React Native for
Mobile Development

Harness the Power of React Native
to Create Stunning i0S and
Android Applications

Second Edition

Akshat Paul
Abhishek Nalwaya

APIESS”

Akshat Paul and Abhishek Nalwaya

React Native for Mobile Development
Harness the Power of React Native to Create Stunning
iOS and Android Applications

2nd ed.

Apress:

Akshat Paul
Gurgaon, Haryana, India
Abhishek Nalwaya

Jaipur, Rajasthan, India

Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub via the book’s

product page, located at www.apress.com/9781484244531 . For more
detailed information, please visit http://www.apress.com/source-code

ISBN 978-1-4842-4453-1 e-ISBN 978-1-4842-4454-8
https://doi.org/10.1007/978-1-4842-4454-8

© Akshat Paul and Abhishek Nalwaya 2019
Standard Apress

Trademarked names, logos, and images may appear in this book. Rather
than use a trademark symbol with every occurrence of a trademarked name,
logo, or image we use the names, logos, and images only in an editorial
fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark. The use in this publication of trade names,
trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and
accurate at the date of publication, neither the authors nor the editors nor

the publisher can accept any legal responsibility for any errors or omissions

http://www.apress.com/9781484244531
http://www.apress.com/source-code
https://doi.org/10.1007/978-1-4842-4454-8

that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Distributed to the book trade worldwide by Springer Science+Business
Media New York, 233 Spring Street, 6th Floor, New York, NY 10013.
Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny(@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a

Delaware corporation.

Introduction
React is one of the most popular JavaScript framework as of 2019. It

took web development by storm when first introduced and its popular-

ity has been increasing among the developer community ever since.

React Native took this one step further when first introduced in 2015
and helped build Native iOS apps with common knowledge of web
technologies like JavaScript. In just a few years, React Native has be-
come an important player in native mobile development, and extend-
ing its support for both Apple iOS and Google Android was a game
changer. This required us to write second edition of this book, which
covers both platforms end to end to help you create stunning React

Native apps.

This book is divided into ten chapters and each one teaches a unique
aspect of building React Native applications. By end of this journey
we believe you will be a master developer with React Native and will
be able to publish your app to the Apple App Store or Google Play
Store. We commence our journey with an introduction to React in
Chapter 1, where you learn about core React concepts like Virtual
DOM, one-way data flows, props, and state, and also build a small
React application. In Chapter 2 we cover how to set up React Native
and start building a simple Hello World program. This chapter also
cover the anatomy of a React Native project and how to debug the

application. In Chapter 3 we discuss design patterns like MVC, as

well as new programming paradigms such as Flux and Redux. In this
chapter you learn about Redux core concepts, how to use Redux with
React Native, and the benefits of including it in a React Native appli-
cation. Chapter 4 covers how to build a user interface (Ul) with the
help of Flexbox, navigation with React Navigation, and few critical Ul
components, such as touchable highlight, listview, scrollview, and
more. In Chapter 5 we address how to implement device capabilities,
including creating apps to use features like GeolLocation, MapView,

Native Alert, WebView, and deep linking.

Chapter 6 covers a key feature that is essential to any real-world ap-
plication: communication with back-end servers. In this chapter you
learn how to make requests to get data from a server and post data
back to a server using various available React Native options. In
Chapter 7 , we discuss how to access native application program-
ming interfaces (APIs) that do not have a corresponding JavaScript
library; this is building Native Bridge. This skill helps us harness all
the features of native iOS and Android development. Chapter 8 cov-
ers how to write tests for our React Native application using Jest, and
also introduces snapshot testing. This chapter also introduces a static
type check commonly used in the React Native world, called Flow. In
Chapter 9, once you have learned how to create a full-featured React
Native application, it is equally important to test it with users and push
it onto the Apple App Store and Google Play Store. This chapter de-

scribes how to beta test a React Native application with the distribu-

tion systems available for iOS and Android. We also cover how to
create builds for iOS and Android, which is essential for submitting an
application to the Apple App Store and Google Play Store. In the final
chapter, Chapter 10 , you learn about some popular React Native li-
braries and where to go next, how to get help, and how to stay in

touch with the amazing React Native community.

In all, we hope that by end of this book you are confident in building
your next mobile application with React Native and launching it for
both iOS and Android. All the best!

Acknowledgments
We would like to thank our families, who saw us through this book,

talked things over, offered constructive feedback and provided sup-
port through our strenuous schedule without which conceiving this

book wouldn’t have been possible.

Also, we would like to thank Louise Corrigan, James Markham and

the entire team at Apress. And especially Nancy Chen who gave us
complete creative freedom to do things over the course of this book
which some time took more time then expected. Writing a book is a

long and arduous journey, but you all made it so easy for us.

Table of Contents

Chapter 1: Learning the Basics: A Whistle-Stop Tour of React

Why React?
Virtual DOM
One-Way Data Flow

Installation and Setup
Create a Hello World Application

Introduction to Components

Deep-Dive into Components

Properties

State

Summary

Chapter 2: The Simplest Program: Hello World with React Native
What Is React Native?

Installation

Installing Node and npm

Installing the React Native Package
Updating React Native

Your First App

Creating a Basic Skeleton
Running_the App on a Simulator
It’'s Not a UlWebView

Enabling Live Reload

What Makes React Native Different?

Debugging

Reload

Debugging_in Chrome
Debugging_in Safari

Showing Performance Monitor

The Inspect Element

Summary

Chapter 3: Solving Problems Differently with Flux and Redux
MVC Pattern

Flux

Success of Flux

Flux Deep Dive

The Dispatcher

The Need for Dispatcher [dispatch().and waitFor()]
Stores

Actions

Redux

Redux Core Concepts

Action

Reducer

Store

Redux with React Native
Working with the Components

Summary

Chapter 4: Canvas, Brush, and Paint: Working with the User

Interface

React Navigation
NavigatorlOS
Flexbox
flexDirection

Flex

Images
TouchableHighlight
ListView
ScrollView
<ScrollView> vs. <FlatList>

Animations

Summary

MapView and Geol ocation

Reviewing the Geol ocationMap Code
Adding Annotation on a Map
Displaying the Latitude and Longitude of the Current Location
AsyncStorage

Reviewing the AsyncStorage Code
Native Alert

Reviewing the NativeAlert Code
Extending the NativeAlert Example
WebView

Reviewing the WebView Code

Deep Linking

Summary

Chapter 6: Communicating with Servers
XMLHttpRequest

WebSocket

Fetch

Getting Data from a Server

Saving Data to a Server
Summary
Chapter 7: Native Bridging_in React Native

Native Bridge

Prerequisites for the Example
Native Bridge for Android
Summary

Chapter 8: Testing

Flow

Benefits of Using Flow

(-

est

Jest with React Native

D

S |

napshot Testing with Jest

Summary

Chapter 9: Getting Ready for the World
Apple Developer Account

Google Play Console

i0S Build Process

Create a CSR File

Beta Testing with TestFlight

Summary

Chapter 10: The Ecosystem: Extending React Native
Popular React Native Libraries

ul

Forms

Type Checking and Linting
Testing
Interacting with APIs and Back End

Routing

Utilities

Where to Get Help

React Native Repository,

Stack Overflow

Stay Updated with React Native

React Native Communities

Knowledge

Discussions and Proposals
Summary

Index

About the Authors and About the Technical
Reviewer

About the Authors

Akshat Paul
is a soft-

ware archi-
tect and au-
thor of the
books
React Na-
tive for iOS
Developme |
ntand
RubyMotio
n iOS De-
velopment

Essentials .

He is also a *

seasoned

technical
reviewer for

books on the topics of React, React Native, and Microservices with

top publishers. He has extensive experience in DevOps, mobile, and

Web development.

In other avatars, Akshat frequently speaks at conferences and mee-
tups on various technologies. He was an invited speaker at the React
Native Conference EU, Devops@scale Amsterdam, TheDevTheory
Conference, RubyConflndia, and the #inspect-RubyMotion Confer-
ence Brussels. He was also the keynote speaker at technology lead-
ership events in Bangkok and Kuala Lumpur on TDD. Besides writing
code, Akshat spends time with his family, is an avid reader, and is ob-

sessive about healthy eating. More information about Akshat can be

foundat https://www.akshatpaul.com/ .

Abhishek Nalwaya

is the author of three books and has spoken at many conferences and
meetups, such as RubyConf India and the RubyMotion conference. He has
extensive experience in DevOps, Web, and mobile development. Besides
programming, Abhishek loves to run and cook healthy food. More
information about Abhishek can be found at

http://www.nalwaya.com/ .

https://www.akshatpaul.com/
http://www.nalwaya.com/%2523_blank

About the Technical Reviewer

Alexander Chinedu Nnakwue

has a back-
ground in
mechanical
engineering
from the
University
of Ibadan in
Nigeria and
has been a
front-end
developer
for more
than three

years work-

ing on both
Web and
mobile technologies. He also has experience as a technical author,
writer, and reviewer. He enjoys programming for the web, and occa-
sionally, you can also find him playing soccer. He was born in Benin

City and is currently based in Lagos, Nigeria.

© Akshat Paul and Abhishek Nalwaya 2019
Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development
https://doi.org/10.1007/978-1-4842-4454-8 1

1. Learning the Basics: A Whistle-
Stop Tour of React

Akshat Paull and Abhishek Nalwaya?
(1) Gurgaon, Haryana, India
(2) Jaipur, Rajasthan, India

The journey of a thousand miles begins with one step.
—Lao Tzu

Before you embark on your React Native journey, you must know a
little bit about React (also known as ReactJS or React.js). In this chapter,
we quickly look at the core concepts of React, which will help you to work

on React Native. This chapter introduces the following topics:

. Introduction to React

. Virtual Document Object Model (DOM)
. One-way data flow

. React installation and setup

. Creating a first React Hello World app

. Introduction to components

https://doi.org/10.1007/978-1-4842-4454-8_1

. Props and state

Let’s get started! React is different from most popular web technolo-
gies, and you will learn why as you move through this chapter. Its
core concepts will open your mind to a new way of thinking if you
have spent a considerable amount of time with traditional frame-
works; this new way of thinking is sometimes called the React way of
thinking. You might have heard the phrase “Write once, run every-
where,” but dismissed it as nearly impossible due to the explosion of
different form factors (web, mobile, tablets). React has a different
guiding principle: “Learn once, write anywhere.” That seems quite dif-
ferent, and liberating. We begin this first chapter with a quick tour of
React, which will help prepare you for React Native. If you have an
elementary knowledge of React, you can skip this chapter and move

on to Chapter 2.

