For performance reasons, the fast symmetric key cryptography is used
for the encryption of data itself which is in high volume and is in the long
term, while the slow asymmetric key cryptography is for the one-off
encryption of the symmetric key during the key exchange. A simplified

version of key exchange is illustrated (in roundtrips) as follows:
. . . .
A client asks for a public key (asymmetric).
2
)A server sends a public (asymmetric) key to the client.
3
)A client uses the public key (asymmetric) to encrypt a session
key (symmetric) and send it to the server, and the server uses
the private key (asymmetric) to decrypt the session key

(symmetric).

Then all the successive communication can be carried out with the

session key (symmetric) agreed on.

A TLS handshake is a bit more complicated and hence more robust
and secure. For example, instead of sending the session key directly
in roundtrip 3, the client and the server can exchange some random
numbers in roundtrips 1 and 2 and generate the session key altogeth-

er based on those random numbers.

One critical SSL step not included in the simplified version of key ex-
change is authentication. The client needs to make sure the server is

who it claims to be; otherwise, important information could be sent to

malicious entities. This is achieved in roundtrips 2 and 3. In roundtrip
2, the server sends a certificate together with the public key men-

tioned earlier; and in roundtrip 3, the client needs to verify the certifi-
cate with the information embedded in the client (browser or operat-

ing system) before any of the following steps could be carried out.

More specifically, the information embedded in the client is the public
key of a handful of root certificate authorities (CA). To verify the infor-
mation, the client needs to compare the signature generated from the
base information using the public key. This process can be chained
so signatures of trusted certificate authorities by root certificate au-

thorities can be verified too.
5.1.4.1 Pinning

CA pinning is a practice of embedding the server certificate in the
client side. In doing so, the client will rigidly trust only the certificate
pinned. This is not a suggested practice because ‘ certificate verifi-
cation failure causes zero availability. We don’t want this to happen
regardless of the causes whenever updating certificates intentionally

or passively.

5.1.5 The Modern Internet

In facing the physical limit, which is speed of light, the Internet keeps

on evolving on qualities like latency, resilience, continuity, and the

ability of multiplexing, which leads to better user experiences. This
section will focus on those improvements, and please make the best

use of them when making your next awesome app.
HTTP/2

HTTP/2 is the enhanced version of HTTP/1.1. Multiplexing is one of

the major optimizations in HTTP/2.

We recommended enabling Connection: keep-alive inthe
request header (Section 5.1.2.2) to save some RTTs for handshakes for new
requests. However, this is at the cost of concurrency because keep-alive
has an intrinsic drawback called head-of-line blocking (HOL blocking). For
instance, when a client requests three resources, a PNG graphic, a CSS
stylesheet, and an HTML file, the requests of the latter two need to wait for
the first one to fully complete. Often than not, in the network system
design, a wait means a waste in resources such as computing power and
bandwidth. Those resources could be otherwise put in better use to provide

more responsive services (Figure 5-9).

ss | -
| I

Figure 5-9 HOL blocking in HTTP/1.1

NoteTo better understand the issue, please consider you are waiting
in a queue in a fast food restaurant. And some guy in the front takes
ages to contemplate what to eat for lunch, which causes a HOL

blocking.

Alternatively, a client can initiate multiple connections simultaneously
to mitigate the HOL blocking, but at the cost of (1) the handshakes
and (2) the superfluous press on the server for those additional

connections.

oteOne way to solve the preceding HOL issue is to add more coun-
ers. This is at the cost of the restaurant's operational expense and of
he press on the management for the additional employees. ltis a

ommon trade-off scenario which is happening all the time.

HTTP/2 multiplexing enables the parallel processing of network requests
over a single connection. Instead of waiting for HOL blocking, the network
responses are served in an interleaved manner. This also opens the
opportunity to serve the prioritized resources such as the HTML file first,

which gives better perceived overall performance (Figure 5-10).

e I
s — E-E—
. —

Figure 5-10 Multiplexing in HTTP/2

Notelet’s get back to the fast food restaurant. Another way to solve
the HOL problem is to use a QR code which is part of an online or-
dering system. Now each person is ordering simultaneously so you
don’t have to wait for the guy in front of the queue anymore. This is a
breakthrough scenario which occurs rarely only for a brilliant mind

combined with determined execution.

Other optimizations introduced by HTTP/2 include header compres-
sion and a binary protocol, which make HTTP/2 way better than
HTTP/1.1.

NoteThey say everything is a trade-off in the world of computer sci-
ence. Nevertheless, there are exceptions that make breakthroughs.
Good designs such as HTTP/2 make use of both low overhead of

keep-alive and high throughput of parallelism. As mentioned

hroughout this book, React Native is yet another good example of

breakthroughs of this kind.

ECN (Explicit Congestion Notice)

As said, the existing congestion control uses packet loss as the signal
to slow down the packet sending speed. However, packet loss is both
a signal and a cost, as it causes retransmission which leads to some
unnecessary RTTs and overall latency. If congestion control is like re-
versing your car and only stopping when you hear a collision, ECN is

the reverse radar.

In ECN, the bottleneck gateway will notice the sender ahead of time
by setting a flag in the IP header. Moreover, gateways that enable
ECN will benefit from the more sophisticated queuing algorithm that

can minimize bufferbloat.
IPV6

IPV6 is the replacement of IPV4 on the network layer. Unlike IPV4,
IPV6 has almost unlimited address space. It gives better performance
by removing the NAT. In fact, Apple has been enforcing the support of
IPV6 for many years. For servers that do not support IPV6, we can
use NAT64 to test the client’s IPV6 capacity. Nonetheless, it’s better

to get both the client and the server to support it.
Multipath TCP

In the world of mobile networks, the absence of a network is a routine
rather than an exception. Multipath TCP is a mechanism to mitigate
the issue by simultaneously establishing multiple “subflows” and
sharing the connectivity and bandwidth between both Wi-Fi and cell
networks. This is useful in scenarios where Wi-Fi is fading out such
as when the user is walking away from a Wi-Fi range. In an otherwise
situation, the mentioned DNS query, TCP handshake, and TLS hand-
shake are imposed by network switching, and the user will experi-

ence excessive latency.

QUIC and HTTP/3

QUIC is another level above all the optimizations based on the existing
TCP network stack. In fact, it has the potential to replace the existing

TCP/HTTP stack completely and makes the Internet much more responsive:
1) . . .
QUIC is based on UDP and could be implemented in user
space.

2
)QUIC aggregates the handshakes of transport and key ex-

change, which were conducted by TCP and TLS, respectively.

This aggregation reduces RTTs required and hence is faster.

3)

QUIC also takes the preceding optimizations such as header
compression, explicit congestion notice, and, more importantly,

multiplexing into account.

5.1.6 Key Takeaway

In this section, we have gone through the critical path in the network
stack that is directly related to app development. Firstly, we briefly in-
troduced the basic idea of TCP/IP. Then we examined in detail and
by hand the essential protocols in the network stack, namely, TCP,
HTTP, DNS, and TLS. During the discussion, we also highlighted im-

portant features of each protocol such as congestion control, buf-

ferbloat, keep alive, cache control, HOL, etc. Lastly, we connected the
dots by relating those textbook protocols to today’s new updates in

network engineering.

You might have noticed that we emphasized on latency and RTTs
while rarely mentioning bandwidth whenever discussing the perfor-
mance aspect of each protocol. This is because in most cases, band-
width is not the bottleneck, unless you are developing a service that
is bandwidth hungry like streaming. Nonetheless, it is always nice to

reduce unnecessary bandwidth consumption whenever possible.

You might also notice that we did not emphasize on concrete practice
as in other sections. This is because some of the modern Internet at-
tributes, such as IPV6 and HTTP/2, involve a server-side setup which
is not the best interest of this book. Moreover, some features such as
QUIC are not in production yet at the time when this book is being
written. The good news is the iOS and Android ecosystems are fol-
lowing closely and naturally support, from the client side, some of
those. For instance, NSURLSession supports multipath, HTTP/2,
and IPV6 out of the box. As you will see very soon (Section 5.2.2), the
React Native fetch () benefits from those features too as it is im-

plemented on top of NSURLSession.

This section is far from a complete guide to network programming.

Rather, we have achieved three major goals: (1) to know what the

building blocks in the network stack are, (2) to understand what criti-
cal network bottlenecks are, and (3) to leverage new Internet heuris-

tics in network programming.

Network programming is an interesting topic where there exist a lot of
opportunities and huge potentials to make our app more performant
and more responsive while demanding less bandwidth in the mean-
time. In the background of the Internet, the best practices of network
programming are not yet defined for cross-platform mobile develop-
ment. One of the major purposes of this and the following sections is

to establish the foundation for you to explore such best practices.

Let’s be hungry and continue hunting.

5.2 Network Programming on the JavaScript
Layer

5.2.1 Asynchronous Operations

Generally, asynchronization has two layers of meaning: (1) unblock-
ing of slow operations and (2) triggering events nonlinearly. In OS
terms, the event is also called an interruption that can represent an
incoming network packet, a clock tick, or simply a mouse click. Tech-

nically, the event interrupts the current process, puts the next CPU

instruction on hold, and calls a predefined code block (a.k.a. an event

handler) “asynchronously.”

The concept is essentially the same at the application level.

In a narrow sense, asynchronization solves a fundamental difficulty in
application development: blocking operation on the Ul thread (mostly
I/0). No matter what kind of app (with a Ul) you are working on (an
embedded system, a mobile app, a game, or a web page), there is an
underlying “loop” that is used to calculate screen rendering. If the
“loop” is blocked by a slow operation, say, a network interaction, the
Ul will be frozen. So the common practice is to offload the waiting op-
erations to other threads. This is where asynchronous operations

come into play.
5.2.1.1 Promise

In JavaScript, asynchronous operations are carried out using an ob-

ject called a promise which literally reflects a promise of the future.

The Promi se object takes as a parameter a closure which runs the
slow operation, which is in turn passed in with two closure parameters
resolve and reject. resolve and reject are called at the end of

the operation depending on whether it was a success or a failure. Listing 5-5

shows a typical usage of Promise.

var theFuture = new Promisel((resolve. reiect) =>

T Tt - T - T - = = - - - TTTTT/ T T \N\T T — T/~ =T L4 - T J T T T

setTimeout (() => { // ===
resolve("The future is now"); // —-—————--
}r 250);

})i
theFuture.then((message) => { // —=—————————— .

console.log(message); // ————————mmmmmmm———_— ———.

})i

Listing 5-5 Use the Promise object

D, . .
Simulate a slow operation using setTimeout.

2)

The callback of the timer asynchronously invokes resolve ()

which effectively resolves the promise.

3)

The then block is invoked and passed in with the same para-
meter after the promise resolves. In fact, then takes two call-
backs instead of just one. The second closure is linked to the
reject () which belongs to the exception flow in asyn-
chronous operations. Since we use a timeout in this simple ex-
ample, the exception flow is omitted for now. We will bring this

topic back in Section 5 .4.

A promise provides catch () as the shortcut for reject of then ().

catch () is normally attached as the end step of a typical promise

chain.

NoteA traditional callback paradigm is notoriously bad. ‘ When the
logic becomes more and more complicated, it could cause a phe-

[nomenon called a callback hell which is barely readable and is diffi-
cult to be debugged. & A promise keeps logic linear regardless of

[ts complexity — so it can be always read from top down. This tech-

|nique is referred to as a promise chain.

Next, we look at a promise chain in Listing 5-6.

let promiseA =
somePromise.then(() => {

let promiseB =

return promiseB
}).then(() => {

let promiseC =

return promiseC

})

Listing 5-6 Promise chain

We can also use Promise.all () to combine multiple promises into

one that can resolve only when all of the combined ones are resolved
(Listing 5-7).

let promiseA =

let promiseB = ...

Promise.all([promiseA, promiseB]).then(() => {

})

Listing 5-7 Promise.all()

Similar to Promise.all (), Promise.race () takes multiple
Promises and combines them into one. The difference is

Promise.race () resolves when one of the Promises resolves
(Listing 5-8).

let promiseA = ...
let promiseB = ...

Promise.any([promiseA, promiseB]).then(() => {

})

Listing 5-8 Promise.any()

5.2.1.2 Await

A promise is a step forward to the linear logic flow compared to a

callback. await takes a step more.

Await 1s designed to mimic the programming style that is plain linear;
hence, it is highly intuitive. Even the exception flow can be achieved using

ordinary try catch blocks. In practice, the keyword await is used

together with async which is a method name decorator. The async
keyword makes a method “awaitable.” Under the hood, await is built on
top of a promise, so they are completely compatible. In Listing 5-9, we use

await onthe Promise object created in the last section.

await theFuture;
console.log(message); // ——————— .

Listing 5-9 Use the Promise object in await

1
)Please do keep in mind that the line followed by the await key-
word is executed in an asynchronous manner, in other words,

in another iteration of the JavaScript run loop.

As you can see, this version is much simpler than the promise-based

one. await also accepts advanced promise combinations such as

Promise.all () and Promise.race () as input, which we will see
very soon in Section 5.4.1.

Noteasync/await is not unique to JavaScript. A similar programming
paradigm called coroutine has been well used on the server side for

ages. A comparable async/await syntax now is available in Swift as

well.

Nonetheless, await has drawbacks too. One of those is that it is so
intuitive that sometimes programmers forget they are dealing with
asynchronous blocks when using it. Another issue is that a cancel op-
eration is not as explicit as in techniques such as NSOperation.
Hence, we need to manually deal with cancel semantics when multi-

ple competing promise chains are involved.

E When using await, we need to always be clear whether the asyn-
chronous operation is in a critical path or not. And only operations
that are part of the critical path should be “awaited.” What is a critical
path and under what criteria we can distinguish operations? A rule of
thumb is if the result of an operation is essential to the following UX, it
should be part of the critical path. For instance, fetching the feed list
belongs to the critical path, while refetching images (for speeding up

UX) and telemetry (totally UX irrelevant) do not.

oteSimilar concepts can be found in the iOS development disci-
pline, where QoS is defined to categorize the concurrent operations

in GCD.

gy The same criteria should be applied to the exception flow. We

only capture the exception for critical paths and eventually reflect it to
UX in some forms. If exceptions occurred in peripheral paths (a.k.a.

orphan operations), silent logging should be applied.

NoteWe can call asynchronous operations not within the critical path
orphan operations (similar to orphan processes in the operating sys-
Item terminology). They are simply “unleashed”; neither the return
value nor the exception is of interest to the main logic flow. As a re-

sult, orphan operations need to be self-contained and take care of

lthe full logic including exceptions within themselves.

‘ When using await, one frequent mistake is that programmers are
not aware that exceptions will not be caught within an asynchronous
method that is not explicitly “awaited.” This happens either for orphan
operations , or the programmer simply forgot adding the await key-
word. Please do note that bugs in the exception flow (a.k.a. second
fault) take enormous time, energy, and intuition to debug, so f;_:' bet-

ter to avoid such faults beforehand in the first place with vigilance.

In the following text, we are going to use the await primarily so we

can get used to the more advanced technique.

5.2.2 fetch()

Now it’s time to discuss fetch () , the standard way in JavaScript to
make HTTP requests. fetch () takes two parameters: the first one is the

URI of the resource; the second one is an object that can further customize
the request, such as changing the query method, adding an HTTP header,
attaching an HTTP body in the request, etc. The return value of fetch ()

is a Promise object. Listing 5-10 gives a quick example.

let rsp = await fetch('https://holmeshe.me/05app:s
let feeds = await rsp.json(); // —-———————--o——-.
console.log(feeds);

Listing 5-10 Fetch

1)

We fetch the feeds from remotely. In the next section, we are

going to integrate the API call and replace all local data files.

In JavaScript, response. json () is also an asynchronous
operation.

Note Though fetch () looks like pure JavaScript from the
urface, it’s actually native code that takes effect under the

hood. We have seen this pattern several times for other React

Native components, so it’s not a surprise. The good thing is
hat we can upgrade to, free of cost, all the modern network im-

provements (e.g., HTTP 2.0) provided they have been support-
d by the platform.

5.2.3 Case Study, Move Everything Online

It’s time to get some work done for Manyface. First things first, here are the
requirements:

1)The API for all feeds is located from

https://holmeshe.me/05apps/feeds.

)Display a loading page when the first screen (i.e., feed) is being
loaded.

3
)When the user pulls down, reload the data.

Listings 5-11 to 5-14 show a complete overhaul of Moment to support

network fetching.

class Moment extends React.Component ({
constructor() {
super();
this.pullDownPos = new Animated.Value(0);
this.autoScrolling= new Animated.Value(0);
this.userPulling = new Animated.Value(0);
this.scrollViewRef = undefined;
this.feedRefs = [];
this.state = {
loading: false,
+ data: [] // =—————— .

}
Listing 5-11 Add the state to the component

https://holmeshe.me/05apps/feeds

1)First, we add a state in the constructor for the feeds. It is now
fetched from the remote API| and hence becomes a variable
that affects the UI.

+ async loadData() { // —-—-————————————— .
+ try {

+ let rsp = await fetch('https://holmeshe.me,
+ __DEV__ ? { // =———— e
+ headers: {

+ 'Cache-Control': 'no-cache'

+ } : undefined

+ }) i

+ let feeds = await rsp.json();

+ let feedsModel = feeds.map((obj) => {

+ return new FeedModel(obj);

+ }) i

+ this.setState({data: feedsModel}); // —-—-—--
+ } catch(e) {

+ // do nothing for now

+)

+ }

Listing 5-12 Fetch the feed list in Moment

1)Add a new method for feed fetching and add an async annota-

tion to the method name, so 1oadData () can be awaited.

2
)Add no-cache to the HTTP header to deprecate the stale

cache entry when debugging.

3)

Invoke setState () and update the Ul after the fetching

completes.

+ componentDidMount() {
+ this.loadData(); // —————— .
+ }
renderItem = (entry) => {
// not irrelevant

}

onViewableItemsChanged = (result) => ({

// not irrelevant
}
beginDrag = () => {
// not irrelevant
}
+-endDrag = async (evt) => { // —————————————.
this.userPulling.setValue(0);
this.autoScrolling.setValue(l);
if (
evt.nativeEvent.contentOffset.y < -loadingIndic

) |
this.setState({loading: true});

+ await this.loadData(); // —————————— .
setPimeout{{)—=>—=*
this.scrollvViewRef.scrollToIndex({

index: 0,
animated: true
})i
T 880

}
onReset = (evt) => {

// not irrelevant

(ref) => {

getScrollViewRef

// not irrelevant

}
Listing 5-13 Use the loadData()

1
)WwoketheloadData()incomponentDidMount()Iﬁecyde
callback. This is the fresh fetch.
2)Invoke the 1oadbData () in endDrag (). This fetch is invoked

by pulling down the action of the user. Note that endDrag () is

now marked with async as the semantic is passed down from

loadData ().