According to the official documentation, React is a JavaScript (JS)
library (not framework) for creating user interfaces (Uls). It was built
in a combined effort by teams from Facebook and Instagram. React
was first introduced to the world in 2013, and has taken it by storm,
with community-wide acceptance and the benefit of being the tech-
nology at the heart of Facebook. According to official documentation,
some consider React to be the V in a model-view-controller (MVC)
framework, because React makes no assumptions about the rest of

the technology stack used. You can use whatever technology you

wish and you can create a single section of your app with React or
React Native; you can also conveniently make changes in an already

created application by incrementally adding React to it.
Why React?

Do we really need another JavaScript library in a world full of Java-
Script libraries and frameworks? There is hardly a month that goes by

without a new JavaScript framework introduced.

React came into existence because its creators were faced with a
significant problem: how to build large applications in which data
change frequently. This problem occurs in almost any real-world ap-
plication and React was created from the ground up to solve it. As
you know, many popular frameworks are MVC or model-view-wild-
card (MV*), but here’s a point to be noted and reiterated: React is not
an MV* framework. It’s a just a library for building composable Uls for
Ul components with data that change over time. Unlike popular JS
frameworks, React does not use templates or Hypertext Markup Lan-
guage (HTML) directives. React builds Uls by breaking the Ul into
many components. That’s it, nothing else. This means that React
uses the full features of programming languages to build and render

views.

The following are some of the advantages of choosing React for your

next project:

React uses JavaScript extensively: Traditionally the views in

HTML are separated from the functionality in JavaScript. With Re-
act, components are created and there is one monolithic section
where JavaScript has intimate knowledge of your HTML.

. Extendable and maintainable: Components are formed by a
unified markup with its view logic, which actually makes the Ul
easy to extend and maintain.

. Virtual DOM: React applications are blazing fast. The credit for
this goes to the virtual DOM and its diffing algorithm.

. One-way data flow: Two-way data binding is a great idea, but in
real-world applications it produces more pain than benefit. One of
the common drawbacks with two-way data binding is that you have
no idea how your data get updated. With one-way data flow, things
are simple: You know exactly where data are mutating, which

makes it easier to maintain and test your app.

To have a strong foundation with a new technology, it’s necessary to
understand its core concepts. The next section explores a few unique
concepts of React, which will bring you one step closer to under-

standing this amazing technology.

Virtual DOM

In all web applications one of the most expensive operations from which an

app suffers is mutating the DOM. To solve this problem, React maintains a

virtual representation of the DOM (as shown in Figure 1-1), which is called

Virtual DOM (VDOM). Along with a diffing algorithm, React is able to
compute the data against the actual DOM and only update the part of the
DOM that is changed. The amount of change is therefore less, which leads
to a blazing fast application. In the beginning of your application you might
not see it, but as your project balloons to greater complexity (which usually
happens in real-world apps), you will begin to see the benefits of a snappy

experience for users.

YRGMLDCA Dt Diffing Algorithm Virtual DOM after

<h1> Before </h1> <hi1> After </h1>

<p> no change </p> <p> no change </p>

Real DOM before Real DOM after

<h1> Before </h1> <hi> After <h1>

<p> no change </p> <p> no change </p>

Figure 1-1 Virtual DOM and diffing algorithm operations

Manual DOM manipulation is messy, and keeping track of the previ-
ous state of the DOM is very hard. As shown in Figure 1-1, React
solves this problem by keeping two copies of a VDOM. Next, a diffing
algorithm is applied on these two VDOMs, which essentially checks
for the changes that occurred and returns a stream of DOM opera-
tions. These DOM operations are then applied to the actual browser
DOM.

Let’s now understand in terms of components how a VDOM works. In
React, every component has a state; this state is likely observable.
Whenever there is a change in state, React essentially knows that this
change requires a rerender. When the application state changes, it generates
a new VTree; once again the diffing algorithm shares the DOM paths for

required changes, as shown in Figure 1-2. This results in keeping manual

DOM manipulation to a minimum.

Before (Components) After (Components)
(e1) (o1)
c2 c3 c2 c3
| | | | | | | |
— 5 — — 9 —
C4 C5 (H] c7 c4 C5 C6 C7
. 4 - — S A —4

Figure 1-2 Components with virtual VDOM

This feature of VDOM is not just important, but a killer feature of Re-
act. DOM access is super slow, and honestly speaking, the world has
made it worse by hitting the DOM again and again in most ap-
plications. To make your application fast, you should access the DOM
as little as possible, and this is beautifully handled by the implementa-
tion of VDOM. You won't notice this with a small and trivial applica-
tion, but once your app grows to include thousands of DOM elements

all trying to get updated, React will not let your performance suffer.

One-Way Data Flow

React is primarily the V in an MVC pattern, but before you dive into
the idea of one-way data flow in React, you must understand the
challenges of MVC frameworks. One of the biggest challenges of an
MVC framework is managing the view. As you know, the view compo-
nent of the MVC framework is mainly the DOM representation. It is
simple when you write code that interacts with the DOM, but it is very

complicated for the framework to handle various DOM manipulations.

Traditional MV C views generally encompass a lot of heavy UI, and as
the data change even for a tiny element, it eventually rerenders the app
again, and the cycle continues. The reason for this is that typically most of

these MVC frameworks follow two-way data binding (see Figure 1-3).

Data modifies view

A 4

MODEL VIEW

A

View modifies data

Figure 1-3 Two-way data binding

In JavaScript, data change in memory and they are bound to a view in
the UI, which means that when data are modified in JavaScript, which is in
memory, the data will be changed in the UI as well. In return, when data
change in the Ul (i.e., the DOM) by clicking a button or any other event,
they get updated in memory also, keeping the two in sync. In theory, this
works flawlessly and the idea is romantically perfect. However, in real-
world applications, problems arise when you have a fairly complex and
large application with multiple views representing data in one of your
models. As you add more models and more views, this two-way data
binding ends up as spaghetti with every change in data added to the pot,
which sometimes even ends up in an infinite event loop where one view
updates a model, which in turn updates a view, and so on, as shown in

Figure 1-4.

A
4

\A
\ 4

MODEL VIEW

MODEL VIEW

MODEL VIEW

VIEW

Complex application

Figure 1-4 Unwanted spaghetti relationship

Another issue with this system is that making changes comes at a
very high cost. When you introduce a new developer to an application
that is this complex, it’s tough to understand the impact one change

might have in this abyss of spaghetti relationships.

React follows one-way data flow to keep things simple, as shown in

Figure 1-5. It is based on the concept of separation of concerns (SoC). This

is a design principle in computer science in which an application or
program is divided into distinct sections, each addressing a single or
specific concern. The value of this design principle is that it simplifies
development to create a maintainable and scalable application. This leads to
modularized code where an individual section can be reused, developed,
and modified independently. This makes so much sense and is indeed an

example of intelligent thinking.

Data Flow

MAIN

VIEW COMPONENT

CHILD

COMPONENT

Event

DataFlow - — — — — — — >

Event >

Figure I-5 React Native’s one-way data flow

Installation and Setup

To understand practical examples, you must first set up your environ-
ment to run your React code. Because React is just a node module,
there are lot of different ways to set up a React project. We can in-
clude React in existing projects using npm or yarn and start using it.
If you are starting a new project, we recommend using the create-
react-app npm package. Itis an out-of-the-box command-line in-
terface (CLI) created by Facebook that creates a basic structure for
the React app and takes care of ES7+ translation though Babel and
Webpack. You don’t need to focus on configuration; instead you can
focus on writing React code. You can find more details about this
module on its official npm page. If it interests you, you can also check
its github repo from here to look at its documentation:

https://www.npmjs.com/package/create-react-app.

For our purposes, we simply set it up for our development environment

with the following command to install create-react-app:

npm install -g create-react-app

This command installs create-react-app globally.

|N0telf you want to use the multiple-node version on the same ma-
chine, we can use nvm:

https://github.com/creationix/nvm

https://www.npmjs.com/package/create-react-app
https://github.com/creationix/nvm

Now that we have installed create-react-app globally, navigate to

the directory where you want to create a project and run the following

command:

create-react-app <application name>

where application name is the desired name of the application.
We need to use npm naming conventions, so the name should be in

lowercase and cannot start with a dot or underscore.

We are all set to start working with React, but before we create our first
app we recommend that you install React Developer Tools, a very useful
Chrome extension that allows you to inspect the React component hierarchy
in the Chrome browser. This tool can help boost your productivity. To
install this extension, search for React Developer Tools in the Chrome app

or open the following link in the Chrome browser:

https://chrome.google.com/webstore/detail/reac

Create a Hello World Application

Now let’s create a Hello World project. This command will install the

essential packages and set up our React project.

> create-react-app hello-world

Running that command installs the dependencies needed to build
your project, and it generates the initial project structure. Create Re-
act App installs the latest version of React and React-DOM, as well
as the latest version of react-scripts, a development dependency that
manages all other development dependencies that include starting,
testing, and building your app. Create React App uses Webpack and
Babel under the hood, but it generates only the files you need to work

on your React project.

Traverse into the directory using your terminal or command prompt to

play around with this application using the following commands:

cd hello-world

yarn start

It will automatically open http://localhost:3000/ inyour de-

fault web browser and you can see the first page of our app.

yarn is a package manager like npm. It was created by Facebook
and is the default that comes packaged with create-react-app. It

is up to you to choose whether you want to use yarn or npm.

One of the advantages of yarn over npm is that npm always requires

an Internet connection, whereas yarn can be used offline if you

have installed it at some point in the past. Yarn is also very fast when
it comes to package installations, which saves a lot of time in day-to-

day development.

Introduction to Components

Components are the smallest units in React application development;
they are indeed the most fundamental part of React. React is a library
for building Uls and components are the key for creating any Ul in
React. You might think of it as widgets (like in Flutter) that you can
plug in anywhere. These components define how DOM elements are
created and how users can interact with them. The whole concept of
components is that they are totally encapsulated, making them easy

to test and reuse.

Creating reusable components is a work of art, and React provides
many features for you. We will do a deep dive into them soon, but first

let’s open the hello world app we created.

Navigate to App . j s in the project folder.

import React, { Component } from 'react'’;
import logo from './logo.svg';

import './App.css';
class App extends Component {

render() {

return (
<div className="App">
<header className="App-header">
<img src={logo} className="App-logo"
<hl className="App-title">Welcome to
</header>
<p className="App-intro">
To get started, edit <code>src/App.]J
</p>
</div>

) ;

}
export default App;

This is the main App component. As you can see, it’s just a Java-
Script file that contains some HTML code. If you have been building
software for some time, you know it is a best practice to keep your
HTML and JavaScript code separate. Looking at this example, it goes
against this fundamental best practice. The reason this best practice
exists is to decrease coupling and increase cohesion, which means
we write the Ul in HTML and logic in JavaScript. The challenge with
this approach is that we can only attach behavior to HTML through

HTML elements (like ID, class, etc.). A library like jQuery is a good

example of this. As your files grow, it becomes difficult to manage and

test your code. React components solve this problem very well.

It lets you create JavaScript objects using HTML syntax. Components
serve two purposes: templates and display logic. Therefore, markup
and code are tied together intimately. Display logic often is quite com-
plex and to express it using template languages does become diffi-
cult. The best way to solve this problem is to generate HTML and
components from JavaScript itself. React JSX solves these problems

with its HTML-type syntax by creating React tree nodes.

Going back to the preceding code snippet, App is a JavaScript class
that is inherited from the React Component class APIl. Components
can be created in two ways: one using class and the other using func-
tion. Components created using function are also called stateless

components. We discuss this in detail in later chapters.

The App class has a render function or method. As the name sug-
gests, it is used for rendering of our content, JSX markup. render is
always a pure function, which means it is immutable. It’s like a single
frame in a movie, as it represents the Ul at a certain point in time. Up-
dating the state inside a render will again call the render function,
which once again, triggers render (), which then does the same

thing, infinitely.

We are also importing Cascading Style Sheets (CSS) in the App
component. Create React App uses Webpack, which takes care of
importing CSS in the final bundle.

Now let’s create a new component Message . Js in the project folder

and update it with the following code:

import React, { Component } from 'react';
class Message extends Component {
render () {

return (

<div>
Hello to React World

</div>

) ;

}

export default Message;

Now, we can import the component into the main component App. js

file and render it in the render method with the following code:

import React, { Component } from 'react'’;
import Message from './Message';
class App extends Component {

render () {

return (

<Message />

) ;

}
export default App;

Now browse http://localhost:3000/, as shown in Figure 1-6.

C | ® localhost:3000

Hello to React World

Figure 1-6 Browsing for the default message

Before we dive deeper into this component, let’s create a component

using the functional approach:

import React, { Component } from 'react';
const StatelessComponent = () => (

<div> Hello to StatelessComponent </div>

) ;

export default StatelessComponent;

This is the preferred way of creating a component if your state is not
changing. It eliminates the class-related extra code like extends And

constructors and makes the code more testable.

Deep-Dive into Components

In this section, we explore the vital concepts of components, which
will help you work with them easily. We will learn about Props and
State, which help manage the flow of data or state. The Props and
State objects have one important difference. Inside a class compo-
nent, the State object can be changed, whereas the Props object

cannot. Now let’s take a deeper look into both Props and State.

Properties

Props is simply shorthand for properties. Props are how components
talk to each other and the data flow is immutable. Props are passed
down the component tree from parent to children and vice versa. One
key point to remember is that props cannot be mutated when refer-

enced from a parent component.

Let’s update our Hello World example to use props. Open App. js and
add the following line:

<Message text="Hello to React World" />

Here we are initializing the Me ssage component with a prop named

text. Let’s update the Message component to display the text:

import React, { Component } from 'react';
class Message extends Component ({
render () {
return (
<div>
{this.props.text}

</div>

export default Message;

If you refresh your browser, you will see a message from the property

for your inner HTML.

As your application grows, you need to make sure your components are
correctly created in the first place. In the case of a property, you can specify
a kind of property with a range of validators. This ensures and validates the
kind of data received. Let’s take look at this by updating our Hello World

example. The Message components that we created accept prop text, so

this string will always be required to render a Message component. Let’s

update our Message component.

import React, { Component } from 'react';
import PropTypes from 'prop-i
class Message extends Component ({
render () {
return (
<div>

{this.props.text}

</div>

Message.propTypes = {

text: PropTypes.string.isRequired

export default Message;

Now to test this, go to App . js and temporarily remove prop from

Message:

<Message />

Now check the console log in your browser, as shown in Figure 1-7.

® i] Elements Console Sources Performance Application Network Memory Security Audits AngularJS Adblock Plus React Redux

™ ® | top ¥ | Filter Default levels v @ Group similar

© 09:40:45.043 » Warning: Failed prop type: The prop ‘text' is marked as required in ‘Message", but its value is ‘undefined".
in Message (at App.js:7)
in App (at index.js:7)
09:40:45.995 » XHR finished loading: GET "http://localhost:3008/sockjs-node/info?t=1534133445775".

>

Figure 1-7 Checking the console log

Prop validation is a great module that can help developers to hunt
down bugs. Here, the propType keyword signifies a hash of prop

names and their types.

There are many other property types. Note that you can add
isRequired to the end of any propType to make it required.

//some specific JS primitive
optionalArray: PropTypes.array,

optionalBool: PropTypes.bool,

optionalFunc: PropTypes.func,
optionalNumber: PropTypes.number,

optionalObject: PropTypes.object,

optionalString: PropTypes.string,
optionalSymbol: PropTypes.symbol,
//if a value of a prop is necessary

numberType: React.PropTypes.number.isR

There is also a default type in properties via the keyword
getDefaultProps. For example, in the same component, you can

mention default types for your text properties:

static defaultProps = {
text: 'Default Hello World'

}

The defaultProps will be used to ensure that this.props.text

will have a value if it was not specified by the parent component.

State

In the last section, you learned about properties, which are static val-
ues that are passed into your component. State, on the other hand, is
maintained and updated by the component. State is used so that a
component can keep track of information in between any renders that
it does. When you setState it updates the state object and then

rerenders the component. We can think of props variables used for

component initialization, whereas state is like internal data that af-

fects the rendering of components and is considered private data.

Let’s understand this concept by updating our example, creating a new

component Welcome. Js in the project folder.

import React, { Component } from 'react’;
import PropTypes from 'prop-types';
class Welcome extends Component {
constructor (props) {
super (props) ;
this.handleChange = this.handleChange.bin
this.state = { text: '' };
}
handleChange(e) {
this.setState({ text: e.target.value });
}
render () {
return (
<div>
<input
id="text"
onChange={this.handleChange}
value={this.state.text}
/>

Welcome {this.state.text}

</div>

}
Welcome.propTypes = {
text: PropTypes.string.isRequired

}i

export default Welcome;

Update the App . j s with this:

import React, { Component } from 'react';

import Message from './Message';

import Welcome from './Welcome

class App extends Component {
render () {
return (
<div>
<Welcome />
<Message text= "Hello to React World"/

</div>

) ;

}
export default App;

If you run this snippet, you will see the result shown in Figure 1-8 in

your browser.

< (e ‘ () localhost:3000

Welcome
Hello to React World

Figure 1-8 Resulting message using state

Now when you add some name in the text box, it will automatically

reflect in label, as shown in Figure 1-9.

< C | @ localhost:3000

Aohisned |
Welcome Abhishek
Hello to React World

Figure 1-9 Autopopulating the label

Let’s look at the code. In the same component, you initialized the state

in constructor, in which you set up the initial state of the message and

also bind the handleChange function we have created:

constructor (props) {
super (props) ;
this.handleChange = this.handleChange.bind(
this.state = { text: '' };

Like any other language, JavaScript class has constructors, a func-

tion that will get called whenever a new object is created. It’s impor-

tant to call a super if we want to update the constructors. Calling this
function will call the constructor of our parent class and allows it to ini-

tialize itself.

NoteThe constructor is only the place where you can change or set
he state by directly overwriting the this. state fields. In all other

instances you have to use this.setState.

Next, unlike the last example, you access this state using

this.state.text, which prints the initial text of the message state:

{this.state.text}

Now, display a text box above your message statement. As you type in
the text box, the message gets updated in real time using the concept of

state:

<input
id="text"
onChange={this.handleChange}
value={this.state.text}

/>

Let’s see what you added to your component. First, you introduced a

function named handleChange:

handleChange(e) {
this.setState({ text: e.target.value });

This new function, handleChange, takes an event called (e) and

updates the value text state.

The input box has an onChange event that calls your custom method

handleChange whenever the state gets updated. As you type in the

text box, your printed message gets updated instantaneously.

Summary

This chapter provided a quick tour of React. Before you begin with
the next chapter, let’s recap what you have learned so far. We intro-
duced the React library and the reasons behind its invention. Then
you learned how to install and set up React. You studied the funda-
mentals of this technology, such as VDOM, one-way data flow, and
JSX. You also got an introduction to components, and took a closer
look at components, understanding how to use states and props with

components.

Now that you are equipped to code and work in the React ecosystem,
the your journey begins in the next chapter as we start working with

React Native.

© Akshat Paul and Abhishek Nalwaya 2019
Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development
https://doi.org/10.1007/978-1-4842-4454-8 2

2. The Simplest Program: Hello World
with React Native

Akshat Paull and Abhishek Nalwaya?
(1) Gurgaon, Haryana, India
(2) Jaipur, Rajasthan, India

Big things have small beginnings.
—Prometheus

In the last chapter, you got a good overview of the React ecosystem.
Now it’s time to get your hands dirty with React Native. In this chap-
ter, you will set up your development environment by installing the
prerequisites and then you will create your first React Native

application.

The best way to learn is through practical examples. We continue this
theme throughout the book, as you will follow simple examples to
learn React Native by programming yourself to understand the key

concepts.

https://doi.org/10.1007/978-1-4842-4454-8_2

This chapter explores the following topics:

. An introduction to React Native

. The essentials of React Native

. The installation of React Native

. Your first application

. The anatomy of a React Native application

. How to debug your application

NoteYou might face a situation where different projects work on dif-
erent Node versions. Therefore, it's recommended you install Node

ersion Manager (NVM) to help keep multiple node versions that can

be switched between projects.

What Is React Native?