3
)The bouncing back is now invoked by the fetching complete

event, implemented with await.

render () {
if (this.state.data.length === 0) { // -———--
return <Skeleton style={{flex: 1}}/>
}

return (// ——————— .
<View style={{flex: 1}}>
<Animated.FlatList
data={this.state.data}
renderItem={this.renderItem}
onViewableItemsChanged={this.onViewabl¢
contentInset={{
top: this.state.loading ?
5: 0
)
scrollEventThrottle={1}
onScroll={

Animated.event ([{

nativeEvent: {
contentOffset: { y: this.pullDow:
}

}1, { useNativeDriver: true })
}
onScrollBeginDrag={this.beginDrag}
onScrollEndDrag={this.endDrag}
ref={this.getScrollviewRef}
onMomentumScrollEnd={this.onReset}
/>
<View style={styles.overlay}>
<LoomingSpinningEnvelope
color={"'#6291£f0"'}
size={45}
style={{
opacity:
Animated.add(
Animated.multiply(
this.userPulling,
this.pullDownPos.interpolate
inputRange: [-loadingIndic:
outputRange: [0.5, 0]
})
) 1

Animated.multiply(

this.autoScrolling,

this.pullDownPos.interpolate
inputRange: [-loadingIndic:
outputRange: [1, 0]

})

}}

/>

</View>
</View>
)
}
}i
...// styles

Listing 5-14 Change the conditional rendering

1
)Shortcut the render () and return the skeleton view (made in
Chapter 3) when fresh fetching is undergoing.

2)Return the normal feed list Ul in an otherwise situation.

Note The action of fetching data from online and updating the
Ul is also called a side effect. Instead of componentDid-
Mount (), sometimes it is tempting to introduce the side effect
in the component’s constructor to save a couple of millisec-

onds. However, this could lead to race conditions in theory as

he network response could be faster than componentDid-
ount ();in such case, the setsState () will not be effective.

So in general, this practice is considered an antipattern.

5.3 Network Programming on the Native Layer

Now we know how to use fetch () to fetch network resources. Next,
let’s take a step more forward with two critical questions regarding
UX: (1) What if the app is offline? (2) When the app cold starts, can
we display something from the local cache instead of waiting for the
initial RTTs? A local cache is the key to answer both questions. Basi-
cally, we read data directly from it in critical situations as mentioned

earlier.

An HTTP cache can answer only partial of this question as we only use

fetch () for the feed list. Multimedia such as videos and graphics are
requested and rendered in their specific logic flows, by their respective

components, without using direct HTTP fetch (). So we need to

consider different offline strategies for each of them:

1)Feed list: HTTP cache.

2)Image: Leverage react-native-fast-image (Fast Image), the best
React Native image cache system so far. It is based on
SDWeblmage and Glide on iOS and Android, respectively.

3)

Video: Enhance the videovViewManager we created in the

last chapter by enabling the download capability.

Note The mechanism of an image cache is also an interest-
ing and sophisticated topic. In fact, SDWeblmage and Glide
re go-to open source projects worth reading on their respec-

ive platforms. However, we have to compromise on this topic

o better focus on our main goal.

5.3.1 Case Study, Enable Local Caching

Here are the requirements :

1
)When the app starts offline, we display the user content fetched

last time instead of a blank skeleton view.

2)

When the user cold starts with an Internet, we display the user
content fetched last time instead of a blank skeleton view, dur-

ing the fresh fetch.

Let’s start from image cache which is a simple one. As said, we need to

install the Fast Image by executing the following two commands:

npm i react-native-fast-image
./pod install

Then we need to replace all <Image> occurrences with
<FastImage>. FastImage provides extra props for cache control
(Section 5.1.2.5), so we shall provide those props. Luckily, we have a nice
encapsulation of the raw <Image> in our LoomingImage component,
so we need to change only this place to enable an offline cache of all image

contents for feeds and avatars (Listing 5-15).

const AnimatedFastImage = Animated.createAnimate
class LoomingImage extends React.Component {
constructor () {
super();
this.opacity = new Animated.Value(0);
this.state = {loaded: false};
}
render () {
return (
<View style={[{
...this.props.style
oo A

backgroundColor

P1}>
{this.state.loaded === false &&

<View style={styles.overlay}>
<RotatingCircle size={28}/>

</View>

}

<Arimeted—Image

+ <AnimatedFastImage // —-=—-—-=———————ce—eee—e—-.
style={{
width: '100%°',
height: '100%',
opacity: this.opacity
}}
source={this.props.source} // ———————-.
onLoad={this.onLoad.bind(this)}
/>
</View>
)i
}
onLoad () {
this.setState({loaded: true});
Animated.timing(this.opacity, {
tovalue: 1,
duration: 300,
useNativeDriver: true
}).start();

Listing 5-15 Loominglmage with an offline cache

1
)UseAnimated.createAnimatedComponent()toenaMe

the component with the animation HOC.

2
)Replace the raw Image with FastImage, well, without any
change in props. Note that cache control will be set as a de-
fault value, FastImage.cacheControl.immutable, which

is what we want for the offline cache.

3
)Add a cache policy. Different from a general-purpose HTTP
cache, this policy is applied to and managed by the compo-

nent specific for image contents.

INote By running the code through Xcode, you might not be
able to browse the feed list offline. This is because the HTTP

cache control is set to no-cache for develop. Removing the

cache control then you will see the correct behaviour.

Next, we enable the offline cache for video (Listing 5-16). This time,
the task is a bit more involved because we will need to program in the

native layer again.

NoteThe download does not belong to the critical path; hence, the
exceptions are swallowed by the component and are not related to
the JavaScript layer. So the exception flow we set up in the last
chapter is basically unchanged. We are going to discuss the matter

of exceptions more in Section 5.4.

class VideoView: UIView {

// unchanged code
@objc(setSrc:)
func setSrc(_ src: String) {
guard let doc = FileManager.default.urls(// ----
for: .cachesDirectory, in: .userDomainMask
).last else {
print("doc is nil in setSrc")
self.setup(src)

return

guard let url = URL.init(string: src) else {
print ("Parsed url is nil for \(src) in set
self.setup(src)
return
}
let dest = doc.appendingPathComponent (
url.lastPathComponent) // ————————— .
if FileManager.default.fileExists(
atPath: dest.relativePath
) {
self.setup(dest.absoluteString) // —-—=———-.
} else {
self.setup(src) // ———————mmmmm— .
self.download(url, dest, {dest in // —-—-—-—--
}, {dest in
// in production this should be real log
print(dest) // ——————— .

})

// unchanged code
private func setup(src: String) { // --————--
do {
guard let url = URL.init(string: src) else
throw VideoViewManagerError.runtimeError
}
if player == nil {
player = AVPlayer(url: url)
if (playerLayer != nil) {
throw VideoViewManagerError.runtimeErr«
}
playerLayer = AVPlayerlayer (player: playe
playerLayer! .masksToBounds = true
self.layer.addSublayer(playerLayer!)
} else {
if (playerLayer == nil) {
throw VideoViewManagerError.runtimeErr(
}
playerLayer?.removeFromSuperlayer ()
player = AVPlayer(url: url)
playerLayer = AVPlayerlayer (player: plays
playerLayer! .masksToBounds = true
self.layer.addSublayer(playerLayer!)
}
} catch {
self.throwToJS (error)

}
private func download(// —-——————————————————_.
__ src: URL,
__dest: URL,
__ onSuccess: @escaping (_ dest: String) -> Void,
__ onError: @escaping (_ desc: String) -> Void)
{
let request = URLRequest.init(url: src) // --
let session = URLSession.init(configuration:
let task = session.downloadTask(with: request
guard error == nil, let source = source el:
onError ("Download failed with error:\ (St:
return
}
do {
try FileManager.default.copyItem(at: sou:
} catch (let error) {
onError("Download failed when copying fi.
return
}
onSuccess(dest.relativePath) // —-————————--
}
task.resume() // ————————————mm————————— .
}

Listing 5-16 VideoView with download

1
) Prepare the download by (a) fetching the document directory;
(b) convert the URL string to the URL object; (c) combine the

preceding two information to get the cache directory.

2)

Set up the video view hierarchy using the cached video URL if it

exists.

3
)Otherwise, set up the video hierarchy using the remote URL
string as in the last chapter, and start the download.

4
)Setup () is equivalent to the old version of setSrc () without

the downloading capability. The logic has been moved to this
method to make setSrc () more clear.

5
)download () is the new method created. It takes the source

and destination URLs as inputs. The source URL indicates the
location of the video online; and the destination URL indicates
the local file that stores the downloaded video. The two closure
parameters are called when the download completes and fails,
respectively.

6)Prepare components for the download task and start the task.

7)Invoke the error block whenever the error occurs. For now, we
simply print a log when an error occurs. In production code, we
might need to also upload those logs for the debugging of field

failure.

Narmirdtlhhan AdaviirlaAaAdAd £fila funma A fila Wioffav dAa A AAaAbtinAtliAk

LOUPY uie uouwinuauced tie 1ol tie rie pulierl o uie uesuliatull

8)
location and invoke the block for success.

Note This download module is not the most optimal solution
hough it can work well. For industrial-level video downloading
ervices, we need to employ advanced streaming technologies
uch as HLS or Dash.

5.4 Exception Handling

In general , we are still going to follow the discussed wall-in strategy
(Section 4.4) for network operations. As a brief reminder, this strategy
pivots around the error boundary and converges error handling code
only on critical points where decisions can be made. Normally, those
critical points are also entry points in components from where the
logic of a submodule is entered. This time, the difficulty is another lev-
el higher than that in Section 4.4 due to the extensive complexity in-
troduced by the network. Let’s analyze it before jumping to the code

directly.

The scope is the first thing we need to consider. Now we have two
sources of network requests: (1) requests sent from the JavaScript
layer to fetch the feed list and (2) requests sent from the native layer

to fetch the multimedia content, that is, images and videos. We have

mentioned in Section 5.3 that image and video downloading does not
belong to the critical path. This is because Manyface can still proceed
with the UX, though degraded, in situations such as missing one or
two images or the video of one feed doesn’t load. As such, we con-

sider the current exception flow for the native level is sufficient.

NoteAs mentioned before, it is so important that it is worth repeating:

being degradable (a.k.a. flexible) is the key to 0 crash.

We have narrowed down our scope to the JavaScript layer. The next thing
we need to consider is network connectivity. More specifically, how should
Manyface react when the user device is offline? Let’s look at what the

potential design options are:

1)Treat the offline state as an ordinary exception and give the
user a default error page. This is suboptimal in that the mobile
network is intermittent by nature, and we don’t want the offline
state to be drastic. Moreover, we just implemented the offline
cache (Section 5.3) to handle this situation, which renders the
error page even less relevant as Manyface is in good shape
when offline.

2)Always check the network state and start the fetch () only
when connectivity is assured. This can be done using react-na-
tive-netinfo (a.k.a. Net Info). This is actually an antipattern. The

moment we check connectivity is a couple of milliseconds

ahead when we call the fetch (), so the result is irrelevant for

this external state change could occur in between.

)Not to couple Net Info and network fetch (). Use Net Info sim-
ply to trigger a Ul hint to the user. The network fetch () will
throw when offline. However, we can catch this exception within
and retry the same request later when the network is back. This

sounds like the best option so far.

Now let’s look at the request timeout. A timeout could be caused by a
weak network connection or an overloaded server that cannot re-
spond in time. In such a case, retry is still a plausible option. Howev-
er, since the server could be already in high load, a flood of retry
could exacerbate the problem. So we need to slow it down and set a

limit counter for it.

Lastly, let's think about HTTP status code. Should we retry too for ab-
normal HTTP code? Yes and no. Only for certain codes that represent
recoverable errors. For instance, 429 too many request, 500
Internal Server Error,and other 5xx status code belong to this
category. And we definitely don’t want to retry on 400 bad re-
quest Oor 401 unauthorized, etc. For those unrecoverable excep-
tion codes, we translate them into exceptions and throw them to the
error boundary which will make a final call about the Ul and logic on

exceptions.

5.4.1 Case Study, Reinforce the Network
Components

Let’s make an abstract of the preceding discussion in the form of

requirements:

1
For offline fetch (), we save the request and retry after com-
ing back online.

2
)For a request timeout (3 seconds), 401 and 5xx, we retry at

most three times. We set the first retry to be after 3 seconds,
the second to be 10 seconds, and the third to be 30 seconds.
We consider after 30 seconds the user will leave Manyface any-

way, so if all retries fail, we throw the exception.

3)

For HTTP code other than the ones listed earlier, we throw the

exception representing the error.

To get started with this case study, we need to install the Net Info

package by running the following two commands:

npm install --save @react-native-community/netin:

./pod install

Next, we create a service that encapsulates the vanilla fetch ()

together with the retry logic discussed earlier (Listing 5-17).

export default class NetWorkService {
retryTimes = 0;
retryIntervals = [0, 3, 10, 30];
async robustFetch(url, config) { // ——=——————-.
await this.throttle(); // —-————————————— — .
try {
const controller = new AbortController();
let timer;
let timeout = new Promise((resolve, reject
timer = setTimeout(() => {
controller.abort();
reject({message: 'Timed out'});
}, 3000);
})i
const response = await Promise.race([fetch
...config,
signal: controller.signal
}), timeout]);
if (!!timer) {
clearTimeout (timer) ;
}
if (!response.ok) {
if (response.status === 401 || response.:
return this.robustFetch(url, config); .

}

reject({message: 'Netowrk failed with HT"

}

return response;

} catch (e) {
if (e?.message?.includes?.('Network request
await this.waitForNetwork()
return this.robustFetch(url, config);
}
if (e?.message?.includes?.('Timed out')) {
return this.robustFetch(url, config);

}

throw('Unkown network issue'); // ————=———--

}
async throttle() {

return new Promise((resolve, reject) => {
if (this.retryTimes >= this.retryIntervals
reject('Network Failed After 3 Retries').
}
const interval =
this.retryIntervals[this.retryTimes++]; //

setTimeout (resolve, interval *1000); // ---

}):
}

async waitForNetwork() { // —-——————————————o.
return new Promise((resolve, reject) => {
const unsubscribe = NetInfo.addEventListent
if (state.isConnected) {

unsubscribe();

resolve();

Listing 5-17 The network service

1
)Create a robust version of fetch () with the same signature.

2
)throttle () implements the retry logic. As per the discussion,

if the retry times exceed three, the whole fetch should simply

reject.

3)

Get the throttle interval based on the number of retry times. And
carry out the throttle using this number. As per the requirement,
they are 3 seconds, 10 seconds, and 30 seconds each time the

retry occurs.

4)Set up the timeout and execute the fetch () with
Promise.race (). As mentioned, this method is passed with
an array of Promi ses and resolves/rejects if any of the
Promises resolve/reject. Note that a timeout throws an error
with the corresponding message which will be checked later in
the catch block.

5
)Retry for recoverable HTTP status code that is exceptional.

6)Reject for all other exceptional HTTP status code.

7)

Wait for the network to reconnect when offline. And retry

straight after. Here, we use Net Info to monitor the connectivity

change.

8
)Retry for a timeout.

9
)Throw all other exceptions. They could be programmatically ex-

ceptions or other network exceptions not being accounted for

explicitly.

Lastly, we can modify the Moment and connect the dots and complete

the exception flow (Listing 5-18).

async loadData() {
try {
let service = new NetWorkService();
let rsp = await

service.robustFetch

'https://holmeshe.me/05apps/feeds’,

true ? {
headers: {

'Cache-Control': 'no-cache'

} : undefined

/] —=>

let feeds = await rsp.json();
let feedsModel = feeds.map((obj) => { return
this.setState({data: feedsModel});
} catch(e) {
setState(() => { throw e }); // ————————an.

Listing 5-18 Hook up the exception flow with Moment

1
)Replace the vanilla fetch () with our robustFetch ().

2
)Throw the same exception in setState () so the exception
can be caught by the well-defined error boundary which will
make the final call in terms of the Ul and behavior for all excep-

tions within.

5.4.2 Case Study, Offline Mode

We use Net Info as a trigger to retry the failed requests. It can be also used
to manage the user expectation when the device is offline. Basically, we
display a bar on top of the screen so the user will be less surprised if

something is not working (Listing 5-19). Note that this feature does not

affect any logic flow for network requests.

class Ann extends React.Combonent {

- - = = I N g - Tt T T T -TT - - T T Tt T T T T T S

constructor (props) {
super (props) ;
this.state = {
offline: false // —-——————————mm——_——— .
}i
}
componentDidMount () {
NetInfo.addEventListener(state => { // —=———--
if (!state.isConnected) {
this.setState({offline: true});
} else {
this.setState({offline: false});

})i
}

render () {
return (
<SafeAreaView style={{width: '100%', heighf
<Moment />
{this.state.offline && // ————————m—-—uu—.
<View style={{

position: 'absolute',

top: O,

left: O,

width: '100%',

height: 60,
backgroundColor: '#4eadeb',

justifyContent: 'center',

alignItems: 'center',
paddingTop: 20
}}
>
<Text style={{
fontSize: 16,
fontWeight: "bold",
color: 'white'
}}>No Network</Text>
</View>
}

</SafeAreaView>

);

}
export default App;

Listing 5-19 Offline

indicator for the app

1)

Add a new state to mark the network status.

2)

Use Net Info to listen to the network status. Switch the state

created earlier accordingly.

3)Display the offline tag when losing connectivity.

This is how it looks after completion (Figure 5-11).

No Network

| HAD NEVER seen a match like
that before!

My diet plan to loss 12 Kg.

B LT

Figure 5-11 Offline mode

5.5 Summary

Comprehensive skills and knowledge are required to achieve 05
apps. One of the essentials is a network. In this chapter, we went
through the essential network knowledge and techniques directly re-

lated to app development.

In the theory part of this chapter, we made a vertical trip through the
network stack and visited some of the critical points. Along the path,
we also watched the network traffic in action with various tools. Then
we conclude the theory part by introducing some of the heuristics of

the modern Internet.

For the practical part, we first introduced asynchronous programming
in JavaScript, followed by the usage of the fetch () method. Then
we enhanced Manyface with common network-related capabilities
including API calls, large file download, local cache, as well as offline

mode.

Lastly, we implemented a network-related exception flow in the light
of the wall-in pattern. The difficulty for a network exception is that it is

triggered externally, and we need to account for various scenarios by

respecting HTTP error code in different ways, considering the retry

strategy, and defining the behavior in offline mode.

© M. Holmes He 2022
M. H. He, Creating Apps with React Native
https://doi.org/10.1007/978-1-4842-8042-3 6

6. Advanced Topics

M. Holmes He!
(1) Bucklands Beach, New Zealand

Believing the dots will connect down the road, will give you the

confidence to follow your heart.
—Steve Jobs

This is the last chapter of this book. In this chapter, we are going to
better fulfill our knowledge body, as well as our curiosity, in React Na-
tive, mostly by looking back at what we have learned throughout the

previous chapters.
6.1 Revisit Rendering

React employs a virtual DOM tree (VDOM tree) to facilitate render-
ing (Section 1.2.6). A virtual DOM tree is an in-memory representa-
tion of the components being rendered with each VDOM as a com-
ponent. What is returned by render () is a blueprint (an element)

that is in turn used to construct a VDOM by the React runtime. The

https://doi.org/10.1007/978-1-4842-8042-3_6

cascading calls of render () eventually provide the fragment of ele-
ments that are used to complete VDOM tree of the app. When it
comes to updates, React uses a diffing algorithm (reconciliation) on
the VDOM tree to collect the changes before any rerendering actually
takes place. The diffing algorithm makes a layer-by-layer comparison
of the virtual DOM tree and (1) unmounts and remounts the subtree
if the types of the old and new versions’ root node are different and

(2) updates nodes using the new props if they are the same.

oteThat means the setState () is heavy. When inappropriately
used, #* it could trigger excessive rerendering of the whole VDOM

ree.

This algorithm is expensive when the VDOM tree grows. So React
provides majorly three measures to make the algorithm more efficient at
scale: (1) # shouldComponentUpdate (), (2) ﬂ pure component,
and (3) ﬂ Redux. Technically, all three methods reduce the number of
nodes needed to be compared for the diffing algorithm. gy More
specifically, the first and second methods undercut the tree by preventing
the diffing algorithm from being executed for an entire subtree, and the
third uppercuts the tree by making the diffing algorithm only to start from a

certain subtree (Figure 6-1). In this section, we are going to cover the first

two methods. Redux will be covered in Section 6.2.

Pure component
(shouldComponentUpdate)

Figure 6-1 Constrain the rerendering

shouldComponentUpdate () gives you a chance to decide
whether a component and the rooted subtree should be updated in
the rendering event. Again, this event could be triggered from a set-
State () occurring somewhere on the upper layer in the virtual
DOM tree hierarchy. ﬂ With this method, you make a component
only listen to certain props, which effectively reduce the number of
nodes involved in the diffing algorithm. ‘ The caveat is that

shouldComponentUpdate () could block valid updates to the sub-

components unintentionally.

To make the updating flow more explicit and predictable, (") a general
practice is to shallow compare all the props passed in —in other

words, (1) to compare the value of the props if they are of primitive

types and (2) to compare the reference of the props if they are ob-
jects (reference type). This practice has been generalized into a stock
component, PureComponent. As we will see very soon, the princi-
ple of Redux (Section 6.2) is also established around the same princi-

ple of shallow comparison.

As said, the diffing algorithm compares the VDOM tree layer by layer.
For each layer, it simply compares the nodes from left to right. This
has a bad performance implication for one layer that is rendered as a
list using map () ora FlatList (Section 6.3). s More specifically,
when the list is mutated, the diffing algorithm cannot infer the corre-
sponding components to be compared in the new and old VDOM
tree, which incurs unnecessary rerendering. # To address this issue,

it is recommended to attach keys to each component within the list.

Note‘ Using a list index as the key is an antipattern. This is be-
cause using a list index is equivalent to the no-key situation, where a

list mutation could change the key of the same entry. # So always

|use explicit keys for the list entries.

6.2 Redux

Redux is a go-to global state management framework. States are
basically view modals, which are supposed to be local. A global view

modal seems to be counterintuitive and overengineering. None-

theless, it is a nirvana rising from a prolonged period of confusion, tur-
moil, and debating. It solves a fundamental difficulty of cross-VDOM
tree communication, that is, when an event comes from one compo-

nent on the tree and the update should be carried out on another.

To understand this difficulty, let’s consider a typical video player

component (Figure 6-2) where a click event on a play/pause button

component should change the state of a screen component which might be

located in a completely different subtree.

Figure 6-2 A video player

With the vanilla React local state management that relies purely on the

local state, we need to pass some callbacks from the screen component all

the way to the play button. When there are a lot of them, we have the
callback hell problem in the context of the VDOM tree (Figure 6-3).

@ newState

Player
callback @
@ @ Screen
callback newsState
Play/Pause @
newsState

onClick(newsState) {
@ callbackqnewStateb

}

Figure 6-3 Using callbacks to propagate click events

Redux provides a direct way to communicate an event occurring in a
component to other arbitrary components on the VDOM tree which are
listening to the event. A successful delivery of an event could cause a state

change and rerendering of the destined component (Figure 6-4).

Player

Screen

/ newState

Play/Pause > (_@3
Redux
®

onClick(newState) {
caIIback{newState)

}

newState

Figure 6-4 Using Redux to propagate click events

Besides the obvious benefit mentioned earlier, Redux brings majorly

three collateral advantages:

Diffing algorithm efficiency: With Redux, a change can always
be sent directly to the specific component, so a diffing only on

the subtree is required.

) Unidirectional data change flow: This makes the state changes
more reasonable and traceable, especially in the setting where
a slice of a state (number of likes) could be changed by multiple
sources (network fetch from the server and user interaction).

3)It adopts a semantic called action that aggregates by nature the

meaningless, sometimes interdetermined, setters of individual

properties with meaningful, easier-to-manage logic units.

To summarize:
Redux is an event system hooked up with global Ul state

updates.

Redux introduces basic concepts such as store, reducer, dispatcher,

action, and subscriber:
1) : _ :
The global states are managed in a store which is associated

with a reducer.

2
)We use a dispatcherto send actions to the reducer modifying

the states in the store.

3
)Actions contain all the information (payload) to carry out the

change.

Redux follows the principle of immutability, which means, instead of
modifying the content of the global states, we need to always create
new instances of the changed state and set the modified version of
the state back to the store (much like copy on write, aye ©). For in-
stance, if we have a nested state of three layers, and the field in the
lowest layer got changed, then we need to create new instances top

down along the chain and shallow copy the rest. This is how the com-

ponents listening to the specific state change got updated. g It’s bet-
ter to keep the Redux state flatten and make the state directly usable

by the Ul as much as possible.

oteRedux is a very powerful toolkit for managing global states.
Nonetheless, the local state still has its seat on the table. This is true
or Ul- and animation-related states that are specific to a single

omponent. i So it is suggested to manage in Redux only states
hat are changed/listened to by multiple entities, basically global

tates.

‘ One misuse of Redux is to copy a business model or service re-
sponse directly as a store. In its essence, Redux stores define the
view model, so using a business model is not optimal as they are
separate concerns. More specifically, it could cause complex calcula-
tions during rendering. Simply put, it is better to be simple and direct
for Ul logic, so it is better to push the convolution out to the parsing

and deserialization process or a dedicated adapter layer.

NoteThat said, the preceding claim is not true if the client-to-service
protocol is defined in a way that the view model is fully respected,

which means the view model is returned directly by the service in an
end-to-end manner, and the abstraction of the view model happens
on the server side. GraphQL could be a good technical candidate to

achieve that.

‘ Another misuse is to define a single reducer and object for the whole
store or to bind a state directly on the root component. This causes an issue
of thunder herding where all trivial updates hit on the complete VDOM
tree that listens to the root object. gily So it’s better to spread the reducers
and its associated objects out in accordance with different concerns. Besides
the methods of separating by UI and domain logic, which are intuitive, here

are some general principles:

1) _
)g Separation of light and heavy
2)

gllly Separation of important and trivial

3)

dlily Separation of frequent and seldom

At the end of the day, (software) architecture is about how to

converge and to separate.
—Holmes

Next, let’s see how to use Redux in action.

6.2.1 Case Study, Like

This time, we are going to implement one of the most important features in
a social network. To focus on the client side, we are not going to send any
requests to the network and change the service state. First things first, here

are the requirements:

)

When a feed is liked, the like number should be increased with
one.

2
)When a feed is liked by the user, the style of the like button

should be changed to fill.

3
)When a feed is liked, it cannot be liked again and the button will
be disabled.

Before everything, we need to install Redux:

npm install redux

npm install react-redux

6.2.1.1 Reduxfy Feeds

We need to Reduxfy Feeds -related states by creating the three mentioned

elements, firstly, the store and reducer (Listing 6-1).

import { createStore, combineReducers } from 'rec
const INITIAL STATE = {

feeds: [, // - - ——————-"-""""""-—————— .
}i
const feedsReducer = (state = INITIAL STATE, act:

let newState = state;
switch (action.type) { // ————————mmmmm——_— .
case 'UPDATE FEEDS': // ———————mmmmmmmoo—— .

if (laction?.payload?.feeds) {
console.error (
'action?.payload?.feeds is null in [UPI
)
return state;
}
newState = { // —————
...State,
feeds: action?.payload?.feeds // —————--.
}i
break;
case 'LIKE':

default:

break;

}

return newState;

}i
export default createStore(combineReducers({

moment: feedsReducer // ———————— .

})):

Listing 6-1 Store and reducer

1)

Define the reducer (feedsReducer) together with its root ob-

ject (moment) in the store.

2)A reducer could encompass multiple actions. Each action modi-

fies the object in the store in its own way. In the Redux par-
adigm, an action should include two important aspects, the type
and the payload. The first determines its route in the logic
branches; the second contains the information to carrying out

the change.

3)

In the Redux paradigm, we should always create new in-

stances for the store objects rather than modifying it directly.

Next, we define actions that update the store, and we connect the
actions with the dispatch in the form of props. Again, we only implement
list updating and wait for the next section (Section 6.2.1.2) to implement the
like. The following changes are made on Moment to make it listen to
Redux (Listing 6-2).

const mapDispatchToProps = dispatch => (
bindActionCreators({
updateFeeds: (feeds) => { // === .
return {

type: 'UPDATE FEEDS',

payload: { feeds }

Phy
}, dispatch)

)i
Listing 6-2 Actions and dispatch

Use inline closure to implement the action. If the actions will be
reused by other components, they could be extracted into a

dedicated file or folder for action creators.

ote‘ One caveat of using an action is not to make a side ef-

ect in it. In general principle, actions are supposed to be pure.

This dispatch could be used within 1oadData () of the same

component as shown in Listing 6-3.

async loadData() {

——thrisrsetStatet{datar—feedsModel)+

++this.props.updateFeeds (feedsModel);

Listing 6-3 Use dispatch

Lastly, we connect the dispatch and the store with the props of

Moment and make it a subscriber (Listing 6-4).

const mapStateToProps = (state) => {
const { moment } = state
return { feeds: moment?.feeds }

}i

const mapDispatchToProps = dispatch => (

)i
export default withErrorBoundary (
connect (mapStateToProps, mapDispatchToProps)

(Moment), ErrorPage, undefined

Listing 6-4 Connect subscriber

6.2.1.2 Implement Like

Let’s look at how the logic branch in the reducer for the like action looks
like (Listing 6-5).

const feedsReducer = (state = INITIAL STATE, act:
let newState = state;
switch (action.type) {
case 'UPDATE FEEDS':

case 'LIKE':
if (action?.payload?.feedIndex === undefine
action?.payload?.feedIndex === null ||
action?.payload?.feedIndex < 0 ||

action?.payload?.feedIndex >= state.fec

)

console.error('action?.payload?.feedInde:

return state;

newState = { // ————— .

...State,

feeds: state.feeds.map((feed, index) => .

if

}
})
}i

(index === action.payload.feedIndex
feed.meta.numOfLikes += 1; // —————-.
feed.meta.liked = true; // ————————-.
feed.meta = Object.assign({}, feed.me
return Object.assign({}, feed); // --
else {

return feed;

default:

break;

}

return newState;

}:

Listing 6-5 Reducer for like

1
)As discussed in the beginning of Section 6.2, Redux follows the

principle of immutability. Hence, we create new instances for

each layer that contains the change. ‘ Without this step, the

rendering will not be triggered at all.

2)

Modify the relevant fields to be properly used by the Ul.

Next, we implement the like with all the preparation of Redux. More
specifically, we are going to connect dispatch to the HOC with-
MetaAndControls that contains the like button. Since we have

bound the subscriber to Moment that manages the feed list, the
change carried out in the reducer will be propagated down naturally

to each Feed entry. Thus, we don’t need to bind any other subscriber

again.

Listing 6-6 gives an enhanced version of withMetaAndControls.

export default function withMetaAndControls(Feed
class ElemComponent extends React.Component {
render () {
return (
<View style={][
{...this.props.style}, styles.commonPac
1}>
<View style={styles.metaContainer}>
<LoomingImage
style={styles.avatar}
source={{uri: this.props.item.meta
/>
<View style={styles.infoContainer}>

<Text style={styles.userName}>

{this.props.item.meta.name}

</Text>

<Text style={styles.date}>
{this.props.item.meta.date}
</Text>
</View>
</View>
<Feed {...this.props} ref={this.props.:
<View style={styles.controlContainer}>
<TouchableOpacity // —==————————————-.
disabled={this.props.item.meta.like
style={{flex: 1}}
onPress={ // === ———.

this.props.like.bind(this, this.j

<NumberedWidget
type={
this.props.item.meta.liked ? /,
widgetTypes.LIKED
widgetTypes.LIKE
}
number={this.props.item.meta.num
/>
</TouchableOpacity>
<NumberedWidget
style={{flex: 1}}
type={widgetTypes.COMMENT }

number={this.props.item.meta.numO£f(

/>

<NumberedWidget
style={{flex: 1.5}}
type={widgetTypes.SHARE}
number={this.props.item.meta.numOf¢
/>
<Widget type={widgetTypes.MORE} />
</View>

</View>

}
const mapDispatchToProps = dispatch => (// ---

bindActionCreators({
like: (feedIndex) => {
return {
type: 'LIKE',
payload: { feedIndex }
Py
}, dispatch)
)i
const ConnectedElemComponent = connect(// —----
null, mapDispatchToProps) (ElemComponent
)i
return React.forwardRef ((props, ref) => <Connec
innerRef={ref} {...props}

/>);

Listing 6-6 Action and dispatcher for like

)

Establish the dispatch with an inline action as in Section 6.2.1.1.

2
)Connect the dispatch with the HOC ElemComponent in

production.

3
)Wrap the like button with a TouchableOpacity and attach

the newly created dispatch with it. As mentioned, the changes
in steps 4 and 5 and the like count will occur naturally after the

execution of the reducer.

4)

Change the button style according to the liked state.

5)

Disable the button when liked.

6.3 Long List

Let’s be clear, a long list is not an issue for React Native, not any-

more. We know that the official component for long lists is

FlatList which is the equivalent of TableView (i0OS) and recy-

clerview (Android). As described in Section 2.3, the basic idea is to

always render an area (window) larger than the viewport, while sig-

nificantly smaller than the whole list. This gives an illusion that the

complete list has been completely rendered while scrolling at a mini-

mal cost in terms of the memory footprint.

Performance wise, it is sufficient to just go with the default configura-
tion in most cases. If not, F1latList exposes some parameters
which can be further fine-tuned to achieve a better perceived perfor-
mance. The official document has done a great job; here, we summa-
rize those optimization points and categorize them into basic and ad-

vanced ones.

Noteln the case where FlatList eventually cannot meet the perfor-
[mance bar, we have third parties like RecyclerListView in our hands,

which are designed to further increase the performance potential.

Let’s start from the basic optimization points that can be applied directly:

1
)As mentioned in Section 6.1, adding a key to list entries can re-

duce the overhead of the diffing algorithm.

)Use shouldComponentUpdate or a pure component (Sec-
tion 6.1) to avoid rerendering of the complete list.

)Use getItemLayout to precalculate the item height so the list
doesn’t need to carry out the calculation.

4
)Use an image cache such as react-native-fast-image.

Then here are the advanced ones which require some fine-tuning of the

FlatList rendering behaviors:

., . . o
initialNumToRender defines the number of initial items to
be rendered. Those items are never dismounted throughout the
FlatList life cycle.

2 . . : .
)windowSize defines the window area in which items are re-

quired to be rendered.

3
)maxToRenderPerBatch and updateCellsBatchingPe-

riod: These two parameters are used to control the rendering
batch volume and frequency. Small batch and longer batching
period could give better TTI, while large batch and lower batch-
ing period could avoid a blank area. So it’s a trade-offona 2 x 2

matrix.

6.3.1 Case Study, Apply Basic Heuristics

We will apply basic optimization to the list entries: (1) adding keys

and (2) applying shouldComponentUpdate.

Firstly, let’s add keys to the list entries. Here, we can simply use the
feed ID as the key by using the built-in keyExtractor props of the
FlatList (Listing 6-7).

<FlatList

keyExtractor={(item) => item.feed.id}

/>
Listing 6-7 Add a key to the FlatList item

This removes the following warning message:

ManyFaces[19949:1694125] [javascript] Warning: E:
Check the render method of “VirtualizedList . Sec¢

Next, we look at the second optimization: shouldComponentUp-
date and pure component. More specifically, we are going to imple-
ment shouldComponentUpdate to all Feeds components, to

avoid unnecessary run passes of the diffing algorithm.

NoteA pure component cannot be applied here in that the Feeds
are all encapsulated with HOC which introduces prop changes that

are not controllable.

We know that all Feeds are listening to one critical prop which is i tem. So
shouldComponentUpdate could compare only the i tem prop to

determine whether there is an actual update request for the Feed.

withMetaAndControls provides a single point of change since all

Feeds are encapsulated using the HOC. Let’s tune up the HOC (Listing 6-
8).

export default function withMetaAndControls(Feed
class ElemComponent extends React.Component {
shouldComponentUpdate (nextProps, nextState)
if (nextProps.item === this.props.item) { .,
return false;

}

return true; // ——————— .

}

render () {

return (

)i

}

like = () => {
this.props.like(this.props.feedIndex);

}
Listing 6-8 Apply withMetaAndControls to the HOC

1)Update the Feeds only when the item passed in got changed.

This gives performance gain. For example, when the user likes
a Feed, only the render () of the component that got liked

will be invoked. In an otherwise situation, the render () of all

components got called.

6.4 0 Crash, Design Exception Flow

One of the vital differences between an amateur and a profes-

sional is a systematic way of fallback.
—Holmes

Problem-solving is one of the most important qualities of a good de-
veloper. It takes skill, intuition, and sometimes luck to pinpoint and re-
solve an elusive bug. This is sometimes hard for even ACE program-
mers. An exception flow is vital in system design. One that helps dis-
cover a bug early and treat it early will definitely make your life easier
even if you are one of those ACE programmers. Unfortunately, the
exception flow is often out of focus. | have heard a few times the
phrase “fail fast” and have seen the situation where exceptions are
thrown to no one knows where. There are many ways to understand
the phrase “fail fast.” In my opinion, “fail fast” reflects the principle of
reacting to bugs at the earliest possible chance. For example, if we

can unveil a potential exception in compiling time, don’t leave it at

runtime; if we can discover an exception at the arrival of response
data, don’t leave it until it causes problems at the Ul layer. The bot-

tom line is we don’t let our app crash in front of the users.

In this section, we are going to reexamine the low-end exception han-
dling techniques we have learned so far and to derive general princi-

ples out of them.