React Native is an open source platform for developing native mobile
applications; it was developed largely by a team at Facebook. The
cool part of working with React Native is that your program uses stan-
dard web technologies like JavaScript (JSX), CSS, and HTML, yet
your application is fully native. In other words, your application is fast
and smooth, and it is equivalent to any native application built using
traditional iOS technologies like Objective-C and Swift. However, Re-
act Native does not compromise in terms of performance and overall
experience, like popular hybrid frameworks that use web technolo-

gies to build iOS apps.

React Native aims to bring the power of React, which was explained
in Chapter 1, to mobile development. In the words of the React team,
“Learn once, write anywhere.” Working with React and React Native,
you will see how many of your components built for the Web using
React can be easily ported to your React Native iOS apps with little or
no modification. React Native introduces a highly functional approach
to constructing Uls that is very different from the traditional iOS devel-

opment approach.

Although React Native was built by Facebook developers, it’s an

open source project. The code is available at https://github. -

com/facebook/react—-native.

Installation

Let’s do a quick, one-time setup of React Native. React Native is an
assortment of JavaScript and Swift code, so you need tools that cre-
ate, run, and debug your native application written in JavaScript. Let’s

go one by one.
Installing Node and npm

Node. js is an open source platform built on Chrome’s JavaScript
runtime; it offers a way to easily build fast, scalable programs. Node. js

allows you to run JavaScript in terminal, and helps create modules. If you

are using nvm, which is the suggested way of using node type:

https://github.com/facebook/react-native

> nvm install node

If you don’t want to use nvm, you can also install Node . j s by running

the following command in terminal:

>brew install node.

Homebrew is the package manager for Mac. You can also download

the Node installer from https: //nodejs.org and install it manual-

ly if you are using another operating system. For Windows operating

systems you canvisit ht tps: //nodejs.organd install Node using

a wizard.

npmn is also installed along with node, which is a package manager

for Node. js. If you’re from the iOS world, it’s similar to CocoaPods.

Check your Node installation by running the following command in

terminal:

>> node —v
v10.8.0

>> npm —v
6.2.0

Installing the React Native Package

https://brew.sh/
https://brew.sh/

To use React Native, starting your project from scratch using create-
reactive-app by Facebook is the best way to start. It is an npm

module:

npm install -g create-react-native-app

Updating React Native

Both React Native and 10S are fast-moving frameworks. It is recommended
that you update them every time a new release is available. Upgrading

React Native is simple. First install module react-native-git-

upgrade:

$ npm install -g react-native-git-upgrade

Next, run the following command to start the process of upgrading to

the latest version:

$ react-native-git-upgrade

For more information on React Native upgrades, you can refer to the

Facebook official documentation at https://face-

book.github.io/react-native/docs/upgrading..

https://facebook.github.io/react-native/docs/upgrading

NoteYou should only need to update the global installation of cre-

ate-react-native-app very rarely, and ideally never.

Your First App

Now that you are all charged up about React Native and have your
system set up, it’s time to create your first application. To keep things
simple, in the beginning just follow along. Sometimes you might feel
disconnected by monotonously typing in the code, but following along
is enough for now. Remember that mimicry is a powerful form of
learning; it’s how we learned most of our skills, such as talking, read-
ing, and writing, and it’s how you will learn to program with React Na-
tive. As you proceed, this method will help you understand thoroughly

why you authored certain pieces of code.

Throughout the book, you will create one application and take it from
just Hello World to a full-blown, distribution-level application, except in
a few places, where we need to digress to explore a concept inde-
pendently. Before you set it up, then, let’s talk about the problem you
plan to solve. The app you will create during the course of this book
plans to solve a few housing problems; it will be a very primitive ver-
sion of any popular property search application. Let’s call it House-
Share. It will have some rudimentary features like listings, creating an

entry, geolocating a property, and a few more. As you move along,

you will see how various React Native features fit with your

application.

That’s quite a lot, but in this chapter you just create the basic struc-

ture for your project using React Native and some Hello World code.
Creating a Basic Skeleton

Fire up your terminal and type in the following command:

create-react-native-app HouseShare

Success! Created HouseShare at
/Users/abhisheknalwaya/Documents/book/HouseSharelnside that directory,

you can run several commands:

yarn start

Starts the development server so you can open your React Native app in the

Expo application on your phone.

yarn run ios

(Mac only, requires Xcode)

Starts the development server and loads your app in an 10S simulator.

yarn run android

(Requires Android build tools)

Starts the development server and loads your app on a connected Android

device or emulator.

yarn test

Starts the test runner.

yarn run eject

Removes this tool and copies build dependencies, configuration files, and
scripts into the app directory. If you do this, you can’t go back!
We suggest that you begin by typing this:

cd HouseShare

yarn start

Happy hacking!

So far we have used Expo a few times, so what is Expo? Expo is an
open source tool chain that is built around React Native to help build
iOS and Android apps. Expo is the fastest way to kickstart your React
Native development. Because it comes out of the box with React Na-
tive, you don’t need to perform any additional setup on your machine.
The only extra thing you need to do is to install the Expo application
from the Apple App Store for iOS and the Google Play Store for An-
droid. Using this app, you will be able to test and interact with the ap-

plication you are building during the development stages.
This code uses the CLI tool to construct a React Native project that is

ready to build and run as is. This command creates the basic folder structure

for your React Native 10S project.

> cd HouseShare

> yarn start

You should see output similar to Figure 2-1.

This will start a development server for us and print a QR code in your

terminal.

-+ HouseShare yarn start
yarn run vl1.3.2

: Startlng packager..

dCrRagci started!

Your app is now running at URL:
View your app with live reloading:

Android device:
-> Point the Expo app to the QR code above.
(You'll find the QR scanner on the Projects tab of the app.)
i0S device:
-> Press s to email/text the app URL to your phone.
Emulator:
-> Press a (Android) or i (i0S) to start an emulator.

Your phone will need to be on the same local network as thlS computer.
For links to install the Expo app, please visit h :)0 . 11

Logs from serving your app will appear here. Press Ctrl+C at any time to stop.

i

s o v o

Figure 2-1 Terminal output when we build a React Native application

To use this QR code, download the Expo app (https://expo.io/

) for iOS or Android on your device.

If you are using Android, just scan the QR code in your terminal from
the Expo app and your app we automatically load. If you are using

I0S, select “s” in your terminal, as shown in Figure 2-2.

Now open the e-mail, shown in Figure 2-3:

Please enter your phone number or email address (press ESC to cancel)
[[default: nalwayaabhishek@gmail.com]>

12:46:20 PM: Sending exp://192.168.1.6:19000 to nalwayaabhishek@gmail.com...
12:46:21 PM: Sent link successfully.

Press a to open Android device or emulator, or i to open i0S emulator.
Press s to send the app URL to your phone number or email address
Press q to display QR code.

Press r to restart packager, or R to restart packager and clear cache.
Press d to toggle development mode. (current mode: development)

v ¥ ¥ v W

Figure 2-2 Press the s key if you are using iOS

https://expo.io/

< Inbox

From: Expo >
To: Hide

Expo Link: exp://192.168.1.6:19000
Today at 12:46 PM

Expo Link: https://expo.io/--/to-exp/
exXp%3A%2F%2F192.168.1.6%3A19000
Open in Expo:

exp$3A%2F%$2F192.168.1.6%3A19000

Download Expo for Android at
http://bit.ly/2bZgS5ew or iOS at
http://apple.co/2c6HMtp

NN

[N

Figure 2-3 Expo link received in e-mail

NoteYour mobile device needs to be connected to the same wire-
less network as your computer. Otherwise you will not able to open

he app.

If the Expo app is already installed on your device and you click the link it
will automatically run the React Native app in the Expo app, as shown in

Figure 2-4.

Mail stl = 12:58 PM @ 97 0% 25%@)

Open up App.js to start working on your app!
Changes you make will automatically reload.
Shake your phone to open the developer menu.

Figure 2-4 React Native application opened in Expo app

That was really quick and easy. Without installing the iOS and An-
droid software development kit (SDK), we can run the app on our de-

vice using Expo.

Thanks to a single command, the basic structure of your projectis in
place and your application is loaded in the device. Also note that the
terminal always needs to be open. This is the Node package manag-

er for React Native. If you kill this, the app will stop working.

Terminal is opened to start the React Native Packager and a server to
handle the preceding request. The React Native Packager is respon-
sible for reading and building the JSX (you’ll look at this later) and

JavaScript code.

Set up your project in any editor you prefer. React Native does not
force you to use nor does it have a preference for any specific editor,

SO you can continue to use your favorites.
Now let’s update some code in our application. Add the following code

in App. js:

import React from 'react’;

import { StyleSheet, Text, View } from 'react-

export default class App extends React.Compone
render () {
return (
<View style={styles.container}>
<Text>
Hello World
</Text>

</View>

) ;

}
const styles = StyleSheet.create({

container: {

flex: 1,
backgroundColor: '#fff',
alignItems: 'center',

justifyContent: 'center',

}o
})i

Just save the file, and then check the Expo app on your device. It

automatically reloads the page and shows you the screen shown in Figure 2-
S.

ul! Vodafone IN 2

4:58 PM

Hello World

@ 9 @ 3 55% @)

Figure 2-5 Updated text component appears on the screen on save

That was quick! In a fraction of a second you can see the changes
you applied. You don’t need to compile the code and restart the simu-
lator for React Native changes. If you have done any native iOS app
development before, pressing Refresh to see the changes might

seem like a miracle.

Now, let’s understand the code. At the top of the file are the following

lines:

import React from 'react’;

import { StyleSheet, Text, View } from 'react-

This loads the React module and assigns it to a React variable that
can be used in your code. React Native uses the same module-load-
ing technology as Node. js; this is roughly equivalent to linking and

importing libraries in Swift.

You are assigning multiple object properties to a single variable; this
is called destructuring the assignment. This cool feature is in there in
versions of JavaScript after ES6. Although it is optional, it’s very ben-

eficial; otherwise, every time you use a component in your code, you

would have to use a fully qualified name for it, such as

React.Stylesheet, and so on. This saves quite a bit of time.

Next, you create a view:

export default class App extends React.Compone
render () {
return (
<View style={styles.container}>
<Text>
Hello World
</Text>
</View>

) ;

React basic building blocks are called components. You can use the
React.Component method to create custom component classes.

This class has just one function, render (), which is responsible for
what is shown on the screen. You use JavaScript syntax extensions
(JSX) for rendering the Ul. JSX is a JavaScript syntax extension that

looks similar to XML.