The major difference between the exception flow and the feature flow is
that the requirements of the exception flow could come from developers.
Since developers know better than anyone else what exact error could
happen, it is the developers’ responsibility to define or to propose the
exception experience. More specifically, we need to know what we want

and do not want:

1
)We want all exceptions to be properly directed to the intended
location. We don’t want exceptions being thrown to an arbitrary
upper layer of the call stack, or being uncaught at all and crash-

es the app.

2
)We want recoverable exceptions to be treated silently, which

has to be transparent to the user.

3
) We want unrecoverable exceptions to be defined with explicit
behaviors and Ul presentation, which should find the best way
to express apology to the user.

4)We want to log all logic flows that are out of expectation. This

includes both recoverable and unrecoverable exceptions. Even

though the exception is minor and is not even noticeable (like
Covid-19 no symptoms), it should be logged. The logging, in
turn, serves as another bug reporting source besides bug

bashing.
S)

We want to know what exactly happens when a crash occurs in
the field, so we can fix it efficiently and report it precisely to the

upper chain.

With the requirements in mind, let’s take a closer look at types of ex-
ceptions and think about ways to treat them separately. Exceptions

can be categorized in four different ways.

In terms of severity, they can be divided into recoverable and unre-
coverable exceptions. The difference is that the first one does not
block the critical path, while the latter does. Take an example from
Manyface; an exception thrown by one of the Feed components is
recoverable by simply hiding the Feed, while an exception thrown by

the Moment is not as it potentially leads to a complete blank screen.

From another dimension, it can be categorized into controlled excep-
tions and uncontrolled exceptions. Controlled exceptions are those
thrown on purpose or protective early returns with an error indicator

value. Uncontrolled exceptions are those completely out of our ex-

pectation, basically a bug that is too vicious and noticeable and,

hence, is thrown out by the runtime.

We can also categorize exceptions into external exceptions and inter-
nal exceptions. For instance, a network error falls into external excep-

tions, and a logic fault falls into internal exceptions.

Lastly, there are global and local exceptions. Global exceptions can
be only handled with a global handler; examples are a BAD AC-
CESS and a segmentation fault. Local exceptions are those that can

be captured in a local catch block or error boundary.

Here, we give the principles to handle each exception category:

1
):ﬁ' For unrecoverable exceptions, we need to throw them all the
way to the Ul and give feedbacks to the user, such as display-
ing a “something went wrong” page, popping up a toast, or re-

setting the state and jumping back to login.

2
)3? For recoverable exceptions, we apply a technique called
“silent log.” Basically, we log it so we know, while we make the

UX flow continuous so the users don’t know.

3)

= For controllable exceptions, we log them with all information
we need.
4)# We minimize uncontrollable exceptions by transferring them

to controllable ones in best efforts. This is achieved again by

meticulously logging.

5)

External exceptions are not completely within the control of
client logic, so “retry” logic could be involved to mitigate it, while

we normally don’t retry on internal exceptions.

6)

+# Global exceptions are not recoverable by nature. Hence, it is

the last resort when all local exception handlers fail.

Notegllly Intentional, controlled, and meticulous logging is gen-
erally better than an uncontrolled crash dump. When an uncon-
trolled crash dump occurs, the root cause might have been ob-
scured. For example, a BAD_ACCESS in sendMsg in Cocoa
could be caused by a released object which is very hard to be

discovered with the information in the crash report.

JavaScript has an inherent advantage. That is, unlike most other

programming languages like C++ and Objective-C, we can make all

exceptions local in JavaScript. That means all exceptions, including null

pointers, can be caught in the form of an exception using a catch block or

error boundary. Let’s summarize what we have done to make Manyface

maintain the minimal bar of crash free:

)

Always apply a top-level error boundary which catches an
exception from within.
2)# Always apply a top-level catch block of the entry points of the

method calls. And potentially redirect those exceptions to the

error boundary.

6.4.1 Robustness Built in Software Architecture

To properly design the exception handling mechanism, we need to
define the bubble (think about the bubble in the context of Covid-19).
More specifically, we need to define two points that are critical. (1)
The entry points are basically the boundary of a bubble, from where
the potential risky raw data comes in hence should be transferred to
data that is absolutely legit and expectable. (2) The crash points
represent the high risky parts within the bubble that should be taken
care of in particular. Programmatically, those are the lines of code

that could cause a crash.
6.4.1.1 Entry Points

This is where external data is received and processed. In React Na-
tive, we have two such places, that is, (1) when the data comes from
the server side and (2) when the data comes from the native layer to
the JavaScript layer. Technically, when interdomain communication
is involved, we need to deserialize a general, untyped JSON into a

typed model object. At this point, we need to carry out null checks, to

gracefully fall back, and to throw exceptions when necessary.

In this process, it’s important to be explicit about which is optional,

which is compulsory, and which is critical. The first two types are

negotiated with the server side, while the last one is decided solely by the

client side. Let’s look at one way to treat them respectively:

1
)NuII in optional fields: This is a logic flow rather than an excep-
tion flow since no protocol is broken. Hence, we can simply give

the field a default value as fallback.

2)NuII in compulsory fields: This time the protocol is broken.
When identifying such a case, we carry out the same fallback
by setting it with a default value and log it so we will know some
transactions are broken, but we recover it secretly to not bother

the user.

)NuII in critical fields: This time, not only the protocol has been
broken, but also the missing field belongs to the critical path.
And the UX cannot continue. In such cases, we throw the ex-
ception the first chance we have. This is the only case where
we throw an exception which effectively interrupts the whole
model processing and should be handled by the Ul layer (a

component).

ote95% of crashes come from inappropriately treating illegal

responses from the server, an unofficial, empirical value.

6.4.1.2 Crash Points

Let’s be more concrete; we should be careful of null pointer excep-

tions and out of boundary exceptions, by lookingat . and [].

NoteOut of bound is not an instant exception in JavaScript. Howev-
er, it should be treated explicitly in my opinion. Here, the principle of

‘react at the earliest chance” comes into play.

The preceding two exceptions and any other uncommon exceptions
could occur in three places, within (1) a component, (2) a global
function, and (3) a native layer. We have seen how to use an error
boundary to deal with exceptions in a component in Section 2.4,
how to channel asynchronous exceptions to an error boundary in
Section 5.4, and how to channel native exceptions to an error
boundary in Section 4.4. And we call this approach a wall-in. When
handling exceptions, we should also be clear about recoverable and
unrecoverable exceptions. And we only throw on critical paths for un-
recoverable ones where the UX cannot continue; other exceptions
occurring in non-essential logic passes are treated as recoverable
exceptions and should be swallowed by their respective module.
Again, logging is always desired, especially when something hap-

pens in production.

oteAgain, the last thing we want to see is that an exception of a triv-
ial supplementary subsystem jeopardizes the core, much like a glitch

in the stereo system crashes a car.

The only place that hasn’t been covered is the global function. A good
practice is to not put any critical path in global functions. This is be-
cause it is too involved to communicate exceptions between a global
function and a component which should in turn reflect the exception
on the Ul correspondingly. By applying only optional paths (e.g., up-
date flow), all exceptions should be swallowed within as discussed

earlier.

6.4.2 Last Resort, Global Error Handler

At last, exceptions could still occur even with the fully defensive code in
place. Those exceptions should be treated as failures and can be only
covered by a global error handler. There are majorly three ways of carrying

out global error handling:

An error boundary that wraps around the root component of

the app, which displays “something went wrong.”

2)

Install a RCTExceptionManager, and bind a delegate with it.

react-native-exception-handler.

Exceptions hit on these handlers are uncontrolled and unrecoverable
exceptions. Normally, they are uncaught exceptions in the JavaScript layer
or fatal exceptions in the native layer. Global handlers can be used to carry
out tasks such as crash reporting which could provide another invaluable

information source directly from the field. Nonetheless, it’s much more

desired to hunt down those issues early in the development and testing
phases.
Much like handrails on a cliff, it's better not to rely on them.

6.4.3 Wrap Up

A disaster is inevitable. In fact, experiencing a disaster, better at scale, is
one key ingredient to develop an ACE programmer. This is the next level
from a feature implementer (level 1) and a problem solver (level 2). Being
exposed to large scale system where disaster is inevitable, these
programmers display two key qualities in their everyday development

activities:

1
)The willingness and capability to deep dive into problems that

occur in the production phase

The willingness and capacity to design the system up front to
be resilient and to provide as much information as possible in

disaster to facilitate 1

Good role models are kernel programmers. Without the modern tools
discussed in this book, they can design and develop an exception
flow that defends hypercomplicated systems mostly using pure goto.
So, in the opinion of the author, it might be more important to develop
such a mindset than the excellence in tooling. Anyway, it is in our

best interests to approach a 0 crash app.

Lastly, please bear in mind that exception experience is an essential
part of user experience. We need to work closely with the product

team to work out a good plan.

6.5 Native Modules Inside Out

Afterall, a bridge is all we need to cross platforms.
—Holmes

In this section, we will guide you through what happens next after the
app initialization. We will first examine the Objective-C layer and the
JavaScript layer of React Native. Then we will deep dive into the
C++ layer. In general, it helps you understand how pieces of React

Native come together and work as a solid unit.

The purpose of native modules is to export native functionalities.
Technically, functions written in native can be injected to the
JavaScript runtime and be used by JavaScript code directly. This is
enabled by engines such as JavaScriptCore. The exporting of native

methods is built on top of this capability with some adjustment.

Rather than concrete method invocation, calls to native modules are
translated into messages that are sent through a bridge. # In the
past, the parameters passed through are required to be serialized

and deserialized when crossing the bridge, which imposes perfor-

mance penalties. This was a toll for cross-language communication.
4 The JSl-based optimization removed the need for this serialization

and deserialization.

Let’s have a look at the big picture (Figure 6-5). Here, we need to pay

attention to the three different dimensions for the same flow: (1) the
dimension of call hierarchy, which is the main flow of the diagram; (2) the
dimension of the thread model and lock, which is marked with rectangles
and a lock symbol; and (3) the dimension of the storage of native module

metadata, which 1s marked with a soft disk.

RCT_EXTERN_MODULE

l @RCTBridgeModule
__attribute__{{constructor)) static void RCT_CONCAT(initialize_, objc_name)()

!

RCTRegisterModule @RCTBridge

m RCTModuleClasses

application(_:didFinishLaunchingWithOptions:) @AppDelegate

v

initWithDelegate:bundleURL:moduleProvider:launchOptions:
@RCTBridge
ﬂ il setUp

sourteURLForBridge v

[Ep— start
1

---------------- »| registerextraModules
extraModulesForBridge

m _moduleDataByID

_moduleDataByName
RCTGetModuleClasses _moduleClassesBylD

_initializeModules

A 4

_prepareModulesWithDispatchGroup

n H _moduleDataByID @RCTCxxBridge

JSCExecutorFactory() _moduleDataByName
I a _moduleClassesBylD
JS thread
loadSource e

| Background thread I |_ | n

prepareBridge s

executeSourceCode

Figure 6-5 React Native bootstrap (phase 0-1)

The initialization flow is divided roughly into three phases, prior boot-
strap, bootstrap, and initialization on the JavaScript layer. They are

discussed in the respective sections. Note that we have a dedicated

section to explain the thread and locking mechanism, so please don’t

feel frustrated when something does not look clear in the beginning.

Now, let’s start the journey.
6.5.1 Phase 0, Prior Bootstrap

The initialization of a native module starts from the macro

RCT EXTERN MODULE which in turn applies two other macros

RCT EXTERN REMAP MODULE and

RCT EXPORT MODULE NO_ LOAD (Listing 6-9). These macros
eventually will populate the module class within RCTModuleClasses in

a very early stage, which will be used to instantiate the native module

instances in the next step.

#define RCT EXTERN MODULE (objc name, objc_ supern:
#define RCT EXTERN REMAP MODULE(// --—-————————-.
js_name, objc name, objc supername)

objc name:

objc_supername @

end @interface objc name(RCTExternModule)<RCTB:

@end

@implementation objc name (RCTExternModule)

RCT EXPORT MODULE NO LOAD(Jjs name, objc name) ,
#define RCT EXPORT MODULE NO LOAD(Jjs_ name, objc 1

RCT EXTERN void RCTRegisterModule(Class);

+(NSString *)moduleName

return @ #Jjs_name;

}

__attribute ((constructor))
static void RCT CONCAT(initialize ,

objc name) ()

RCTRegisterModule([objc name class]);

}
Listing 6-9 Phase 0-0, behind RCT_EXTERN_MODULE

1
)Define the @interface using the module name passed in.
) .
Define its @Rimplementation straight after.

)Implement moduleName. This is the exact equivalent of get-
Name () in Android native module implementation.

4
)Use___attribute__((constructor))tornakethernodub

registration before everything else.

5)Call RCTRegisterModule to register the module.

NoteRCT EXTERN MODULE is primarily used by Swift-based
[hative modules where the 10ad () method is not allowed. For
vanilla Objective-C, we can use the simpler version

RCT EXPORT MODULE to achieve the same.

At the end of this phase, let’s look at how the RCTRegisterModule
is implemented (Listing 6-10).

void RCTRegisterModule(Class moduleClass)
{
static dispatch once t onceToken;
dispatch once(&onceToken, ~{
RCTModuleClasses = [NSMutableArray new].
RCTModuleClassesSyncQueue = dispatch quse
"com.facebook.react.ModuleClassesSyncQuse
DISPATCH QUEUE CONCURRENT
)i
})i
RCTAssert (
[moduleClass conformsToProtocol:@protoc«
@"%@ does not conform to the RCTBridgeMc
moduleClass);
// Register module
dispatch barrier async(RCTModuleClassesSyncQuet

[RCTModuleClasses addObject:moduleClass
})i

Listing 6-10 Phase 0-1, RCTRegisterModule @RCTBridge

l)Instantiate the singleton entities, RCTModuleClasses and

RCTModuleClassesSyncQueue.

2
)Add the class object to RCTModuleClasses.

At the end of this phase, the native modules are in the form of their

respective classes and are stored in RCTModuleClasses.

6.5.2 Phase 1, Bootstrap

Next, let’s look at the bootstrap of a React Native app, more specifi-

cally, the initialization of the bridge.

RCTBridge offers two approaches for initialization:

)Direct initialization: This way, the initialization is facilitated with
initWithBundleURL:moduleProvider:launchOp-

tions: which accepts the bundle URL and extra modules

(Section 4.3.7) directly as parameters.

)Delegate initialization: This way, the initialization is facilitated
with initWithDelegate:launchOptions:, where the bun-

dle URL and extra modules are provided by a delegate.

We are going to use the second approach which is more flexible and
is more conforming to the general design pattern on iOS (Listing 6-
11).

NoteWhen both bundle URL and delegate are provided using the
designated initializer (initWithDelegate:bundleURL:module-

Provider: launchOptions:),the information provided by the

|Iatter (i.e., delegate) will prevail.

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDele
var window: UIWindow?

var bridge: RCTBridge!

func application(
__ application: UIApplication,
didFinishLaunchingWithOptions
launchOptions: [UIApplication.LaunchOptionsKe
) => Bool { // —-—————— .
self.bridge = RCTBridge(// —-——————————————n.
delegate: self, launchOptions: launchOptio:
)
let rootView = RCTRootView(// ———————————--r.
bridge: self.bridge,
moduleName: "ManyFaces",
initialProperties: nil
)

self.window = UIWindow(frame: UIScreen.main.!

let rootViewController = UIViewController()
rootViewController.view = rootView // —————-.
self.window! .rootViewController = rootViewCo:
self.window! .makeKeyAndVisible() // —-=—————-.
return true
}
func sourceURL(for bridge: RCTBridge!) -> URL!
#if DEBUG
return RCTBundleURLProvider.sharedSettings()
jsBundleURL (forBundleRoot: "index", fallbackRe
#else
return Bundle.main.url(
forResource:"main", withExtension:" jsbundle

)
#endif

}

Listing 6-11 Phase 1-0, app bootstrap logic in AppDelegate

1
)The initialization all happens within the application:did-
FinishLaunchingWithOptions: callback.
2)Use the second approach to initialize the bridge. This is the crit-

ical line from where we can go deeper.

3)

Use the bridge to initialize the root view.

4)

Attach the root view to the window.rootvViewController,

and make it visible.

5 :
)OveﬂwethesourceURL(for bridge: RCTBridge!) to

provide the bundle. More specifically, when it’s in debug mode,
use RCTBundleURLProvider to load the bundle from the metro

server; otherwise, read the bundle file directly from the asset.

Here, the DEBUG macro is defined under Build Settings

>» Swift Compiler » Custom Flags » Other Swift

Flags.

Then let’s examine what’s going on within RCTBridge (Listing 6-12).

- (instancetype)initWithDelegate: (1d<RCTBridgeDe.

if

bundleURL: (NSURL *)bundleUl
moduleProvider: (RCTBridgeMc

launchOptions: (NSDictionary

(self = [super init]) {
delegate = delegate; // ——————————m————— ———.
bundleURL = bundleURL;

moduleProvider = block;

launchOptions = [launchOptions copy];
[self setUp]; // ——————— .

}

return self;

- (void)setUp

// perf log
Class bridgeClass = self.bridgeClass;
// Only update bundleURL from delegate if dele«
NSURL *previousDelegateURL = delegateBundleUR]
_delegateBundleURL =
[self.delegate sourceURLForBridge:self];// ----
if (_delegateBundleURL &&

![delegateBundleURL isEqual:previousDelegate

) A
_bundleURL = delegateBundleURL; // —--—-——-—-.

// Sanitize the bundle URL

_bundleURL = [RCTConvert NSURL: bundleURL.abso.
// ... for debug mode

self.batchedBridge = [[bridgeClass alloc] // --

initWithParentBridge:self];

[self.batchedBridge start]; // ————————————a——.
// ... perf

Listing 6-12 Phase 1-1, set up the RCTBridge

1)

Set the delegate (an AppDelegate instance) in step 0 to the
bridge.

2)
Move on.

3)

Call the delegate sourceURLForBridge implemented in
phase 0 to obtain the bundle URL.

)Instantiate the RCTCxxBridge which is another layer below
RCTBridge that deals directly with the C++ layer.

RCTCxxBridge is the layer we are going to stop for this
section.

5
)Move on to RCTCxxBridge .

As mentioned, the RCTCxxBridge is the cutting point between
Objective-C and C++. In React Native, there are four major C++ entities:

Instance, JSIExecutor, JsToNativeBridge, and
NativeToJdsBridge. Their names are very self-explained.
JSIExecutor executes JavaScript loaded in the form of bundle or string
literals. The JsToNativeBridge and NativeToJsBridge facilitate

the two-way communication between JavaScript and native layers. And

Instance is their container that provides the interfaces to the upper layer.

The major task of the next phase in RCTCxxBridge is to initialize

Instance and the associated entities (Listing 6-13).

- (void)start
{
// profiling
// Set up the JS thread early
_jsThread = [[NSThread alloc] initWithTarget: [:
selector:@selector (runRunLoop) object:nil]; //
__jsThread.name = RCTJSThreadName;
__JjsThread.qualityOfService =
NSOperationQualityOfServiceUserInteractive;
#1if RCT DEBUG
__JjsThread.stackSize *= 2;
#endif
[_jsThread start];
dispatch group t prepareBridge = dispatch grouj
// perf log
[self registerExtraModules]; // —-————————————-.
// Initialize all native modules that cannot b
(void)[self initializeModules:RCTGetModuleClas
withDispatchGroup:prepareBridge lazilyDiscovere
[self registerExtralLazyModules]; // —————————-.
// perf log
// This doesn't really do anything. The real 1
_reactInstance.reset(new Instance); // —-——-——--
__weak RCTCxxBridge *weakSelf = self;

// Prepare executor factory (shared ptr for coj

std::shared ptr<JSExecutorFactory> executorFact
if (!self.executorClass) {
if (!executorFactory) {
executorFactory =
std: :make shared<JSCExecutorFactory>(nullpi

}
} else {

}

// Dispatch the instance initialization as soo:

// been collected (see initModules)

dispatch group enter(prepareBridge); // -—-—---—--
[self ensureOnJavaScriptThread:"{
[weakSelf initializeBridge:executorFactory],
dispatch group leave(prepareBridge);
i
// Load the source asynchronously, then store :
dispatch group enter (prepareBridge); // —-—--——--
__block NSData *sourceCode;
[self
loadSource:” (NSError *error, RCTSource *sourt
if (error) {

[weakSelf handleError:error];

}

sourceCode = source.data;

dispatch group leave(prepareBridge);

}
// for debug
// Wait for both the modules and source code t«

dispatch group notify(prepareBridge, //
dispatch get global queue(QOS CLASS USER_ INTER!

{

RCTCxxBridge *strongSelf = weakSelf;
if (sourceCode && strongSelf.loading) {
[strongSelf executeSourceCode:sourceCode s

Listing 6-13 Phase 1-2, start the RCTCxxBridge

1
)Init the JavaScript thread. All JavaScript code will be executed
on this thread. Inside runRunLoop, a technique using iOS run

loop is used to start a persistent thread.
2)Use the native module instances provided by the delegate to

initialize their corresponding RCTModuleData which stores all

metadata of a native module (Section 4.3.2). This step is effec-

tive if the delegate implements the extraModulesForBridge
in phase 0. More specifically, this step could be used for depen-

dency injection on iOS (Section 4.3.7).

3 . :
)Use native module classes stored in RCTModuleClasses to
initialize their corresponding RCTModuleData (Section 4.3.2).
RCTModuleClasses is populated with the

RCT EXTERN MODULE that we used very often to export native
modules in previous sections. We are going to examine this
step very soon in Section 4.3.2.1. This step leads to the next

critical phase (1-3).

4, . . :
This method is not used for production.
)Instantiate Instance.

)Initialize JSCExecutorFactory which is the provider of

JSIExecutor.

)Initialize the four entities. Note that this step is carried out asyn-
chronously on the JavaScript thread.

8
)Load the JavaScript bundle.

9)Execute the JavaScript bundle loaded after steps 3, 7, and 8

are completed. Note that this is guaranteed with the prepare-

Bridge.

Next, let’s examine the initializeModules in step 3. This is
actually the most relevant step to this chapter as it is where all native
modules (and view managers) are instantiated. Again, all unrelated code is

removed for clarity (Listing 6-14).

- (NSArray<RCTModuleData *> *)
_initializeModules: (NSArray<Class> *)modules
withDispatchGroup: (dispatch group t)dispatchGron

lazilyDiscovered: (BOOL)lazilyDiscovered

// Set up moduleData for automatically-exporte

NSArray<RCTModuleData *> *moduleDataById =

[self registerModulesForClasses:modules
lazilyDiscovered:lazilyDiscove:

if (lazilyDiscovered) {

} else {
for (RCTModuleData *moduleData in moduleDat:
if (moduleData.hasInstance &&

(!moduleData.requiresMainQueueSetup || 1

)

(void) [moduleData instance]; // —-——————-.

_moduleSetupComplete = YES;

[self prepareModulesWithDispatchGroup:dispat

}
// ... profiling

return moduleDataById;

Listing 6-14 Phase 1-3, initialize modules

1)Transform the raw classes of native modules to
RCTModuleData wWith registerModulesForClasses.
This step is similar to that of registerExtraModules (phase
1-2, step 2). The difference here is that native modules are not
instantiated in this step. We look at the implementation of this
method in Listing 6-15.

2 . : .
)lazilyDiscovered is set to no for ordinary native modules

that are not passed in with registerAdditionalModule-

Classes.

3
)Initialize the native modules that require the main queue setup
and have been already instantiated, that is, native module in-
stances provided by registerExtraModules are under this

category (phase 1-2, step 2).

4)Initialize and instantiate the native modules that require the

main queue setup and are provided otherwise (using
RCT EXTERN MODULE macros). The implementation of pre-

pareModulesWithDispatchGroup is shown in Listing 6-16.

Let’s look at the registerModulesForClasses (Listing 6-15).

- (NSArray<RCTModuleData *> ¥*)
_registerModulesForClasses: (NSArray<Class> *)m

lazilyDiscovered: (BOOL)lazilyDiscove:

{

NSArray *moduleClassesCopy = [moduleClasses coj
NSMutableArray<RCTModuleData *> *moduleDataByIl
[NSMutableArray arrayWithCapacity:moduleClasse:
for (Class moduleClass in moduleClassesCopy) {
if (RCTTurboModuleEnabled() &&
[moduleClass conformsToProtocol:
@protocol (RCTTurboModule)]
) {

continue;
}
NSString *moduleName =
RCTBridgeModuleNameForClass (moduleClass);

// Check for module name collisions

moduleData = [[RCTModuleData alloc]

initWithModuleClass:moduleClass bridge:self].

_moduleDataByName[moduleName] = moduleData; .,
[moduleClassesByID addObject:moduleClass]; .
[moduleDataByID addObject:moduleDatal; // ---

}
[moduleDataByID addObjectsFromArray:moduleDat:

return moduleDataByID;

Listing 6-15 Phase 1-4, initialize modules (continue)

)Instantiate the RCTModuleData.

Save it to the corresponding data structures.

Listing 6-16 gives a simplified version of the previously used

_prepareModulesWithDispatchGroup that is removed with all the

noncritical logic. As you can see, it is another iteration that invokes an
instance of RCTModuleData. Note that this is where the

prepareBridge dispatch queue group (prepared in phase 1-3, step 2) is

applied.

- (void) prepareModulesWithDispatchGroup:

(dispatch group t)dispatchGroup

BOOL initializeImmediately = NO;

if (dispatchGroup == NULL) {

// ... condition not applied here
}

// ... perf

for (RCTModuleData *moduleData in _moduleDataB:
if (moduleData.requiresMainQueueSetup) {
dispatch block t block = "{ // —-——==—-———-.
if (self.valid &&
! [moduleData.moduleClass
isSubclassOfClass: [RCTCxxModule clas:

) A

//
(void) [moduleData instance]; // —-—-———--

[moduleData gatherConstants]; // —-—-——--

//
}
}i
if (initializeImmediately && RCTIsMainQueuc
// condition not applied here
} else {
if (dispatchGroup) {

dispatch group async(// —-————————--
dispatchGroup, dispatch get main queus
)i
}
}

_modulesInitializedOnMainQueue++;

Listing 6-16 Phase 1-5, initialize modules (continue)

Initialize and instantiate the native modules.

2)

Apply the initialization on the main queue as indicated by re-
quiresMainQueueSetup. As mentioned, this operation is

part of the prepareBridge dispatch queue group.

At this point, the native modules are in the form of RCTModuleData
stored in _moduleDataByID. Among those, the native modules
that require the main queue setup are initialized and are instantiated

up front. The rest of the native modules are instantiated on the run in
the next phases. Before we move on to those phases, we look at re-

quiresMainQueueSetup.

6.5.2.1 requiresMainQueueSetup

requiresMainQueueSetup is a class method defined in
RCTBridgeModule that can be overridden by any native modules.
When returning true, it indicates that the native module requires the
main queue setup, meaning to be set up in the main queue. This is
the explicit type of requiring the main queue setup. And as we just
saw, modules that require the main queue setup are instantiated up

front during bootstrap.

There are also native modules that require the main queue setup

implicitly. More specifically, if a native module either has a custom init
method or overrides the constantsToExport, it is determined as
requiring the main queue setup. This implicitly is also highlighted during

bootstrap with the following warning message:

Module HelloWorldManager requires main queue seti

The actual code that reflects this logic is inside the setUp method of
RCTModuleData (Listing 6-17). Actually, the sole purpose of this

method is to determine whether the native module requires a main queue.

- (void)setUp
{

// ... irrelevant logic

_hasConstantsToExport =
[moduleClass instancesRespondToSelector:
@selector(constantsToExport)
17
const BOOL implementsRequireMainQueueSetup =
[moduleClass respondsToSelector:
@selector (requiresMainQueueSetup)];
if (implementsRequireMainQueueSetup) {
_requiresMainQueueSetup =
[moduleClass requiresMainQueueSetup];
} else {
static IMP objectInitMethod;
static dispatch once t onceToken;
dispatch once(&onceToken, ~{

objectInitMethod =
[NSObject instanceMethodForSelector:@select

})i
const BOOL hasCustomInit = ! instance &&
[moduleClass instanceMethodForSelector:@select

_requiresMainQueueSetup =
_hasConstantsToExport || hasCustomInit;
if (_requiresMainQueueSetup) {
const char *methodName = "";
if (_hasConstantsToExport) ({
methodName = "constantsToExport";
} else if (hasCustomInit) {

methodName = "init";

RCTLogWarn (

@"Module %@ requires main queue setup since

"requiresMainQueueSetup . In a future re.
"on a background thread unless explicit:
_moduleClass,

methodName) ;

Listing 6-17 Set up the RCTModuleData

We know that RCTModuleData is initialized and instantiated in two
methods, registerModulesForClasses and registerExtra-

Modules in RCTCxxBridge. And the setUp method is eventually

called from there.

6.5.2.2 Threads and Locks

One difficulty in understanding the flow (Figure 6-5) is the threading
model and locks. Some locks are nested down to the call stack and

are working on different phases, which obscure the actual mechanics.

The first lock we encounter is across phase 0 and phase 1, where a
dispatch barrier is applied on a dispatch queue,

RCTModuleClassesSyncQueue, when we add the native module

classes to RCTModuleClasses in RCTRegisterModule (Listing 6-
18).

dispatch barrier async(RCTModuleClassesSyncQuet
[RCTModuleClasses addObject:moduleClass];

Listing 6-18 Lock in phase 0

This is to ensure that all the module classes have been stored

successfully before we read from RCTModuleClasses in phase 1

(Listing 6-19).

- (void)start

{

(void)[self initializeModules:RCTGetModuleClas

withDispatchGroup:prepareBridge lazilyDiscovert

}

Listing 6-19 Waiting for lock in phase 1

Inside RCTGetModuleClasses (), dispatch sync isused to
wait for all the dispatch barriers to complete (Listing 6-20).

NSArray<Class> *RCTGetModuleClasses(void)
{

__block NSArray<Class> *result;
dispatch sync(RCTModuleClassesSyncQueue, “{
result = [RCTModuleClasses copy];

})i

return result;

Listing 6-20 RCTGetModuleClasses

The second lock is in phase 1 which is applied around a dispatch group,
prepareBridge. Firstly, this dispatch group is passed all the way down
to prepareModulesWithDispatchGroup where blocks are created

for each native module and are shot to the main thread (Listing 6-21).

- (void) prepareModulesWithDispatchGroup: (dispat«
{

for (RCTModuleData *moduleData in _moduleDataB:
if (moduleData.requiresMainQueueSetup) {
dispatch block t block = 7{

}i:

if (dispatchGroup) {

dispatch group async(

dispatchGroup, dispatch get main queue
)i
}

_modulesInitializedOnMainQueue++;

Listing 6-21 Passed down to prepareModulesWithDispatchGroup

Next, the dispatch group is used (1) to initialize the bridge on the
JavaScript thread as well as (2) to load the bundle (Listing 6-22).

- (void)start

{

dispatch group enter(prepareBridge); // -—-—---—--
[self ensureOnJavaScriptThread: " {
[weakSelf initializeBridge:executorFactory],
dispatch group leave(prepareBridge); // -----
i
dispatch group enter(prepareBridge); // —--——-—-—--
__block NSData *sourceCode;

[self loadSource:” (NSError *error, RCTSource *:

if (error) {

[weakSelf handleError:error];

sourceCode = source.data;

dispatch group leave(prepareBridge); // -----

Listing 6-22 Init bridge and load the bundle

Lastly, the JavaScript execution can start after all the prerequisites are
met (Listing 6-23).

- (void)start

{

dispatch group notify(
prepareBridge,
dispatch get global queue(QOS CLASS USER_INTI
“{
RCTCxxBridge *strongSelf = weakSelf;
if (sourceCode && strongSelf.loading) {

[strongSelf executeSourceCode:sourceCode

Listing 6-23 Execute JavaScript after everything is done

6.5.3 Phase 2, Native Module on the JavaScript
Layer

The last step of native module initialization occurs on the

JavaScript layer.

Again, let’s look at the big picture (Figure 6-6) to understand what
happens after the JavaScript execution starts. This step involves direct
native-to-JS communication through the global object. More specifically,
JavaScript and native layers both inject functions and classes to global

objects for other sides to call at a certain stage.

1S =>4
NativeModules.HelloWorldManager NativeModules.genModule » NativeModules.genMethod
v L2
NativeModuleProxy::get N JSINativeModules::getModule
name = "HelloworldManager" name = "HelloworldManager"

ISINativeModules::createModule
name = "HelloWorldManager"

(1) .| ModuleRegistry::getConfig
name = "HelloWorldManager"

v
RCTNativeModule::getMethods
::getConstants

C++

. A4
Objc [RCTModuleData methods]
[RCTModuleData exportedConstants]

Figure 6-6 React Native bootstrap (phase 2)

We have seen that to import a native module, we do not use the or-
dinary ES6 require (). Instead, we use NativeModules.xxx

which is the actual entry point of native module initialization on the

JavaScript layer.

Let’s see what happens inside (Listing 6-24).

NoteAll the relevant source code files on the JavaScript layer are lo-

cated in react-native/Libraries/BatchedBridge.

let NativeModules: {[moduleName: string]: Object,
if (global.nativeModuleProxy) {

NativeModules = global.nativeModuleProxy;
} else if (!global.nativeExtensions) ({

// ... irrelevant logic

}

Listing 6-24 Phase 2-0, reference NativeModules on the JavaScript layer

NoteHere, we only cover the logic flow in production where the JS
bundle is loaded from a bundle file and native and JavaScript layers

share the same runtime.

Here, the native nativeModuleProxy is injected to the global object
on the C++ layer, which is backed by NativeModuleProxy. We are
going to discuss the exact mechanics in the second half of this topic. For
now, we need to know that the NativeModules.xxx will invoke the

getter of NativeModuleProxy (Listing 6-25).

class JSIExecutor::NativeModuleProxy : public js:

public:

NativeModuleProxy (

std: :shared ptr<JSINativeModules> nativeModu.
) : weakNativeModules (nativeModules) {}
Value get(Runtime &rt, const PropNamelID &name)

{

if (name.utf8(rt) == "name") {

return jsi::String::createFromAscii(rt, "N
}
auto nativeModules = weakNativeModules .lock
if (!nativeModules) {

return nullptr;

}

return nativeModules->getModule(rt, name); /.

}

void set(Runtime &, const PropNameID &, const ?

{

throw std::runtime error(

"Unable to put on NativeModules: Operation ul

}

private:
std: :weak ptr<JSINativeModules> weakNativeModu.

}i
Listing 6-25 Phase 2-1, invoke the get method of NativeModuleProxy@ JSIExec

1
)This is the getter method that gets called whenever we import a

native module.

2
)Move on to the next step (Listing 6-26).

Value JSINativeModules::getModule(Runtime &rt, c«
if (!m moduleRegistry) {

return nullptr;
}
std::string moduleName = name.utf8(rt);
const auto it = m objects.find(moduleName); //
if (it != m objects.end()) {

return Value(rt, it->second); // —-—-————————-.
}
auto module = createModule(rt, moduleName); //
if (!module.hasValue()) {
// Allow lookup to continue in the objects own
// overrides of NativeModules

return nullptr;
}
auto result =

m _objects.emplace(

std: :move (moduleName),std: :move(*module)

).first; // """ .

return Value(rt, result->second); // ——=—————-.

Listing 6-26 Phase 2-2, getModule @JSINativeModules on the native layer

1
)Check if the native module information has already been
cached inm objects. Return the cached value if that’s the

case.

2)Move to the next step and create the native module informa-

tion. This step will eventuallv call a JavaScrint method to cre-

R - - N - - T T - T | I

ate the native module information (Listing 6-27).

3)

Add the newly created native module information to the cache.

4
)Return the newly created native module information to the

JavaScript layer.

folly::0ptional<Object> JSINativeModules: :createl
Runtime &rt,

const std::string &name

) o

if (!m genNativeModuledS) { // —-—————=————————.
m_genNativeModuleJS =
rt.global().getPropertyAsFunction(rt, " £fbGe

}

auto result = m moduleRegistry->getConfig(name

if (!result.hasValue()) {
return folly::none;

}

Value moduleInfo = m genNativeModuledS->call(,
rt,
valueFromDynamic(rt, result->config),
static_cast<double>(result->index)

)i

CHECK(!moduleInfo.isNull())

<< "Module returned from genNativeModule is nu.

folly::0ptional<Object> module(
moduleInfo.asObject(rt).getPropertyAsObject(rt,

return module; // —-—————————— .

Listing 6-27 Phase 2-3, createModule @JSINativeModules on the native lay

1)

Fetch the native module metadata fromm moduleRegistry,
which is the C++ counterpart of the mentioned data structures
that store RCTModuleData. In this step, all the methods and
constants are extracted from the native module from the

RCTModuleData generated in phase 1.

2
)Invoke the fbGenNativeModule with the relevant informa-
tion (Listing 6-28).

3
)Return the result of fbGenNativeModule, the object of

which is returned eventually to the JavaScript layer.

function genModule (
config: ?ModuleConfig,
moduleID: number,

) ?{

name: string,

module?: Object,

oA

if (!config) { return null; }
const |
moduleName,
constants,
methods,
promiseMethods,
syncMethods
] = config;
if (!constants && !methods) {
// Module contents will be filled in lazily
return {name: moduleName};
}
const module = {};
methods && methods.forEach((methodName, method:
const isPromise =
promiseMethods && arrayContains (promiseMethoc
const isSync =

syncMethods && arrayContains(syncMethods, mef

const methodType =

isPromise ? 'promise' : isSync ? 'sync' : 'a
module[methodName] = genMethod(

moduleID, methodID, methodType
); /) e

})i

Object.assign(module, constants);

return {name: moduleName, module};

global. fbGenNativeModule = genModule; // ------

Listing 6-28 Phase 2-4, _fbGenNativeModule @ NativeModules on the Jave

1
)Iterate through all the methods for this native module.
2
)Create the JavaScript layer counterparts for those methods.