Now you define the styling of your app. Here you will use Flexbox; it is

similar to what CSS 1s to HTML. For now, you can type this code. We

explain styling in the next chapter.

const styles = StyleSheet.create({
container: {
flex: 1,
backgroundColor: '#fff',
alignItems: 'center',

justifyContent: 'center',

}o
})i

You can see that this styling is very similar to CSS; you can define

font size, alignment, and so on.

Prerequisites for Running App on a Simulator

Using the Expo iOS or Android application to test your app, there is a
downside: You can’t always carry your devices for testing your appli-
cation. For such purpose there are simulators provided by both iOS
and Android to be set up on your development machine. The follow-

ing are few prerequisites to set them up.
iOS

. iIOS apps can be developed only on an Apple Mac with OSX

installed. You need OSX version 11 or above.

You need Xcode 9 or above, which includes the iOS SDK and
simulators. React Native only supports iOS7 or above. Xcode can
be downloaded from the Apple App Store.

It’s helpful if you are enrolled in the Apple 10S Developer Program. If

you’re not in the i0S Developer Program, you won’t be able to do the
following:
« Test applications on actual devices.

Access beta OS releases.

Test flight for beta testing.

Submit your app to the App Store.

Android

React Native requires a recent version of the Java SE Develop-
ment Kit (JDK).
Download and install Android Studio. Choose a Custom setup when

prompted to select an installation type. Make sure the check boxes next

to all of the following are selected:
Android SDK

Android SDK Platform
Performance (Intel ® HAXM)
Android Virtual Device
Install Android Virtual Devices (AVDs) by opening the AVD

Manager from within Android Studio. You can also use

genymotion.

Running the App on a Simulator

Now let’s go back to our application and start the app (see Figure 2-6):

yarn start

1: Starting i0S...

R

a-sownwoe

Finished building JavaScript bundle in 5

1: Running app on (5) in development mode

Hello World

iPhone X - 11.4

Figure 2-6 Running demo application on simulator

This will install Expo client on the emulator and run your React Native
app. You can also use commands like yarn iosor yarn android
to start the simulator with the app installed in it rather than loading the

app inside the Expo simulator app.

It’s Not a UlWebView

You are using web technologies, but your app does not have a web
component; it has a native component. Open Debug » View Debugging »

Capture View Hierarchy (see Figure 2-7).

Source Control Window Help AN) %) @D @ =

1 Continue ~r38Y 3

| [

Step Over F6 R..!!') RCTView - HelloWorld !!) RCTText
Step Into F7 ' -
Step Out F8
Step Over Instruction ~F6
Step Over Thread ~{+F6
Step Into Instruction NFT
Step Into Thread ~{rF7
Simulate Location >
Simulate Background Fetch
iCloud >
View Debugging 2

| .
Deactivate Breakpoints aBY
Breakpoints > Show View Frames

Show Alignment Rectangles

Debug Workflow
Attach to Process & U
Detach ‘

I

Figure 2-7 Using the Native component

As you traverse through the tree of UTWindow, you’ll see that there is
no UIWebView in the code, and “Hello World !!” is the call of RCTText,

as shown in Figure 2-8.

B 2 Q A © == o 3 Ba | <€ HouseShare » Ul..w R...ew) R..Il » R..I) R..Il RCTView - H

:%uf ;ls::'::sed @ @
@ cpu 0%
@ Memory 9.7 MB
! Disk Zero KB/s
@ Network Zero KB/s
v UlWindow

v RCTRootView
v RCTRootContentView - Hell...
v RCTView - HelloWorld !!
v RCTView - HelloWorld !!
v RCTView - HelloWorld !!
[B RCTText - HelloWorld !t

»> UlTextEffectsWindow He||0W0r'|d il

> RCTRedBoxWindow

Figure 2-8 “Hello World ! is the call of RCTText

Enabling Live Reload

Another cool feature of React Native is live reload. It reloads your ap-
plication view inside the iOS simulator the moment there is a change.
By default it is active. To deactivate this option, you need to access
the developer menu from the application opened in the iOS simulator
by shaking the device and then selecting the Disable Live Reload

option.

What Makes React Native Different?

Before you dive deeper into the React Native world, you must understand

why there was a need for another framework to build mobile apps. We

already live in a world full of frameworks and tool chains that are capable
of building mobile apps. Prior to the inception of React Native, building

mobile apps using web technologies was possible via two strategies:

« WebView-based: These frameworks use common web technolo-
gies like HTML and JavaScript and use WebView to load the appli-
cation. An example is the popular framework Phonegap.

« Native apps using web technologies: These frameworks again use
common web technologies like HTML and JavaScript (to be pre-
cise, they imitate using JavaScript and HTML) to create native

apps. An example is the popular framework Titanium Appcelerator.

Apps created using these strategies have performance issues. Web-
View-based apps are slow because they use the DOM, and DOM

manipulations are expensive, which leads to performance issues. As

stated in a blog post at Flipboard (see http://engineer-

ing.flipboard.com/2015/02/mobile-web/), “You cannot

build a 60fps scrolling list view with DOM.” This is one of the funda-
mental problems with apps developed through this technique: Al-
though development time might be quick, you end up with a sluggish

experience.

The other strategy, where the framework imitates JavaScript and
HTML, and converts them to native code, has other challenges. Al-

though the final app is native in nature, there is a basic issue during

http://engineering.flipboard.com/2015/02/mobile-web/

this conversion from JavaScript to native: It runs on the main thread.
In these apps, you interface directly with native objects all the time,

which leads once again to a slow and sluggish experience.

React Native is fundamentally different from these two approaches. It
runs all layouts on separate threads, and your main thread is free to
update the Ul, which makes the animation and Ul rendering smooth,

just like 100 percent pure native apps.

React Native uses the JavaScriptCore framework to run JavaScript.
In iOS 7, Apple introduced a native Objective-C API for JavaScript-
Core. This framework allows JavaScript and Objective-C to talk to
each other. This means you can create and call JavaScript functions
from Objective-C or call back into Objective-C from JavaScript. It all

works like a charm.

React Native is different in one more aspect. As seen in your Hello
World example, you write a component in JavaScript just like you
would with React, except that instead of using an HTML div, you use
tags like View and Text. In the case of an iOS application, a View is

basically a UTIView.

Ejecting a React Native Application

Before we get into exploring the application structure, we have to eject our

application from the Expo project (see Figure 2-9). You should not eject an

app from the Expo environment until it is needed. We are doing this here to

understand how create-react-native works.

yarn eject

[+ HouseShare yarn eject
yarn run v1.3.2
$ react-native-scripts eject

We didn't find any uses of the Expo SDK in your project, so you should be fine to eject to
"Plain" React Native. (This check isn't very sophisticated, though.)

We strongly recommend that you read this document before you proceed:
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md

Ejecting is permanent! Please be careful with your selection.

? How would you like to eject from create-react-native-app? React Native: I'd like a regular React Native project.
We have a couple of questions to ask you about how you'd like to name your app:

[? What should your app appear as on a user's home screen? HouseShare

[? What should your Android Studio and Xcode projects be called? HouseShare

Writing your selections to app.json...

Wrote to app.json, please update it manually in the future.

Scanning folders for symlinks in /Users/abhisheknalwaya/Documents/book/HouseShare/node_modules (21ms)
Generating the i0S folder.

Generating the Android folder.

Successfully copied template native code.

Babel preset changed to ‘babel-preset-react-native-stage-0/decorator-support’.

Updating your yarn scripts in package.json...

Your package.json is up to date!

Adding entry point...

Added new entry points!

Note that using 'yarn start’ will now require you to run Xcode and/or
Android Studio to build the native code for your project.
Removing node_modules...

Installing packages with yarn...

[1/4] &4 Resolving packages...

[2/4] ¢4 Fetching packages...

[3/4] € Linking dependencies...

warning "react-native > eslint-plugin-react-native@3.2.1" has unmet peer dependency "eslint@*3.17.0 || ~4.0.0".
[4/4] . Building fresh packages...

success Saved lockfile.

success Saved 48 new dependencies.

I— babel-jest@23.4.2

I— babel-plugin-istanbul@4.1.6

i— babel-plugin-jest-hoist@23.2.0

— babel-plugin-syntax-class-constructor-call@6.18.@

— babel-plugin-syntax-do-expressions@6.13.0

I— babel-plugin-syntax-function-bind@6.13.0

I— babel-plugin-transform-class-constructor-call@6.24.1
I— babel-plugin-transform-do-expressions@6.22.0

|~ babel-plugin-transform-export-extensions@6.22.0

I— babel-plugin-transform-function-bind@6.22.0

I~ babel-preset-jest@23.2.0

|- babel-preset-react-native-stage-0@1.0.1

I~ babel-preset-react-native@l.9.2

|— browser-resolve@l.11.3

— expect@23.5.0

— istanbul-apie@l.3.1

|- jest-changed-files@23.4.2

|- jest-cl1i@23.5.0

I— jest-config@23.5.0

— jest-diff@23.5.0

|- jest-docblock@23.2.0

- jest-each@23.5.0

— jest-environment-jsdom@23.4.0

— jest—environment-node@23.4.0

|- jest-haste-map@23.5.0

— jest-jasmine2@23.5.0

|- jest-leak-detector@23.5.0

Figure 2-9 Ejecting Expo application

This will create two folders for 10S and Android in the repository. If
you open the project HouseShare, it looks like a normal Xcode project. It

has the following folder structure:

| ios
| - HouseShare
| - HouseShare.xcodeproj
| - HouseShareTests
|android
node modules
App.Jjs
App.test.]js
index. js
package. json

yarn.lock

NoteThe folder structure defined here might be changed or modi-
ied as the framework evolves, but the majority of the functionality re-

mains the same.

If you open the project in Xcode, it will have a different folder structure.
The “folders” in Xcode are actually groups and are not necessarily linked to

a folder like we see in Finder.

« 10S: The 10s folder has two folders and one file. As seen earlier,
there is a HouseShare folder, which has all the Objective-C code,
such as AppDelegate, Images.xcassets,
Info.plistLaunchScreen.xib, and other files. Another folder

is HouseShareTests, which is where all your test cases reside.

Finally, there is your Xcode project file,

HouseShare.xcodeproj, which is used to load into Xcode to
build your application.

« package. json: This folder contains metadata about your app,
and it will install all dependencies when you run the npm install. If
you’re familiar with Ruby, it’s similar to a Gemfile.

- node _modules: All of the Node modules mentioned in pack-
age . json Will be downloaded to this folder. This folder also con-
tains the code for the React Native framework.