)Inject the genModule as fbGenNativeModule so it can be

invoked from the native layer.

6.5.3.1 The Nature of a Native Call

Lastly, let’s look at the genMethod. At this point, the mechanic of a native
call should be crystal clear to us (Listing 6-29).

function genMethod (
moduleID: number, methodID: number, type: Methe
) {
let fn = null;
if (type === 'promise') {
fn = function promiseMethodWrapper(...args: 1
// In case we reject, capture a useful stac
const enqueueingFrameError: ExtendedError -
return new Promise((resolve, reject) => { ,
BatchedBridge.enqueueNativeCall(// —--—--
modulelD,
methodID,
args,
data => resolve(data), // ———————————-.
errorData => reject(updateErrorWithErr¢
errorData, enqueueingFrameError)
) 1
)i

})i
}i
} else {
fn = function nonPromiseMethodWrapper(...args

const lastArg =

LX]
—

args.length > 0 ? args[args.length - 1]
const secondLastArg =

args.length > 1 ? args[args.length - 2]

LX]
—

const hasSuccessCallback = typeof lastArg -:
const hasErrorCallback =
typeof secondLastArg === 'function';
hasErrorCallback && invariant(hasSuccessCa.
'Cannot have a non-function arg after a :
)i
const onSuccess = hasSuccessCallback ? last
const onFail = hasErrorCallback ? secondLa:
const callbackCount =
hasSuccessCallback + hasErrorCallback;
args = args.slice(0, args.length - callbacl
if (type === 'sync') {
return BatchedBridge.callNativeSyncHook (
modulelD,
methodlID,
args,
onFail,
onSuccess,
)i
} else {
BatchedBridge.enqueueNativeCall(// —-----
modulelD,
methodlID,
args,
onFail,

onSuccess,

)i

fn.type = type;
return fn;

}
Listing 6-29 Phase 2-5, genMethod @NativeModules on the JavaScript layer

Wrap the promise around the actual native call.

2
)Carry out the asynchronous native call using enqueueNa-

tiveCall with the moduleID and methodID.

Carry out the synchronous native call using cal1lNativeSyn-

cHook with the moduleID and methodID.

We reached our last stop on the JavaScript layer, the native call. As
you can see, all the native calls are essentially converged to two methods
that are injected from the native layer (Listing 6-30).

enqueueNativeCall (

moduleID: number,
methodID: number,
params: any|[],

onFail: ?Function,

onSucc: ?Function,
) {
this.processCallbacks(
moduleID, methodID, params, onFail, onSucc
)i
this. queue[MODULE IDS].push(moduleID);
this. queue[METHOD IDS].push(methodID);
this. queue[PARAMS].push(params) ;
const now = Date.now();
if (
global.nativeFlushQueueImmediate &&
now - this. lastFlush >= MIN TIME BETWEEN FLI
) {
const queue = this. queue;
this. queue = [[], [], [], this. callID];
this. lastFlush = now;

global.nativeFlushQueueImmediate(queue); // -

callNativeSyncHook (
modulelID: number,

methodID: number,

params: any|[],
onFail: ?Function,

onSucc: ?Function,

): any {

this.processCallbacks(
moduleID, methodID, params, onFail, Succ

)i
return global.nativeCallSyncHook (
moduleID, methodID, params

R

Listing 6-30 enqueueNativeCall, @MessageQueue on the JavaScript layer

1
)nativeFlushQueue Immediate for asynchronous method

calls.

2
)nativeCallSyncHook for synchronous ones. Both of the pre-

ceding calls accept the module ID and method ID procured in
the last few steps with the NativeModuleProxy, another enti-

ty injected from the native layer.

3
)A queue that aggregates method calls within five milliseconds

for asynchronous calls.

Next, we will examine the missing pieces in the bootstrap process
discussed earlier, the C++ layer that interacts directly with the
JavaScriptCore. We will answer three specific unresolved questions:
(1) how the bundle is executed through JavaScriptCore, (2) how the

two-way communication is facilitated between JavaScriptCore and

the React Native runtime, and (3) how the native module metadata
are stored in the C++ layer, which reveals the mechanism of method

calls to the Objective-C layer.

6.5.4 Execute the Bundle

JSCRuntime is in the core of JavaScript and native communication,
which is basically an encapsulation of JavaScriptCore . Let’s firstly
get familiar with some JavaScriptCore API and then get straight to

its core.

JSEvaluateScript () runs a script in the form of a
JSStringRef which can be created from an ordinary string using
JSStringCreateWithUTF8CString (). And
JSStringRelease () releases a JSStringRef. These functions are
the building blocks of evaluateJavaScript, which is eventually

called in the last step of React Native bootstrap (Section 4.3.2) to execute

the bundle. Next, we look at the function of JSCRuntime to have a taste
(Listing 6-31).

jsi::Value JSCRuntime::evaluatedJavaScript (
const std::shared ptr<const jsi::Buffer> &bu:
const std::string &sourceURL) {
std::string tmp(
reinterpret cast<const char *>(buffer->data(

);

TR+ rinaRef annirereRef =

VO Cde ddd g a NN e [R R R AL A

JSStringCreateWithUTF8CString(tmp.c _str());
JSStringRef sourceURLRef = nullptr;
if (!sourceURL.empty()) {
sourceURLRef = JSStringCreateWithUTF8CStrin
sourceURL.c _str());
}
JSValueRef exc = nullptr;
JSValueRef res =
JSEvaluateScript(// —————————mmm_— .
ctx , sourceRef, nullptr, sourceURLRef, O,
JSStringRelease(sourceRef);
if (sourceURLRef) {
JSStringRelease(sourceURLRef);
}
checkException(res, exc);

return createValue(res);

Listing 6-31 JSCRuntime::evaluateJavaScript

1
)This is where the bundle got executed eventually.

6.5.5 The Two-Way Communication

Again, let’s get to know some JavaScriptCore API first. We know
that the communication is pivoting around the global object. We
use JSContextGetGlobalObject () to get the C++ representative
of this object. We can then inject native instances and functions to

this object to be called by the JavaScript layer.

The native instances are injected into the global object in JavaScript

in three steps:

Map C++ classes to JavaScript using JSClassCreate () us-

inga JSClassDefinition.

2)

Instantiate such class using JSObjectMake ().

3
)Inject the instance to the global object using

JSObjectSetProperty ().

Next, we look at the code that injects the NativeModuleProxy to

the global object, which facilitates the two-way communication that

establishes the native modules on the JavaScript layer (Listing 6-32).

void JSIExecutor::initializeRuntime() {

SystraceSection s("JSIExecutor::initializeRunt:
runtime ->global().setProperty(// ——————————-.
*runtime ,

"nativeModuleProxy",

Object::createFromHostObject(// ——————————-.
*runtime , std::make shared<NativeModulePr«

nativeModules

Listing 6-32 Inject nativeModuleProxy

1
)global () is a wrapper function that gets the gl obal object

using JSContextGetGlobalObject () and returns it
wrapped witha jsi: :0Object.

2
)j si::0bject::setProperty () isthe wrapper for

JSObjectSetProperty ().

3 :
)j si::0bject::createFromHostObject isthe wrapper of

JSClassCreate () and JSObjectMake ().

This is how the object nativeModuleProxy is made available to
the JavaScript layer. And other critical functions such as native-
FlushQueueImmediate () and nativeCallSyncHook () are in-

jected to global objects in a similar way.

6.5.6 The Native Module Metadata

As discussed, the metadata is also stored in the C++ layer. This is

achieved by saving the reference of RCTModuleData in
RCTNativeModule which is in turn stored in

Instance: :moduleRegistry .

RCTNativeModule works as a simple C++ wrapper of

RCTModuleData. Let’s take a look at how a method is invoked as an

example (Listing 6-33).

static MethodCallResult

invokeInner (RCTBridge *bridge, RCTModuleData *moc

{

if (!bridge || !bridge.valid || !moduleData) {
return folly::none;

}
1d<RCTBridgeMethod> method = moduleData.method:

NSArray *objcParams = convertFollyDynamicToId (}
Qtry {
id result =
[method invokeWithBridge:bridge
module:moduleData.instance arguments:obj«
return convertIdToFollyDynamic(result);
} @catch (NSException *exception) {

// Pass on JS exceptions

if ([exception.name hasPrefix:RCTFatalExcept:

@throw exception;

}

return folly::none;

Listing 6-33 Method invocation from C++

1)

Get the method object from RCTModuleData.

2
)Invoke the method. Internally, it uses NSInvocation to invoke

the method dynamically.

6.5.7 Wrap Up

It’s a pretty heavy section. It takes significant effort to write, and I suppose
the reading effort would be equal if not more. With an eye for detail, you
might have answered several practical questions that are not well

documented already, for instance:

1)What is the app bootstrap process like? The start render time is
one of the key factors to one of the key metrics to five-point
apps. By answering this question, we know the initialization of

our native modules could block the bootstrap process. So we

shall consider making native modules that are not essential or

need a long time to be loaded lazily.

2)

What does it mean by requiresMainQueueSetup? Thisis an
actual follow-up question of the previous one. More specifically,
native modules that require the main queue setup are those
that need to be initialized up front and could block the boot-
strap. By answering this question, we also know that there are
actually two types of requiresMainQueueSetup, explicit and
implicit.

3)

At which point native modules are instantiated? We know that
only native modules that require the main queue setup are in-
stantiated up front; the rest stay in the form of class metadata
and will only be instantiated in an on-demand way. Answering
this question could be beneficial to multibridge settings. This
setting is common for apps that use React Native for parts of
its features. Here, lazy loading can be used to improve memory
footprint as it gives the option to each bridge to load only native
modules that are needed.

4)What is lazy loading exactly? We haven't fully answered this
question just yet. We know that native modules that do not re-
quire the main queue setup are lazily loaded. And you might
have noticed that RCTBridge offers a registerAddi-

tionalModuleClasses to enable lazy loading. We will leave

it to you to explore in that multibridge is not a common scenario

that most of our readers would confront.

5)Wha’[is exactly a native method call? We know that the nature
of native method calls are two C++ functions injected to the
global object, nativeFlushQueueImmediate and native-
CallSyncHook. By answering this question, we know what to

look at when there is a bottleneck imposed by the bridge.

It's sometimes essential to understand the underlying logic for fixing
hard bugs or deep squeezing the performance. Moreover, | found the
insight of the internal mechanism is beneficial for everyday develop-
ment activities such as decision making, filtering answers on Stack
Overflow and issues on GitHub, as well as discussing pull requests.
It’s like understanding the soil properties before building a skyscraper
or understanding the aerodynamics before making an aircraft. At the

end of the day, a solid understanding leads to a solid product, a 05

app.

Leaving aside all practical purposes, an inside-out understanding is
always fun. Next, let's continue this journey by understanding the ani-

mation mechanism. It will be another intensive albeit fun one.

6.6 Animation Inside Out

In this section, we examine the underlying mechanisms of a native
event, an animated value, and a value interpolation/calculation, which
are the three major building blocks of the native driver that enables

the native-level performant animation.

The secret behind the performance is direct native-to-native commu-
nication that is completely free of JavaScript thread intervention. The
relationship between the event source (user gestures) and the re-
ceivers (component) is a directed graph connected with animation
nodes (will be discussed very soon). After this graph is defined in the
JavaScript layer, it is pushed down altogether to the animation sub-
system of the React Native runtime to keep record. Then all anima-

tion can be performed purely in the native layer.

Before we move on, let’s have a look at the big picture (Figure 6-7).

Technically, all the animation entities listed earlier are represented by the
data structure animated node . In Section 3.4.2, we used the value
calculation (Section 3.3.2.3) technique to derive the component props in
animation from the native event. What this technique creates is nothing but
an animated node graph (ANG). Those animated nodes (1) are connected
with each other within the ANG and (2) are attached to both the event
source, the ScrollView in our case, and the event receiver, the
SpinningEnvelope component. We will revisit this relationship very
soon in Section 6.6.1.1, so don’t worry if you cannot recall the
implementation details from the case study. Lastly, all the preceding

relationships are declared on the JavaScript layer and are passed down to

the native layer. ANG is the key information for the native layer to carry out
animation without the involvement of the JavaScript thread. More
specifically, the animation can be carried out by (1) relaying a native event
from the source all the way to the receivers through the ANG and (2)

deriving the result of the value calculation/interpolation along the way.

createAnimatedComponent (HOC)

1 1
1 1
1 1
: |UNSAFEicomponentWillMountl I componentDidMount | :
1 1
1 ‘ |
I | _attachProps | 1
: I _attachNativeEvents |:
b oo o e o omm omm omm omm e . . i R [L L 4
L el el 1 Ll il Bl L]
1 v AnimatedProps | 1 1AnimatedEventy 1
1 1 1 1
1 | constructor | setNativeView | 1 1 __attach 1
1 1 1 1
1 1 l 1 1 1
! ! ! ttachNativeE !
1 __attach __connectAnimatedView |1 1 dttachivativeEven 1
1 1 1 1
o o= - % ——————————————— o L L L L JS
PP EEEEEEEEEEEEEEEEEEEEEmE mEmEEEEEEEEEEEEEE EfEEE------ L]
I ¥ : 1
1 createAnimatedNode | | connectAnimatedNodeToView | | addAnimatedEventToView | 1
1 1
I : 1
connectAnimatedNodes . .
I RCTNativeAnimatedModule 1
oo me e Em Em E EE EE N B BN EE EE BN B EE BN N M NN N N NN N NN NN N M BN BN M BN N BN BN BN EE BN N BN BN MmN EE EE E B o

Figure 6-7 Internal architecture of the native driver

Let’s track and trace from the entry point createAnimatedCompo-
nent () (Listing 6-34). This is where all animation elements are de-
clared, that is, establish the ANG (Section 6.6.1), bind the event re-

ceiver (Section 6.6.2), and attach the event source (Section 6.6.3).

oteCode for JavaScript-driven animation is removed on purpose

or clarity. We also remove the logic of node detaching for simplicity.

function createAnimatedComponent<Props: {+[strinc
Component: React.AbstractComponent<Props, Inst:
) : AnimatedComponentType<Props, Instance> {
invariant (
typeof Component !== 'function' || // —-=————--
(Component.prototype && Component.prototype
'“createAnimatedComponent does not support ¢
'use a class component instead.',
)i
class AnimatedComponent extends React.Component

_component: any;
_propsAnimated: AnimatedProps;

_attachNativeEvents() {
// Make sure to get the scrollable node fo:
// ~ScrollResponder.Mixin~.
const scrollableNode = this. component?.gef
? this. component.getScrollableNode()
: this. component;
for (const key in this.props) {
const prop = this.props[key];
if (prop instanceof AnimatedEvent && proj

prop. attach(scrollableNode, key); //

_attachProps(nextProps) { // —-————=-——=—————-.
const oldPropsAnimated = this. propsAnimated,
this. propsAnimated = new AnimatedProps (
nextProps,

this. animatedPropsCallback,

);

__setComponentRef = setAndForwardRef ({
getForwardedRef: () => this.props.forwarde«
setLocalRef: ref => {

this. prevComponent = this. component;

this. component = ref; // ————————————n-.

b
})i

render () {
const props = this. propsAnimated. getValue

return (
<Component
{...props}

ref={this. setComponentRef}

/>
)

UNSAFE _componentWillMount() { // -—-————————--
this. attachProps(this.props);
}

componentDidMount () {

this. propsAnimated.setNativeView(this. compc
this. attachNativeEvents(); // —————————————.

}

return React.forwardRef(// —-—————————————-.

function AnimatedComponentWrapper (props, ref

) {
return (
<AnimatedComponent
{...props}
{...(ref == null ? null : {forwardedRef: 1
/>
)i
})i

}
module.exports = createAnimatedComponent;

Listing 6-34 createAnimatedComponent

1 , . .
)createAnimatedComponent is the entry point of all anima-

tion-related logic. It is a standard HOC. It wraps the compo-
nent passed in with the AnimatedComponent which, in its life
cycle methods, sets up the metadata (events, props, values)
related to animation. Two points worth noting here are: (a) func-
tional components are not supported, and (b) it uses the tech-
nique of ref forwarding which we introduced in Section 4.5.3.4.

2
)Set the ref (Section 4.3.2.1) to this. component.

3
)Set up the ANG with the starting point set to

_propsAnimated. We will know very soon that propsAni-

mated: AnimatedProps is also one type of animated node.

This step will be discussed in detail in Section 6.6.1.

4
)Bind the propsAnimated with the current component,
which connects the ANG to the event receiver. This step will be

discussed in Section 6.6.2.

5)

Attach the native eventto the current component, which con-
nects the ANG to the event source. Note that only
ScrollView is supported by vanilla React Native, which is
sufficient for most scenarios that involve a gesture. This step

will be discussed in Section 6.6.3.

Next, we look at how the ANG is established from the entry point of
UNSAFE componentWillMount in step 3. Step 4 that connects
ANG to the receiver end and step 5 that connects ANG to the sender
end will be examined in detail in Sections 6.6.2 and 6.6.3, respectively.
Then in Section 6.6.4, we will see how events are transmitted end to

end.
6.6.1 Establish the Animated Node Graph

Let’s recall the pull-to-refresh animation we implemented in Section 3.4.2.
As a reminder, we use value calculation to define the animation behavior.

Listing 6-35 shows the original code.

<LoomingSpinningEnvelope
color={"'#6291£f0"'}
size={45}
style={{
opacity:
Animated.add(
Animated.multiply(
this.userPulling,

this.pullDownPos.interpolate({
inputRange: [-loadingIndicatorOffset,
outputRange: [0.5, 0]
})
) 1

Animated.multiply(
this.autoScrolling,
this.pullDownPos.interpolate({
inputRange: [-loadingIndicatorOffset,
outputRange: [1l, 0]
})
) 1

}}
/>

Listing 6-35 Value calculation for pull-to-refresh

Data structure wise, all the individual animated values, the value cal-
culation (e.g., Animated.multiply ()), and value interpolation are
different forms of animated nodes. The invocation of animation-relat-
ed functions essentially instantiates the corresponding subclasses of
animated nodes. The cascading invocation of such functions incorpo-
rates those animated nodes together to form the mentioned ANG.
The calculated result of such value calculation is represented by the
root of the tree and is eventually attached to props of a component,

the process of which will be examined in Section 6.6.3.

A copy of the ANG is maintained in the native layer as well. This is

achieved majorly with two methods createAnimatedNode: and

connectAnimatedNode: residing in

RCTNativeAnimatedModule. These two methods are invoked as
side effects when the ANG is established, which we will examine later

in this section.