« App.Js: Thisis the file where you begin programming your
application.

« AppDelegate.m: This is the starting point of any iOS app.

« Android: React Native also supports development for Android. All

your native Android code resides in this folder.

Let’s open the AppDelegate.m file from
HouseShare/ios/HouseShare/AppDelegate.m:

#import "AppDelegate.h"

#import <React/RCTBundleURLProvider.h>

#import <React/RCTRootView.h>

@implementation AppDelegate

- (BOOL)application: (UIApplication *)applicati

NSURL =*jsCodeLocation;
jsCodeLocation = [[RCTBundleURLProvider shar

RCTRootView *rootView = [[RCTRootView alloc]
moduleName: @"HouseShare"
initialProperties:nil
launchOptions:launchOptions];
rootView.backgroundColor = [[UIColor alloc]
self.window = [[UIWindow alloc] initWithFram
UIViewController *rootViewController = [UIVi
rootViewController.view = rootView;
self.window.rootViewController = rootViewCon
[self.window makeKeyAndVisible];

return YES;

}
@end

RCTRootView is a Swift class provided by React Native, which is in-
herited from the iOS UIView Class. It takes your JavaScript code
and executes it. It also loads the index bundle URL, which has

your code written in App. Js and also a program added by the React

Native framework.

NoteAfter ejection, you need to use Xcode to run the iOS app and
ndroid Studio to run the Android app.

To start, run yarn start on terminal, as shown in Figure 2-10.

-+ HouseShare yarn start
yarn run v1.3.2

Scanning folders for symlinks in /Users/abhisheknalwaya/Documents/book/HouseShare/node_modules (23ms)

Running Metro Bundler on port 8081.

Keep Metro running while developing on any JS projects. Feel free to
close this tab and run your own Metro instance if you prefer.

https://github.com/facebook/react-native

Looking for JS files in

Metro Bundler ready.

Loading dependency graph, done.
|

Figure 2-10 Starting the application without Expo

Now open HouseShare.xcodeproj. This Xcode project file will
open your project in Xcode. Next, let’s load your application in the 10S
simulator. To build your application and load it in the simulator, simply
click the Run button at the top left (or execute Command + R), as shown in

Figure 2-11. This will compile, build, and fire up your project in the 10S

simulator

® GI A\ HouseShare [iPhone 6 Running HouseShare on iPhone 6 2 = Q@ Sj0E O

2 QA o @ |® No Selection <a> n e
v HouseShare
= 2 targets, iOS SDK 8.2
v HouseShare
main jsbundie Click run button

I AppDelegate.h
m AppDelegate.m
2 Images xcassets
Info.plist
LaunchScreen. xib
m main.m
» [Libraries
» [HouseShareTests
> Products

Figure 2-11 Building the application using Xcode

This will open the simulator and you can see the app running.

Debugging

Debugging with React Native is in line with how we debug web apps; in
short, it’s really simple. To access debugging options, share the simulator by
selecting Share Gesture from the Hardware menu. This will open a menu

that provides several debugging options, as shown in Figure 2-12.

A HouseShare

Refresh

S

5} Copy Link

/\ Go to Expo Home

Reload JS Bundle
Disable Live Reload

Show Perf Monitor

Toggle Element Inspector

Debug Remote JS

iPhone X -11.4

Figure 2-12 Debugging options for React Native applications

You must disable this menu for the final build because your end user
should not see these options. To disable it, open the project in Xcode
and select Product » Scheme » Edit Scheme (or press Command +
<). Then select Run from the menu on the left and change the Build

Configuration to Release.

Let’s review each of the options shown in Figure 2-12.

Reload

The Reload option refreshes the screen in the simulator with the lat-
est React Native code without compiling the project again. This can
be done in two ways: selecting the Reload option from the menu or
pressing Command + R. This will reload all the changes made in the

JavaScript code.

Any changes made in your Swift or Objective-C files will not be re-
flected because these changes require recompilation. Also, if you add

any assets like images, the app needs to be restarted.

Debugging in Chrome

This is one of the best and most frequently used options for debugging your

JavaScript code written in React Native. As with web apps, you can debug

your React Native application in Chrome. When you click Debug in
Chrome, it opens http://localhost:8081/debugger-ui in
Chrome (Figure 2-13).

C localhost:8081/debugger-ui

Apps .f wiki ! Download | Spritely || mywebsite LJ rubymotion f_; photograpy L] Server Q http://githuben.intra u CoreMotior
React Native JS code runs inside this Chrome tab

Press to open Developer Tools. Enable Pause On Caught Exceptions for a better debugging experience.

Status: Debugger session #10001 active

Figure 2-13 Debugging in Chrome

Install the React Developer Tools, which is a Chrome extension for
debugging both your React application and React Native code. It al-
lows you to inspect the React Native component hierarchies in the

Chrome Developer Tools. To install it, please visit the Chrome web-

storeorgotohttps://chrome.google.com/webstore/de—

tail/react-developer-tools/fmkadmapgofadoplib-

JLfkapdkoienihi?hl=en.

Once the extension is installed, press Command + Option + J or se-
lect View » Developer » Developer Tools in your Chrome browser to

access the Developer Tools console.

You will see a new tab called React in your Chrome DevTools. This

shows you the root React components that have been rendered on the page,

https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi%253Fhl%253Den.

as well as the subcomponents that they ended up rendering. You can also

see props, state, components, and event listeners, as shown in Figure 2-14.

React Native JS code runs inside this Chrome tab

Press to open Developer Tools. Enable Pause On Caught Exceptions for a better debugging experience.

Status: Debugger session #10000 active

Q Elements Network Sources Timeline Profiles Resources Audits Console PageSpeed Angular) m > ¥ O, x
<Top Level>..</Top Level> v Props

No Props

No State

» Component
> Event Listeners T

Figure 2-14 Debugging in Chrome DevTools

Look at Figure 2-15 and you can see a similar hierarchy to your Xcode:

Hello World is wrapped in RCTText and that is in turn wrapped in
RCTview.

............ -y - -

| v'<RCTView sty1e='775">
v <Unknown style="76">
v <RCTText style="76" accessible="true" isHighlighted="false">

"HelloWorld !!'"
</RCTText>
</Unknown>
</RCTView>

Figure 2-15 Debugging the app with the React tab in Chrome DevTools

Debugging in Safari

If you do not have Chrome, you can also use Safari for debugging,

but Chrome is preferred for debugging React Native apps.

Showing Performance Monitor

Many applications use a lot of animations and graphics. The smoothness of
these animations for your application is defined in frames per second (FPS);
this is used extensively in gaming apps. When you select Show FPS
Monitor from the menu, it shows a few properties for your app in the
simulator (see Figure 2-16). Although you might not find much use for
these properties in your Hello World app, they are great for animation-
intensive apps to prevent them lethargic performance, which can create a

bumpy user experience.

9:54
FAM JSC Views
1230.43 0.00 5
MB MB

Hello World

iPhone X - 11.4

Figure 2-16 Additional properties in the simulator

The Inspect Element

You can also inspect a React Native element from the simulator, somewhat
similar to how you inspect an element in a browser, although you can’t
currently change live values of properties as you can in a browser. For now,
you can see your stylesheet properties for any object. Click the

HelloReact!! text (Figure 2-17) and it will open the details of that element.

iOS Simulator - iPhone 6 - iPhone 6 / iO...

Carrier & 6:08 PM [|3

HelloReact!!

Welcome to the inspector! Tap something to inspect it.

Figure 2-17 Click the text to see element details

The details of that element are shown in Figure 2-18 at the bottom left.

" i0S Simulator - iPhone 6 - iPhone 6 /1O....

Carrier & 6:09 PM

_am

0

fontSize: 25
textAlign: center

00

0

0

(120, 318.5)
135.5 x 30

0
0

00

Figure 2-18 Font details

You can see that the font size for Hello World is 25 and it is center

aligned.

Summary

In this chapter, you were introduced to React Native. You learned
how to set up the React Native development environment and you
wrote your first application. You also learned about Expo and the fold-
er structure of React Native applications and how to debug. You are
now all set to explore creating a Ul with React Native for your iOS

application.

Chapter 3 introduces about Flux and Redux, a pair of very important
design patterns that are commonly used with React Native

applications.

© Akshat Paul and Abhishek Nalwaya 2019
Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development
https://doi.org/10.1007/978-1-4842-4454-8 3

3. Solving Problems Differently with
Flux and Redux

Akshat Paull and Abhishek Nalwaya?
(1) Gurgaon, Haryana, India
(2) Jaipur, Rajasthan, India

Simplicity is prerequisite for reliability.
—Djikstra

Flux is an application architecture introduced by Facebook for build-
ing client-side applications. It complements the React paradigm of
composable view components by using a unidirectional data flow. It’s
more of a pattern than a framework, and one can start using Flux im-
mediately without an excess load of code. Redux is a predictable
state container for JavaScript applications, which means it helps us to
write applications that behave consistently in different environments:
client, server, or native. It also makes your applications easy to debug

and test.

https://doi.org/10.1007/978-1-4842-4454-8_3

Before we delve into its details, it is important to know one of the most
popular, commonly used MVC patterns. We can then learn about
what challenges we face with MVC and how Flux and Redux can

solve these challenges.

This chapter covers the following topics:

. MVC pattern

. MVC problem

. Flux

. Flux deep dive

. Redux

. Redux core concepts

. Redux with React Native

. Benefits of using Redux

MVC Pattern

Historically, an MVC pattern separates code into three distinct parts: model,
view, and controller. The main purpose of this pattern is to isolate
representation of information from user interaction. Let’s describe each of

these parts individually.

« Model: This element manages the behavior and data of an
application.

« View: This is the representation layer of the model in the Ul.

« Controller: This element takes user input and makes necessary
manipulations to the model, which causes the view layer to get

updated.

MVC is legendary and it’s an amazing way to structure your code.
Things get a bit ugly, though, when your source code begins to grow and
get complex. Although MVC is a very popular pattern to design

applications, it comes with its own set of problems. Figure 3-1 shows how

MVC works.

MVC

Figure 3-1 Simple MVC pattern

Figure 3-1 shows the simplest implementation of MVC, and this works

pretty well with small applications. As your application grows, though, so
does the demand for new features, and there should be room to
accommodate more models and views. Let’s look at what happens when our

model and view increase in an actual application (Figure 3-2).