Programmatically, the ANG is established using two key animated
node methods: attach() and makeNative (). attach()
is used for establishing the ANG on the JavaScript layer, while -

makeNative () is for establishing the native layer representative.

NoteThe following logic is a bit hard to be interpreted as the key
|:nethods reside in different classes within the AnimatedNode inheri-
ance hierarchy. And those methods are to establish ANG with an-

other kind of hierarchy.

6.6.1.1 JavaScript Pass

The JavaScript pass starts from step 3 of

createAnimatedComponent, from where an AnimatedProps is

instantiated, and all the animated nodes are attached. Let’s get started from

that point by looking at the implementation of attachProps in
createAnimatedComponent. Basically, this method instantiates an
AnimatedProps and invokes the attach () method of it (Listing 6-
36).

_attachProps(nextProps) {

this. propsAnimated = new AnimatedProps(// ---
nextProps,

this. animatedPropsCallback,
)i

class AnimatedProps extends AnimatedNode {
_props: Object;

constructor (props: Object, callback: () => voic
super();

B, EREEn(lp /) e

}
__attach(): void {
for (const key in this. props) {
const value = this. props[key];

if (value instanceof AnimatedNode) {

value. addChild(this); // —-——=——=—=———-.

}
Listing 6-36 __attachProps

1 _ :
)Contlnued from step 3in createAnimatedComponent.

2
)Ca”__attach()OfAnimatedPersandrnoveon.

3
)Call ___addchild() ofallthe props that are animated.

Here, attach() and addChild () are the paired methods calling
each recursively. In particular, attach () calls all the parent’s ad-
dChild () whichinturncallsthe attach () of the respective par-

ent and traverses the complete ANG.

The preceding recursion resides in AnimatedWithChildren from

which all nodes except for the starting node inherit (Listing 6-37).

class AnimatedWithChildren extends AnimatedNode
_children: Array<AnimatedNode>;
constructor() {
super();
this. children = [];
}
__makeNative() { // —-—————=——— .
if (!this. isNative) {
this. isNative = true;
for (const child of this. children) {

child. makeNative();
NativeAnimatedHelper.API.connectAnimated!

this. getNativeTag(),

child. getNativeTag(),
)i

}

super. makeNative();
}
__addChild(child: AnimatedNode): void { // ----
if (this. children.length === 0) {
this. attach(); // --———————— .

}
this. children.push(child); // ——=————————-.

if (this. isNative) {

Listing 6-37 AnimatedWithChildren

1)

__addChildis called from attach of the children node.

2
)Call ___attach of the current node to recursively attach all the

nodes downward the tree hierarchy.

3
)Native pass (Section 6.6.1.2).

Figure 6-8 shows the animated node graph generated.

AnimatedProps

4

A 4

AnimatedStyle

r 3

AnimatedAddition

/\

AnimatedMultiple

N

AnimatedMultiple

A

AnimatedValue AnimatedInterpolation Anim

(userPulling)

(autoScrolling)

atedValue Animatedinterpolation

AnimatedValue
(loadinglIndicatorOffset)

Figure 6-8 An animated node graph (ANG)

6.6.1.2 Native Pass

Like components, animated nodes all have their native layer repre-

sentatives of the same type. The native layer counterpart is created

using __makeNative which in turn calls two native methods from

RCTNativeAnimatedModule, createAnimatedNode () and

connectAnimatedNode ().

Let’s start by revisiting the ~ makeNative () (Listing 6-38).

NoteWe haven’t seen the entry point of the native pass yet, which will

be covered in Section 6.6.3.

__makeNative() {
if (!this. isNative) {
this. isNative = true; // —--—————-—————o—-.
for (const child of this. children) {
child. makeNative(); // —-——————=—————————.
NativeAnimatedHelper .API.connectAnimatedNo«
this. getNativeTag(), // —-—-——=————==———-.
child. getNativeTag(),

);

}

super. makeNative();

Listing 6-38 __makeNative

)

Setthe isNative to true to flag that this node is native for

the following logic.

2)F{ecursively make all the children nodes native. Note that in the

respective animated node classes, the parent’s
makeNative () is also called to traverse the whole graph.

3
)Call __getNativeTag () to generate a tag for the current ani-

mated node and to call one of the key native methods, cre-

ateAnimatedNode (), to register the current node.

4)

Call the other key native method, connectAnimatedNode (),

to make connection between the current node and its child.

Next, we look at the getNativeTag (). This method resides in the
AnimatedNode, the superclass of all nodes (Listing 6-39).

__getNativeTag(): number {

const nativeTag =
this. nativeTag ?? NativeAnimatedHelper.genc
if (this. nativeTag == null) {
this. nativeTag = nativeTag;
NativeAnimatedHelper.API.createAnimatedNode (
nativeTag,
this. getNativeConfig(),
)i
this. shouldUpdatelListenersForNewNativeTag :

}

return nativeTag;

Listing 6-39 __ getNativeTag

1
)Call createAnimatedNode() from step 3 in __makeNative().

Lastly, we look at the two key native methods in
RCTNativeAnimatedModule. In fact, those two methods are thin
wrappers of their counterparts in

RCTNativeAnimatedNodesManager.

The AnimatedNode is created in the native layer using

createAnimatedNode:config: (Listing 6-40).

RCT EXPORT METHOD (createAnimatedNode: (double)tag
config: (NSDictionary<NSString -

[self addOperationBlock:” (RCTNativeAnimatedNodse

[nodesManager createAnimatedNode:[NSNumber ni

Y1

Listing 6-40 createAnimatedNode:config:

The heavy lifting is carried out by

RCTNativeAnimatedNodesManager which encapsulates all the

animated node records and operations (Listing 6-41).

- (void)createAnimatedNode: (nonnull NSNumber *)t:

config: (NSDictionary<NSStrin

static NSDictionary *map;
static dispatch once t mapToken;

dispatch once(&mapToken, "“{ // ————————————.

map = @{@"style" : [RCTStyleAnimatedNode clas
@"value" : [RCTValueAnimatedNode clas
@"props" : [RCTPropsAnimatedNode clas
@"interpolation" : [RCTInterpolationi
@"addition" : [RCTAdditionAnimatedNo
@"diffclamp”": [RCTDiffClampAnimatedNc
@"division" : [RCTDivisionAnimatedNoc
@"multiplication" : [RCTMultiplicatic
@"modulus" : [RCTModuloAnimatedNode «
@"subtraction" : [RCTSubtractionAnim:
@"transform" : [RCTTransformAnimated!
@"tracking" : [RCTTrackingAnimatedNoc
})i

NSString *nodeType = [RCTConvert NSString:conf:

Cilass Inoaecliass = Inap|noaelrypejl,;, // ——————————-
if (!nodeClass) {
RCTLogError (@"Animated node type %@ not suppc

return;
}
RCTAnimatedNode *node = [[nodeClass alloc] inif
node.manager = self;
_animationNodes[tag] = node; // ————————————--.

[node setNeedsUpdate]; // —-—————————mmm——.—- — ——.

Listing 6-41 createAnimatedNode:config: (internal call)

1)

Take the factory pattern to create the corresponding animated
node class according to the config string passed in from the
JavaScript layer. Note that the relationship between native

classes and JavaScript ones is 1:1.

2)

Store the created animated node instance in a map.

3)

Set “needs update” for the newly created node. This flag will be
used in Section 6.6.4.

The relationship among them has been recorded in the native layer by
connectAnimatedNode:childTag (Listing 6-42).

RCT EXPORT METHOD (connectAnimatedNodes: (double)p:

childTag: (double)childTag)

[self addOperationBlock:” (RCTNativeAnimatedNode

[nodesManager connectAnimatedNodes:[NSNumber

31

Listing 6-42 connectAnimatedNode:childTag:

Again, the actual work is carried out by

RCTNativeAnimatedNodesManager which establishes the same
ANG as in the JavaScript layer (Listing 6-43).

- (void)connectAnimatedNodes: (nonnull NSNumber *
childTag: (nonnull NSNumber *

RCTAssertParam(parentTag) ;
RCTAssertParam(childTaqg);

RCTAnimatedNode *parentNode = animationNodes][}
RCTAnimatedNode *childNode = animationNodes]|cl
RCTAssertParam(parentNode) ;
RCTAssertParam(childNode) ;

[parentNode addChild:childNode]; // —————————-.
[childNode setNeedsUpdate]; // ———————————— .

Listing 6-43 connectAnimatedNode:childTag: (internal call)

)

Establish the same parent-to-children relationship as in the

JavaScript layer.

2)

Set “needs update” for the child node. This flag will be used in
Section 6.6.4.

6.6.2 Bind the Event Receiver

We know that the starting point of the graph is attached to the component

in animation, which is the AnimatedProps (Listing 6-44).

class AnimatedProps extends AnimatedNode {

___makeNative(): void {
if (!this. isNative) {

this. isNative = true;

for (const key in this. props) {
const value = this. props[key];

if (value instanceof AnimatedNode) {

}

value. makeNative();

}

if (this. animatedView) {
this. connectAnimatedvView(); // ---—-——--

setNativeView(animatedView: any): void { // ---

}

if (this. animatedView === animatedView) ({
return;

}

this. animatedView = animatedView;
if (this. isNative) {
this. connectAnimatedView();

connectAnimatedView(): void {

invariant(this. isNative, 'Expected node to
const nativeViewTag: ?number = ReactNative.f:

this. animatedView,

);

NativeAnimatedHelper.API.connectAnimatedNode’

this. getNativeTag(),

nativeViewTag,

);

}
Listing 6-44 AnimatedProps

1
)The_animatedViewissetbyskx)ZOfcreateAnimated—

Component.

2
)This is the critical line within _ makeNative (). Though we
haven’t encountered the entry point of this method yet, we

know that it is recursively called for all nodes within the ANG.

3)

Call the native method connectAnimatedNodeToView () to

make the connection.

Next, we look at the native layer implementation. Similarly, here the
native module RCTNativeAnimatedModule provides merely a thin

wrapper to RCTNativeAnimatedNodesManager (Listing 6-45).

RCT EXPORT METHOD (connectAnimatedNodeToView: (doul

viewTag: (double)viewTaqg)

NSString *viewName = [self.bridge.uiManager vi¢
[self addOperationBlock:” (RCTNativeAnimatedNodse

[nodesManager connectAnimatedNodeToView: [NSNi

P1q

Listing 6-45 connectAnimatedNodeToView:viewTag:

Lastly, we look at the actual native implementation of the

connectAnimatedNodeToView:viewTag:viewName: (Listing 6-

46).

(void)connectAnimatedNodeToView: (nonnull NSNuml

viewTag: (nonnull NSNuml

viewName: (nonnull NSStr:

RCTAnimatedNode *node = animationNodes[nodeTac¢
if ([node isKindOfClass:[RCTPropsAnimatedNode ¢
[(RCTPropsAnimatedNode *)node connectToView:?

}
[node setNeedsUpdate]; // ————————mmmmmmoo————.

Listing 6-46 connectAnimatedNodeToView:viewTag:viewName: (internal ca

Register the native view in animation with the

RCTPropsAnimatedNode.

2)

Set “needs update” for the RCTPropsAnimatedNode. This

flag will be used in Section 6.6.4.

6.6.3 Attach the Event Source

As usual, let’s look back at the implementation layer where the event source
is bound to Scrol1View (Listing 6-47).

<Animated.FlatList

data={this.state.data}
renderItem={this.renderItem}
onViewableItemsChanged={this.onViewableItemsCh:
contentInset={{

top: this.state.loading ?

5: 0

)
scrollEventThrottle={1}
onScroll={

Animated.event([{ // —-—————————————— .

nativeEvent: { contentOffset: { y: this.pu:

}1, { useNativeDriver: true }) // ———————-—-.
}
onScrollBeginDrag={this.beginDrag}
onScrollEndDrag={this.endDrag}
ref={this.getScrollviewRef}

onMomentumScrollEnd={this.onReset}

/>

Listing 6-47 Revisit the Moment based on FlatList

1)
Like animated nodes, the Animated.event () basically in-
stantiates an AnimatedEvent which we will examine very
soon.

2) .
By saying nativeEvent and useNativeDriver: true,wWe

indicate that the event should be sent to the native layer. The
JavaScript layer will receive the same event, so we can bind
an additional callback to it if we want. This callback will still be

subject to the performance penalty of the JavaScript layer.

Next, we examine the respective logic in
createAnimatedComponent. More specifically, we look at how the
nativeEvent object combined with the onScroll props is translated
into metadata that is understandable by the native layer. Moreover, we will
encounter the entry point of the ANG native pass (Section 6.6.1.2) in this

process. Continue from step 5in _attachNativeEvents (Listing 6-

48).

_attachNativeEvents() {

const scrollableNode = this. component?.getScr«
? this. component.getScrollableNode()

: this. component;

for (const key in this.props) {
const prop = this.props[key];
if (prop instanceof AnimatedEvent && prop.
prop. attach(scrollableNode, key); // ----
this. eventDetachers.push(() =>

prop. detach(scrollableNode, key)
)i

Listing 6-48 _attachNativeEvents

1)

Call _attach() if we encounter an AnimatedEvent. at-

tach () is a wrapper of the method attachNativeEvent ().

Let’s get to those two methods directly (Listing 6-49).

___attach(viewRef: any, eventName: string) ({

this. attachedEvent = attachNativeEvent(// ---
viewRef,

eventName,

this. argMapping,
)i

function attachNativeEvent(// ———————————-—————.
viewRef: any,
eventName: string,
argMapping: $ReadOnlyArray<?Mapping>,

): {detach: () => void} {

const traverse = (value, path) => { // —=—————-.
if (value instanceof AnimatedValue) {
value. makeNative(); // —-—-——=—=——=————o—.
eventMappings.push({
nativeEventPath: path,
animatedValueTag: value. getNativeTag(),
}) i
} else if (typeof value === 'object') {
for (const key in value) {

traverse(value[key], path.concat(key));

}
}i

traverse(argMapping[0].nativeEvent, []); // ---
const viewTag = ReactNative.findNodeHandle(viev
if (viewTag != null) {

eventMappings.forEach(mapping => { // —————-.

NativeAnimatedHelper.API.addAnimatedEventT«
viewTag,
eventName,
mapping,
)i
})i
}

return {

}i

Listing 6-49 _attach

1
)Here, we need to pay attention to the parameters passed

through. viewRef is the react ref of the Scrollview;
eventName is the prop name which is onScroll;

this. argMapping is the first parameter passed to the Ani-
mated.event(), which is [{nativeEvent: {contentOff-
set:{ y: this.pullDownPos }}}].

2)Define a traverse () in a way that it can extract the path and

associate it with the animated value. Here, the key path extract-

edis 'contentOffSet'.

3
)Call the first makeNative () of the animated value bound to

the event. This leads to the cascading invocation of the same
methods throughout the ANG (Section 6.6.1.2).

4
)Invoke the traverse () ‘ One caveat is that the native-

Event should be the first element in the array.

)Pass the mapping of the event path to the animated value down

to the native layer.

For event attaching, we look at the native layer implementation. Here,
we can find the same pattern that the native module
RCTNativeAnimatedModule works as a thin layer that offloads the
work to RCTNativeAnimatedNodesManager (Listing 6-50).

RCT EXPORT METHOD (addAnimatedEventToView: (double
eventName: (nonnull NSString *)¢

eventMapping: (JS: :NativeAnimatse

NSMutableDictionary *eventMappingDict = [NSMut:

eventMappingDict[@"nativeEventPath"] = RCTConve

if (eventMapping.animatedValueTag()) {
eventMappingDict[@"animatedValueTag"] = // --
@ (*eventMapping.animatedvValueTag());

[self addOperationBlock:” (RCTNativeAnimatedNodze
[nodesManager addAnimatedEventToView: [NSNumbe¢

1

Listing 6-50 addAnimatedEventToView:eventName

1
)Reorganize the parameters passed in from the JavaScript

layer.

2
)PaSSHdOWhtORCTNativeAnimatedNodesManager(LBﬁng
6-51).

- (void)addAnimatedEventToView: (nonnull NSNumber
eventName: (nonnull NSString

eventMapping: (NSDictionary<NSString*, id>

NSNumber #*nodeTag = [RCTConvert NSNumber:eventl
RCTAnimatedNode *node = animationNodes[nodeTac¢
... // error check
NSArray<NSString *> *eventPath =
[RCTConvert NSStringArray:eventMapping[@"nat:
RCTEventAnimation *driver =
[[RCTEventAnimation alloc] initWithEventPath
NSString *key = [NSString stringWithFormat:@"%(

if (_eventDrivers[key] != nil) {

[eventDrivers[key] addObject:driver]; // ---
} else {

NSMutableArray<RCTEventAnimation *> *drivers

[drivers addObject:driver]; // —-———————————-.

_eventDrivers[key] = drivers;

Listing 6-51 addAnimatedEventToView:eventName:eventMapping (internal

I)Create the RCTEventAnimation using the eventPath
passed down. We will come back to this class when we exam-
ine the event transmission pass. For now, we only need to
know that this class keeps a record of the eventPath and the

associated animated value (node).

)Record the event key which is basically the eventPath con-

catenated with the react tag.

6.6.4 Native Event Transmission

Now it’s time to connect everything up. We know that gesture-driven

animation starts from the gesture on the RCTScrollView; let’s start from
there (Listing 6-52).

- (void)scrollvViewDidScroll: (UIScrollView *)scro:

{
NSTimeInterval now = CACurrentMediaTime();
[self updateClippedSubviews];
if (_allowNextScrollNoMatterWhat ||
(_scrollEventThrottle > 0 && _scrollEventTI
RCT SEND SCROLL_EVENT(onScroll, nil); // --
// Update dispatch time
_lastScrollDispatchTime = now;
_allowNextScrollNoMatterWhat = NO;
}
RCT FORWARD SCROLL EVENT(scrollViewDidScroll :
}

#define RCT SEND SCROLL EVENT(_ eventName, userD:
{

NSString *eventName = NSStringFromSelector (@:

[self sendScrollEventWithName:eventName scro.

}

- (void)sendScrollEventWithName: (NSString *)eveni

scrollView: (UIScrollView *):

userData: (NSDictionary *)1

if (![_lastEmittedEventName isEqualToString:eve

_coalescingKey++;

_lastEmittedEventName = [eventName copy];
}

RCTScrollEvent *scrollEvent = [[RCTScrollEvent

initWithEventName:eventName
reactTag:self.reactTac
scrollViewContentOffset:scrollView.cc
scrollViewContentInset:scrollView.cc
scrollViewContentSize:scrollView. cc
scrollViewFrame:scrollView. f:
scrollViewZoomScale:scrollView. z¢

userData:userData

coalescingKey: coalescingKe

[_eventDispatcher sendEvent:scrollEvent]; // --

}

Listing 6-52 Event source of RCTScrollView

Send an event with all the information included.