Figure 3-2 MVC pattern for a large application

Wow! That is an explosion of arrows. Welcome to the real world
where many models and views interact with each other. A controller
triggers another model and this goes on like spaghetti, which often
ends up in an infinite loop. The worst part is that it’s really difficult to
debug code in such a situation, eventually making the system fragile.
Well, Facebook faced a similar problem with this pattern and solved it

with a new pattern called Flux.

Flux

Flux abjures MVC in favor of a unidirectional data flow. Flux works

well because the single directional data flow makes it easy to under-

stand and modify an application as it grows and becomes more com-
plex. Earlier we found that two-way data bindings lead to cascading
updates, where change in one data model leads to an update in an-
other data model, making it very difficult to predict what would change

as the result of a single user interaction.
Flux applications have three major parts: the dispatcher, the store, and

the view (where we use React components). These should not be compared

with the model, view, and controller of the MV C pattern (Figure 3-3).

-2

Web Emmd Web mmd Action Store
API e APl Utils === (Creators

Change
User
Interactions

React
Views

Events +
Store
Queries

<«

Figure 3-3 React App data flow

Although controllers do exist in a Flux application, these are controller
views, where views are found at the top of the hierarchy that retrieve

data from the stores and forward these data to their children.

If we look at the Flux architecture, the most important part is the
dispatcher, which is a singleton that directs the flow of data and ensures that
updates do not cascade (Figure 3-4).

FLUX

: I
f

Figure 3-4 Flux data flow

As an application grows, eventually the dispatcher becomes more vi-
tal, as it is responsible for managing dependencies between stores

by invoking the registered callbacks in a specific order.

When a user interacts with a React view, the view sends an action
(usually represented as a JavaScript object with some fields) through
the dispatcher, which notifies the various stores that hold the applica-
tion’s data and business logic. When the stores change state, they
notify the views that something has updated. This works especially
well with React’s declarative model, which allows the stores to send

updates without specifying how to transition views between states.

The following are some of the key benefits of using Flux:

It improves data consistency.

It is easier to pinpoint the bugs.

You can perform more meaningful unit tests. Because all the
states of a module are there in the same place, we can test a mod-

ule independently.

It includes predictable code.

With predictable code, great things follow, as shown in Figure 3-5.

Move Predictable

faster data (Flux)
Predictable

code
Don’t break Predictable

things Ul (React)

Figure 3-5 Predictable code

Success of Flux

One of Facebook’s most popular features was its chat functionality.
However, it was extremely buggy and had a high rate of negative

user feedback. The new chat system that Facebook implemented is

using a Flux pattern that provides a seamless experience. You can

have look at example chat code in a Facebook React example at

https://github.com/facebook/flux/tree/master/exam—

ples.

Flux Deep Dive

As we now know what Flux is, let’s look into and understand the con-

cepts like dispatcher, store, and action

The Dispatcher

The dispatcher is the central hub that manages all data flow in a Flux
application. It is essentially a registry of callbacks into the stores and
has no real intelligence of its own; in essence, it is a simple mecha-
nism for distributing the actions to the stores. Each store registers it-
self and provides a callback. When an action creator provides the dis-
patcher with a new action, all stores in the application receive the ac-
tion via the callbacks in the registry. Dispatcher also acts like a traffic
controller. If it gets an action even when the data layer is still process-
ing, it makes sure to run the action. With the dispatcher, you know
where your action starts and what changes it makes to the data layer.
There are cascading effects that build up in between. You are indeed

in full control of your system.

https://github.com/facebook/flux/tree/master/examples

The Need for Dispatcher [dispatch() and
waitFor()]

As an application grows, dependencies across different stores also
increase. Imagine, for example, we have a situation where Store A
needs Store B to update itself first, so that it can itself know how to
update, too. We need the dispatcher to be able to invoke the callback
for Store B and finish that callback before moving forward with Store
A. To assert this dependence, a store needs to communicate with the
dispatcher to first complete the action to update Store B. The dis-

patcher provides this functionality through the waitFor () method.

The dispatch () method provides a simple, synchronous iteration
through the callbacks, invoking each in turn. When waitFor () is en-
countered within one of the callbacks, execution of that callback
stops and waitFor () provides us with a new iteration cycle over the
dependencies. After the entire set of dependencies has been fulfilled,

the original callback then continues to execute.

Further, the waitFor () method can be used in different ways for dif-
ferent actions, within the same store’s callback. In one case, Store A
might need to wait for Store B. In another case, though, it might need
to wait for Store C. Using waitFor () within the code block that is
specific to an action allows us to have fine-grained control of these

dependencies.

Problems arise, however, if we have circular dependencies; that is, if
Store A needs to wait for Store B, and Store B needs to wait for Store
A. This could wind up in an endless loop. The dispatcher now avail-
able in the Flux repo protects against this by throwing an informative
error to alert the developer that this problem has occurred. The devel-
oper can then create a third store and resolve the circular

dependency.

Stores

Stores contain the application state and logic. Their role is somewhat
similar to a model in a traditional MVC, but they manage the state of
many objects—they do not represent a single record of data like
ORM (Object Relational Mapping) models do. More than simply man-
aging a collection of ORM-style objects, stores manage the applica-

tion state for a particular domain within the application.

As mentioned earlier, a store registers itself with the dispatcher and
provides it with a callback. This callback receives the action as a pa-
rameter. Within the store’s registered callback, a switch statement
based on the action’s type is used to interpret the action and to pro-
vide the proper hooks into the store’s internal methods. This allows
an action to result in an update to the state of the store via the dis-

patcher. After the stores are updated, they broadcast an event declar-

ing that their state has changed, so the views can query the new state

and update themselves.

Actions

When new data enter the system, whether through a person interact-
ing with the application or through a web API call, those data are
packaged into an action—an object literal containing the new fields of
data and a specific action type. We often create a library of helper
methods called action creators that not only create the action object,

but also pass the action to the dispatcher.

Different actions are identified by a type attribute. When all of the
stores receive the action, they typically use this attribute to determine
if and how they should respond to it. In a Flux application, both stores
and views control themselves; external objects do not act on them.
Actions flow into the stores through the callbacks they define and reg-

ister, not through setter methods.

Letting the stores update themselves eliminates many entanglements
typically found in MVC applications, where ascading updates be-
tween models can lead to unstable state and make accurate testing
very difficult. The objects within a Flux application are highly decou-
pled, and adhere very strongly to the Law of Demeter, the principle

that each object within a system should know as little as possible

about the other objects in the system. This results in software that is
more maintainable, adaptable, testable, and easier for new engineer-

ing team members to understand.

Redux

Now that we have read about Flux, next we discuss another pattern
called Redux. Redux can be considered a predecessor to the Flux ar-
chitecture, and it is also inspired by the functional programming lan-
guage Elm. Redux was created by Dan Abramov in mid-2015. During
that time, the React world was going through major changes and new
things were coming every other day. No one, though, could imagine
that a small library of just 2 KB would create such a tectonic shift in

the way we interact with and create React applications.

Redux was built on top of functional programming concepts.
Functional programming by design allows us to write clean and mod-
ular code that is easier to test, debug, and maintain. With functional
programming, code is in the form of small functions that are isolated
in scope and logic, thus making the code reusable. Because small
pieces of code are isolated in nature, there is hardly any coupling and
these tiny functions can be used as modules in an app. In functional
JavaScript you will see pure functions, anonymous functions, and
higher order functions used very often. Redux uses pure functions a

lot, so a good understanding of this concept is important.

Pure functions return a value based on arguments passed to them.
They do not modify or mutate existing objects, but they return new
ones. These functions do not depend on the state from which they
are called, but they return only one and the same result for any pro-
vided argument. That’s why they are very predictable. Because pure
functions do not modify any value, they don’t have any observable
side effects. Redux uses something called reducers, which are pure
functions. We will learn in detail about reducers and other Redux

code concepts in the next section.

Redux Core Concepts

Redux has three core pillars: action, store, and reducers (Figure 3-6). These

words might sound complicated, but they are actually very simple.

EPUAEIRER State User Interaction

Action
Dispatch

Reducer

Figure 3-6 Redux data flow

Action

Actions are events that send data from the application (user interac-
tions, API calls, form submissions, etc.) to the store. The store always
gets the information from actions. Internal actions are simple Java-
Script objects that have a type property (usually constant), describing

the type of action and payload of information being sent to the store.

To send them to the store we use store.dispatch ().

Action creators, as the name suggests, are the functions that create
actions. It is easy to conflate the terms action and action creator, so
do your best to use the proper term. To call these action creator func-

tions anywhere in the app we use dispatch. As mentioned earlier, the
dispatch () function can be accessed directly from the store as
store.dispatch (), but more likely you’ll access it using a helper
like react-redux’s connect () method. You can use bindAction-
Creators () to automatically bind many action creators to a dis-

patch () function.

NoteAction creators can also be asynchronous and have side ef-
ects. This is an advanced topic, so we don’t need to go in-depth right

NOW.

Reducer

Reducers specify how the application’s state changes in response to actions
sent to the store. Remember that actions only describe what has happened,
but do not tell anything about state change in the application.
Understanding how reducers work is important in an application using
Redux because they are responsible for most of the work. Let’s describe this

with a simple example.

function appAuth(state, action) {

return Object .assign({}, state, {

authType: action.payload
})i

This is a very simple reducer that takes the current state and an ac-
tion as arguments and then returns the next state. In the case of com-
plex applications, we will be using the combineReducers () utility
that is provided by Redux. It combines all the reducers of the app into
a single index reducer. Every reducer is responsible for its own part
of the app’s state, and the state parameter is different for every re-
ducer. The combineReducers () utility makes the file structure

much easier to maintain.

Store

Thus far we have learned that actions represent what happened and the
reducers update the state according to those actions. The store is the object
that brings them all together. The store holds the application state and
provides a few helper methods to access the state, dispatch actions, and
register listeners. The entire state is represented by a single store. Any
action returns a new state via reducers. The following are few helper

methods:

« getState (): Allows access to state.
o dispatch (action): Allows state to be updated.

« subscribe (1listener): Registers listeners.

« replaceReducer (nextReducer) : Replaces the reducer cur-

rently used by the store to calculate the state.

Redux with React Native

To understand how Redux works with React Native, let’s create a simple
Todo application in React Native including how Redux makes things simple
for us. To proceed, use the source code available for this chapter. Inside the

project directory, run yarn install to install two new packages.

redux

react-redux

The Redux module is required so that you can use Redux with your
application. React-redux is going to help you connect your React native app

to Redux once you have both of these installed. Figure 3-7 shows our

application folder structure.