2)

Set a throttle to 17 milliseconds. For JavaScript-powered ani-
mation, this throttle is reasonable. This throttle could be re-

moved for native-powered animation.

The event is eventually sent to RCTNativeAnimatedModule
which, again, passes it down to RCTNativeAnimatedNodesManager
for the hard work (Listing 6-53). With all the relevant information for event
transmission registered (Sections 6.6.2 and 6.6.3),
RCTNativeAnimatedNodesManager is able to dispatch the event to
the destined animated node through the ANG.

// # RCTNativeAnimatedModule
- (void)eventDispatcherWillDispatchEvent: (1d<RCTI

{

RCTExecuteOnMainQueue (" {
[self-> nodesManager handleAnimatedEvent:evel
})i

}
// # RCTNativeAnimatedNodesManager

- (void)handleAnimatedEvent: (1d<RCTEvent>)event

{

if (_eventDrivers.count == 0) {
return;
}
NSString *key = [NSString stringWithFormat:@"%(
event.viewTag, RCTNormalizeAnimatedEventName (¢
NSMutableArray<RCTEventAnimation *> *driversFo:

_eventDrive

if (driversForKey) {
for (RCTEventAnimation *driver in driversForl
[self stopAnimationsForNode:driver.valueNo«

[driver updateWithEvent:event]; // —-—-————--

}
[self updateAnimations]; // ————————————————.

Listing 6-53 Event dispatcher

D

Find the animation drivers related to the event and iterate

through them. This information is populated in Section 6.6.3.

2
)The updateWithEvent depth first searches the ANG to iden-

tify all the event receivers (Section 6.6.4.1).

3
)The updateAnimations breadth first searches the ANG to
update all the associated animated nodes and eventually up-

dates the event receiver, a component (Section 6.6.4.2).

Next, we see how the component got updated in this process by ex-

amining steps 2 and 3 closer in the following two sections.

6.6.4.1 ldentify Receivers

The depth-first search is carried out by searching through the children of the
animated node. As mentioned, this search is used to identify all the
receivers (Listings 6-54 and 6-55).

- (void)updateWithEvent: (id<RCTEvent>)event
{

NSArray *args = event.arguments;

id currentValue = args[2];

for (NSString *key in eventPath) { // -—-————--
currentValue = [currentValue valueForKey:key

}

_valueNode.value = ((NSNumber *)currentValue) .«
[valueNode setNeedsUpdatel]; //
}

Listing 6-54 Depth-first search to mark the receivers (updateWithEvent)

1)

Extract the value from the event using the eventPath popu-
lated in Section 6.6.3.

2
) Update the animated node with the value extracted.
setNeedsUpdate cascading calls the same method of all the

children of the animated node. See the logic in the next
shippet.

- (void)setNeedsUpdate

{
_needsUpdate = YES; // ——————————— e ——.

for (RCTAnimatedNode *child in childNodes.obj¢
[child setNeedsUpdate]; // —-———————————————.

Listing 6-55 Depth-first search to mark the receivers (setNeedsUpdate)

1)

Mark self as “needs update.”

Cascading marks all children as “needs update.” Take the ex-
ample ANG we used in Section 6.6.1.1; the resulting state of the

data structure is given in Figure 6-9.

Event Receiver (s)

Event Source
(Scroll View)

Figure 6-9 Update pass within an animated node graph (ANG)

6.6.4.2 Update

Let’s continue from step 3 in handleAnimatedEvent (Listing 6-56).

// # RCINativeAnimatedNodesManager

- (void)updateAnimations

{

[animationNodes enumerateKeysAndObjectsUsingB.
if (node.needsUpdate) {
[node updateNodeIfNecessary]; // —-———————--

}
1

}
// # RCTAnimatedNode

- (void)updateNodeIfNecessary

{
if (_needsUpdate) ({

for (RCTAnimatedNode *parent in parentNodes

[parent updateNodeIfNecessary]; // —-—-—-———--

}
[self performUpdate]; // ——————————————————o.

}

Listing 6-56 Breadth-first search to update (updateAnimations)

1)Iterate through the registered animated nodes and carry out the
updateNodeIfNecessary () of all nodes.

2)The update of ANG is carried out as a breadth-first search
(BFS). Here, all parent nodes need to be updated first before

the current node is updated. The stop condition of the BFS is

falsein needsUpdate, so the values can be directly used for

nodes that have been updated.

)Perform the actual update of the animated node.

Let’s take a look at the performUpdate of
RCTAdditionAnimatedNode continued from step 3 (Listing 6-57).

// # RCTAdditionAnimatedNode
- (void)performUpdate
{
[super performUpdate]; // ——————————— .
NSArray<NSNumber *> *inputNodes = self.config]|
if (inputNodes.count > 1) {
RCTValueAnimatedNode *parentl = (RCTValueAnir
[self.parentNodes objectForKey:inputNodes[O0]
RCTValueAnimatedNode *parent2 = (RCTValueAnir
[self.parentNodes objectForKey:inputNodes[1]
if ([parentl isKindOfClass:[RCTValueAnimated!
[parent2 isKindOfClass:[RCTValueAnimatedl

self.value = parentl.value + parent2.value,

Listing 6-57 Breadth-first search to update (performUpdate)

1
)Before the calculation of the current node, perform the search
on related nodes through RCTPropsAnimatedNode (Listing 6-
58).

- (void)performUpdate
{
[super performUpdate];
if (! connectedViewTag) {
return;
}
for (NSNumber *parentTag in self.parentNodes. k¢
RCTAnimatedNode *parentNode =
[self.parentNodes objectForKey:parentTag];
if (
[parentNode isKindOfClass:[RCTStyleAnimate«
) {
[self-> propsDictionary addEntriesFromDict:
[(RCTStyleAnimatedNode *)parentNode propsD:
} else if (
[parentNode isKindOfClass:[RCTValueAnimate«
) {
NSString *property =
[self propertyNameForParentTag:parentTag];
id animatedObject =
[(RCTValueAnimatedNode *)parentNode animate
if (animatedObject) {

self-> propsDictionary[property] = animaf
} else {

CGFloat value =

[(RCTValueAnimatedNode *)parentNode value

self-> propsDictionary[property] = @(val

}

if (_propsDictionary.count) {
[self updateView]; // —————— o .

Listing 6-58 Breadth-first search to update (RCTPropsAnimatedNode::perfc

1
)Populate the propsbDictionary with the properties in

change.

2)

Update the views using the propsDictionary. See in List-

ing 6-59 the implementation of updateview.

- (void)updateView

{
if (_managedByFabric) {

} else {
[bridge.uiManager
synchronouslyUpdateViewOnUIThread: connected!
viewName: connecte

props: propsDici

Listing 6-59 updateView

6.7 Adaptive to All Screens, Layout Design

In the experience of the author, the various widths of phones rarely cause
issues. The heights do. Unscrollable vertical layout could easily mess up the
Ul, especially on small screens. Here are some hints from the battle-ironed

methods to do a vertical layout that is adaptable to any screens:

1)

4 Do not use an absolute value for height.

2)

+# Make all components layoutable, that is, the layout of a
component should be able to be extrapolated from its flex at-
tributes with no surprise. To achieve this, all customized com-
ponents should be designed to behave the same as stock
components — they can maintain their inheritance layouts
while respecting flex attributes passed down from the con-
sumer. Practically, the spread operator on the style props is

your friend.

3)
Do not overabstract. Try to make the component hierarchy

flatten and to put in one place all components involved in one
screen. So they can be programmed, reasoned, and debugged
in one place. Combined with the second hint, you will find cod-
ing layout a breeze. Moreover, the animation code can benefit

from this practice too.

4)

Make the best of available space by using intrinsic sizes
combined with £1exGrow. More specifically, (a) let the compo-
nents with solid intrinsic size occupy the space they
need (nonnegotiable space) and (b) leverage f1exGrow to dis-
tribute the gaps left among those components. In some cases,
the size of some components (such as text size) is also nego-

tiable. Discuss with your designer if that’s the case.

5)

Use raw calculation based on screen height as the last re-
sort. It is not very scalable (in terms of adding new compo-

nents) and hard to maintain.

6.8 Time to Say Goodbye

We have completed the journey of React Native. From programming
techniques to internal mechanisms, | hope this journey is exciting and

fruitful to you too. Nonetheless, the topics discussed in this book are

far from enough to cover the complete enormous ecosystem of React
Native which arises based on a whole lot of JavaScript projects that
are equally significant, sophisticated, and complex. They are, namely,
Yoga that makes flexbox possible on mobile development; Metro that
enables hot reload and debugging of JavaScript; NodeJS and Web-
pack that establish the foundation to most React Native projects;
Babel that enables JSX; JavaScriptCore and Hermes that provide
the JavaScript runtime; TypeScript that makes JavaScript a safer
language; Jest that is a framework to write unit tests in JavaScript;
and lastly but most importantly, React that defines the modernized
program paradigm accompanied with the reconciliation/rendering

mechanism.

There are also a plethora of awesome third-party libraries that
haven’t been examined. There are react-native-fast-image, react-na-
tive-vector-icons, and react-native-svg for image rendering and
caching; react-native-reanimated, react-native-gesture, react-native-
gesture-handler, and react-native-lottie that extend the React Native
animation capacity; react-navigation that offers a declarative way for
page routing; react-native-video that enables multimedia; and recy-
clerlistview that enhances the long list performance in React Native,

just to name a few.

React Native and its ecosystem is ever iterating. Turbo modules

and Fabric are on the horizon; the practice of great front end (share

code across all platforms including desktop and the Web) is still be-
hind the walls of big corporations; and excellent developers and
teams are continuously creating new awesome projects filling almost
every capillary requirement and pain point. Hopefully when you are
reading this book, these new architectural optimizations and method-

ologies are available to the community.

From first-party to third-party projects, from coding guides to n-times
efficiency methodologies, it’s simply not possible to cover the com-
plete ecosystem that is moving forward, regardless of how much |
would like to. All the preceding unexplored territories could be side
tasks in the future. You may also choose your next adventure in ac-

cordance with your project goal to make the greatest impact.

It is worth noting that the principles in this book are subjective from
my point of view and are also subjective to be challenged. Having
been working on projects of various scales, from startup apps with
thousands of users to full-fledged Internet systems that are used by
hundreds of millions, | believe there is a “best practice” suitable for
each team under each particular circumstances. It is the development
team to define what it is. So please use the guides in this book as
scale weights, instead of rules, when making your own decisions.
Please bear in mind that these are just opinions derived from years of
working on the technology by a developer just like yourself. Feel free

to revise, enhance, or undermine some of the opinions based on your

specific circumstance. Feel free to contact me (holmeshe @hotmail.-

com) if you want to discuss it with me.

We have accomplished our adventure of Manyface. After having thor-
oughly explored it, the adventurous region has now turned into a
playground with maps and guidance. A good idea is to use Manyface
as a reference app to experiment on when you are tackling technical
difficulties, making design decisions, or trying to understand
platform/network particularities. With the understanding of both the
regime of application and the regime of framework, you are now more

than capable of doing it.

Let’s conclude it here. Happy hacking, and Valar Morghulis (>_5).

Index

A, B

Android version

project setup
asynchronous

hello() method
HelloWorldManager
implementation

Kotlin class
ManyfacePackage
subdirectory

Animated node graph (ANG)
Animation
AnimatedProps
createAnimatedComponent() method
event source

internal architecture
interpolation/calculation
node graph
AnimatedWithChildren
createAnimatedNode
getNativeTag()
JavaScript pass
makeNative()

native pass
pull-to-refresh

value calculation

nodes

receiver option
source process
addAnimatedEventToView
attach() method
attachNativeEvents
FlatList
transmission
depth-first search
dispatcher
handleAnimatedEvent
performUpdate
RCTPropsAnimatedNode
RCTScrollView
receiver identification
update
updateView
Animation technique
gesture-driven
glimmering skeleton view
layout

See Layout animation
setState() method
user experience
value

See Value animation
Asynchronous operations
application development

await keyword

fetch()
interruption
meaning
online process
conditional rendering
feed list
fetching data
loadData() method
network fetching
requirements
orphan operations
promise
traditional callback paradigm
C
Composition vs. Inheritance
components
HOC

See Higher-order component (HOC)
render() method
specialization order
Congestion window (CWND)
D
Dependency injection
CREATE MODULE
implementation details
module creation
native components/modules

Design exception flow

ACE programmers

catch block/error boundary
controlled/uncontrolled exceptions
definition

external/internal exceptions
feature flow

global error handling

key qualities

principles

problem-solving

software architecture

bubble

crash points

entry points

Direct manipulations
Domain Name System (DNS)
E

Error handling

component

definition

error boundary

exception flow

moment production
componentDidCatch method
error page

exception flow

exception report

feeds reinforced

instant crash
requirements

silent log

source code
withErrorBoundary method
problematic component
Event

Android version
callbacks/set properties
hello() method

10S send message
JavaScript layer
native-to-native events
receive message
Exception handling
approaches
ErrorBoundary
network programming
StarCraft

Explicit Congestion Notice (ECN)
Export constants
Android

bootstrap phase
disadvantages

10S view manager
JavaScript

F

Flexbox

alignltem
components
component size
feed components
containers

control panel
divided mock
implementation
metadata area
requirements
resources

source code
visual outcome
widget

flex sizes
intrinsic size
justifyContent

G
Gesture-driven animation
calculation results
interpolation
native events
phases

pull down load effect
real-world objects
requirements
transitional stage

value animation

H
“Hello world” app

container and children
handling props.children
index.js

inline style
internals/JSX

JSX

key concepts

layout subcomponents
margin mode

native development environment
position mode
production/dev mode
props

setState() internals
skeleton source code
states/props

cascading change
component

current component
setState() method
styles

TypeScript

visual outcome
Higher-order component (HOC)
factory component

feed factory

implementation
meta data/control panels
multiple photo feeds
original feed
requirements

source code
Hypertext transfer protocol (HTTP/1.1)
API design

cache control
definition

dynamic request
GET

GraphQL

HOL blocking
POST

PUT request

query parameters
request method
response methods
server-side errors
static/dynamic types
status codes

URI

I

Initial properties
features

init method

JavaScript layer

main activity

Internet

ECN

head-of-line blocking (HOL blocking)
HTTP/2

IPV6

Multipath TCP
multiplexing

qualities

QUIC and HTTP/3

10S native module
asynchronous

callback

events

implementation

native component

native method invocation
project setup

header file
HelloWorldManager
HelloWorldManagerBridge
JavaScript/communication
Objective-C file

swift file

.xcworkspace

video component

LK

JavaScript

JavaScript layer
Asynchronization

See Asynchronous operations
modules
JavaScript XML (JSX)
app component
conditional rendering
createElement() code
DOM tree
Hello world app
meaning
static string
ternary expression
L
Layout animation
abstraction
Android
definition
expandable message
ExpandableText method
expand() method
source code
text component
LayoutAnimation.create()
linear/bouncing animation
raw animation config
requirements

shortcut methods

Layout design/screen
intrinsic sizes

spread operator

vertical layout

Long list

component

entries

FlatList item
optimization

rendering behaviors
TableView/recyclerview
warning message
withMetaAndControls
M

Modules

Android version
bootstrap

AppDelegate
approaches

init bridge and load
initialization
prerequisites
RCTBridge
RCTCXXBridge
RCTGetModuleClasses
requiresMainQueueSetup
threading model and locks

checklist creation

communication
comparable technology
concrete method
dependency injection
disadvantages
evaluateJavaScript
function arguments
initialization flow
10S

See 10S native module
JavaScript
JavaScriptCore
JavaScript layer
bootstrap
createModule@JSINativeModules
enqueueNativeCall
fbGenNativeModule@NativeModules
genMethod@NativeModules
getModule@JSINativeModules
NativeModuleProxy
NativeModules
JSEvaluateScript()
macros
metadata
nativeModuleProxy
native techniques
push notification
RCT EXTERN MODULE

RCTRegisterModule
rendering systems
requirements

video component
WebView

N, O, P, Q
Native components
Android

callback view
HelloViewManager
implementation
project setup

view properties
children

components
dependency injection
10S native
HelloViewManager
HelloViewManagerBridge
implementation
project setup
RCTViewManager
view properties
JavaScript layer
abstraction

isolated file
modified version

native techniques

react-native-fast-image
UI elements

video component

view manager

Network programming
asynchronous operations
diagnostic tools

DNS

exception handling
HTTP status code
network requests
network service

offline mode

potential design options
reinforce components
strategies

goals

HTTP/1.1

Internet

JavaScript layer
learning process

native layer

fetch network resources
local caching
Loominglmage

offline strategies
requirements
VideoView

protocols
TCP/IP

See Transmission Control Protocol/Internet Protocol (TCP/IP)
TLS
types
R
React
components
building blocks
feed source code
flexbox
key concepts
life cycle methods
programmatical form
props
render() method
source code
fractal topology
Hello world

See “Hello world” app
programmatic approach
React tag
command system
HelloViewManager
native layer
Objective-C dependency
react ref

reconcile implementation

ScrollView

setBlue method
UlView instance
Redux

action

collateral advantages
component

concepts

events

general principles
parsing/deserialization process
principles

social network
action/dispatcher
connect subscriber
implementation
loadData() method
requirements
store/reducer

states

video player
Rendering method
constrain

props
shouldComponentUpdate()
virtual DOM tree

requirements

S

ScrollView/FlatList methods
component

moment

FeedModel method
mock data
requirements
viewport/window
virtual list
Synchronous method
T

Transmission Control Protocol/Internet Protocol (TCP/IP)
application layer
congestion control
data delivery/nodes
duplication

empirical values
four-way handshake
general-purpose layers
handshake

header flags

headers

inbound packet
network clients

packet aggregation
port numbers
processing unit
protocol definition

pseudo packet

sliding window

software module

stack

TCP header

Transport layer security (TLS)
certificate authorities (CA)
definition

handshake

key exchange

pinning

Turbo modules

U

Uniform resource identifier (URI)
V,W,X,Y, Z

Value animation
Animated.spring()
Animated.timing()
Animated. Value
calculation

cascading invocation
cohort

component props
interpolation

JavaScript thread

loading indicator
Loominglmage
requirements

RotatingCircle

setValue()

skeleton view
spinning envelope
SpinningEnvelope
looming/image loading
Loominglmage
requirements

methods

setValue()

transform props.style
Video component
Android counterpart
feed images

10S implementation
JavaScript layer

feed categories
onViewableltemsChanged
ref forwarding
renderltem method
view manager
withMetaAndControls
wrapper

reinforced component
Android version
ErrorBoundary

10S code

JavaScript layer

requirements

theoretical method
requirements

video playback

Virtual DOM tree (VDOM tree)

	Front Matter
	1. Start Thinking in React
	2. Foundations of React
	3. Animation in React Native
	4. Native Modules and Components
	5. Network Programming
	6. Advanced Topics
	Back Matter