.exXpo
assets
node_modules
src

actions
components
containers
reducers
store
TodoApp.|s

6 .babelrc
.gitignore

{} .watchmanconfig

JS App.js

{} app.json

{} package-lock.json

{} package.json
README.md

yarn.lock

Figure 3-7 List of project folder structure

You would have to create all these folders: components, containers,
reducers, store, and a TodoApp . s file. Within these folders we
would have more JavaScript files reside inside our action, stores, re-
ducers, and components. This way our code stays modularized and
the logic remains isolated. Here, the Redux part is managed under
the action, reducer, and the store folder, but we would need compo-

nents that will use them.

Hence, we have two folders here: components, which consists of
plain dumb components, which are the presentational components of
the app having no idea that Redux exists or not in the app. Second,

we have smart components that interact with Redux, and they reside

in the containers folder.

First, let’s create a store. Inside the store folder create an index. js

file and paste the following code:

import { createStore } from 'redux'

import rootReducer from '../reducers'

export default store = createStore(rootReducer

Here, we have imported something called createStore from re-

dux. Here we are combining all our reducers with rootReducer and

exporting the same. Soon you will see how we have created two re-

ducers that we plan to use with our store using rootReducer.

Next, this store 1s imported into the application by adding the following

code in our App. Js.

import store from './src/store'
import { Provider } from 'react-redux'
export default class App extends React.Compone
render () {
return (
<Provider store={store}>
<TodoApp />

</Provider>

Here, we have imported our store and also used something called
Provider from react-redux. Once we pass our Provider and

store within that, it can be accessed anywhere in TodoApp ho matter

how many levels deep it is. Great! With this our store is set up.

Although our store is setup, we require some Ul components. If you
look at the containers folder, we have an addTodo component,

which is a simple Text Input that will be used to create a new todo.

Therefore, on this text input field there will be some action that will

trigger it to create a new todo.

Before we create our action and reducer, we must think about what
states we can have in this application. As per our design, there should be

two states: one Todo and one for visibility. Therefore, in the reducers
folder, you will find two files: one for the t odo reducer and other for the

visibilityFilter reducer.

const visibilityFilter = (state = "SHOW ALL",

return state

Here the visibility filter reducer takes the state SHOW ALL and based

on the action, it gives the expected outcome and returns the state. In this

case, it is responsible to show all the t odo records. Next, let’s look at the

todo reducer :

const todos = (state action) => {

[1,
switch (action.type) {
case 'ADD TODO':

return |

ca+at+o J

..QQL—\AL—\.’, ‘L
id: action.id,
text: action.text,

completed: false

]
case 'TOGGLE TODO':

return state.map(todo =>
(todo.id === action.id)
? { ...todo, completed: !t
todo)
default:

return state

}
export default todos

Here we have two actions—ADD TODO and TOGGLE TODO—that are
responsible for adding a new record in the list and marking a record

complete using their respective actions. We are able to determine the

type of actions using action. type.

At this point, both the reducers are independent, so we need a way to

combine them, which you can find in the third file in the reducers folder,

index. Js. Let’s look at the code inside reducers/index. js.

import { combineReducers } from 'redux'

import todos from './todos'
import visibilityFilter from './visibilityFilt
export default combineReducers/({

todos,
visibilityFilter
})

Here we are using something called CombineReducers from
redux. This helps is keep the logical part separate but use it such in

a way that we have only one reducer.

Working with the Components

Now that we have seen our reducers, let’s see how all this so far works with

our components. Open the containers/AddTodo. js file.

import { connect } from 'react-redux

import { addTodo } from '../actions'
class AddTodo extends Component {
state = {
text: '
}
addTodo = (text) => {

// redux store
this.props.dispatch(addTodo(text))
this.setState({ text: '' })

}

render () {
return (
<View style={{ flexDirection: 'row',
<TextInput
onChangeText={(text) => this
value={this.state.text}
placeholder="E.g. Create New
style={{ borderWidth: 1, borc
/>
<TouchableOpacity onPress={() =>
<View style={{ height: 50, b:
<Ionicons name="md-add" ¢
</View>
</TouchableOpacity>
</View>

) ;

}
export default connect() (AddTodo);

Here, we first have to set up the initial local state:

state = {
text: "'

This is just an empty string for the text input to stay empty. Next, we
have to update the text from text input when a user types. This is done using
onChangeText where the state is updated with the text entered by the

user.

onChangeText={(text) => this.setState({ text }

value={this.state.text}

Once the user submits the t odo it must be updated to our store. For

this, we use a helper method, connect, from react-redux.

import { connect } from 'react-redux’

In addition, the connect helper method should be passed with the

component that is going to get connected to the Redux store. In this case,
use AddTodo:

export default connect() (AddTodo);

We also have to import the action we plan to use; in this case, it is
addTodo:

import { addTodo } from '../actions'

Great! Now that we have connected our store to the component, let’s

trigger it onPress to add the todo in a list:

<TouchableOpacity onPress={() => this.addTodo(

Because this component is connected to the Redux store, we can

dispatch the action to the respective store:

addTodo = (text) => {
this.props.dispatch(addTodo(text))
this.setState({ text: '' })

This will update the todo list and also the text input state with an

empty string so that new values can be added later.

To display the data, we use a dumb component whose only purpose
is to display the to-do list. This component has nothing to do with Re-
dux. You can find this dumb component inside

component/TodoList.]js

Finally, when we run our application, we will find the result shown in

Figure 3-8 in the simulator.

Learn Redux
Make first app
Push to AppStore

Figure 3-8 Showing the to-do list on an iPhone

As you saw, there is some work involved in using Redux along with
your application, and as with any new piece of technology or new pat-
tern, developers should always ask this: Why should | use it in the

first place?”

It might be a little complicated to understand and implement something
with Redux, but once you understand the fundamentals, it provides many

advantages, including these:

. Expected outcomes: With Redux there is no confusion about
where to locate our one source of truth; that will always be the
store.

. Maintainability and organization of code: With a strict structure
in place and predictable outcomes, maintaining the code becomes
easier. Redux is also particular about how the code should be or-
ganized, and this becomes pivotal in maintaining the source code
as an application becomes large.

. Tools: With developer tools, developers can track what’s hap-
pening in the application in real time.

. Community: Redux is not something that has just appeared; it
has indeed passed the test of time. The community is flourishing,

and you can easily get support and regular updates for the library.

. Ease of testing: Redux functions by design are small, pure, and
isolated, which makes them perfect candidates to for which to write
tests. Redux apps automatically make testing easy for the

application.

Summary

In this chapter you learned about the Flux pattern, how it differs, and
how it solves a fundamental problem differently from the traditional
MVC pattern. We also looked closer at Flux core concepts. Next, you
learned about the successor of Flux, Redux, its core concepts, bene-
fits, and how to use it with React Native applications, which will be
useful in real-world applications and in the upcoming chapters. Chap-
ter 4 covers how to create Uls and navigation in React Native apps.

Finally, you learn how to use animation in your views.

© Akshat Paul and Abhishek Nalwaya 2019
Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development
https://doi.org/10.1007/978-1-4842-4454-8 4

4. Canvas, Brush, and Paint: Working
with the User Interface

Akshat Paull and Abhishek Nalwaya?
(1) Gurgaon, Haryana, India
(2) Jaipur, Rajasthan, India

A user interface is the process of shifting from chaotic complexi-

ty to elegant simplicity.
—Akshat Paul

Chapter 3 introduced React Native state management using Flux and

Redux, and you created your first React Native application. Now that you
have a skeleton for your project, let’s fill it out with a stunning UI. This

chapter covers the following topics:

. React Navigation

. Flexbox
. TouchableHighlight
. ListView

. ScrollView

https://doi.org/10.1007/978-1-4842-4454-8_4

. Animations

Any experienced software professional will agree: The success of an
app depends on the fact that it not only works flawlessly, but also
looks great. Therefore, a great Ul can make a huge difference in the

success of your app.

The layout system is a fundamental concept that needs to be mas-
tered to create great applications. Let’s begin by understanding how

to navigate within iOS and Android applications using React Native.
React Navigation

React Navigation is one of the popular JavaScript libraries for han-

dling routing in React Native applications. iOS and Android have dif-

ferent ways to handle navigation, and react-navigation takes

care of this for both platforms.

To start, we need to install the react-navigation npm module.

Let’s build on the HouseShare application we created in Chapter 2:

yarn add react-navigation

Let’s create a screen that we will use to render through react-

navigation. We will create a new folder with the name screens in

the root directory and create a HomeScreen. js file inside the same

folder. Add the following code in Homescreen. js:

import React from 'react';
import { StyleSheet, Text, View, Button } from
export default class HomeScreen extends React.
render () {
return (
<View style={styles.home}>
<Text>Home Screen</Text>

</View>

const styles = StyleSheet.create({
home: {
flex: 1,
alignItems: 'center',
justifyContent: 'center',
b
})i

We just created a HomeScreen React component, which shows text
that is center aligned. Because this component exported from App. js is

the entry point for your app and other components descend from it, we need

to update App . js to include Navigation. Let’s import the HomeScreen

component in App . js and update the following code:

import React from 'react';

import { StyleSheet, Text, View } from 'react-

import { createStackNavigator } from 'react-na

import HomeScreen from './screens/HomeScreen';

const AppNavigator = createStackNavigator({
Home: {

screen: HomeScreen

}o
})i

export default class App extends React.Compone
render () {

return <AppNavigator />;

Now run the app in a simulator:

$ yarn start

Figure 4-1 shows a HomeScreen rendered using react-
navigation. We have used createStackNavigator, which returns

a React component.

Home Screen

Figure 4-1 HomeScreen React component loaded

createStackNavigator takes a route configuration object and be-
cause it returns a React component, we can use this in the App com-
ponent. It provides a way for your app to transition between compo-
nents and manage navigation history, gestures, and animations,

which is natively provided in Android and iOS.

Right now, we have used just the HomeScreen component. Let’s add
one more screen and use react—-navigation to route to this new

screen.

Let’s create the AboutScreen. js component inside the screens

folder and add the following code 1n it:

import React from 'react';
import { StyleSheet, Text, View } from 'react-

() => A

export default AboutScreen
return (

<View style={styles.about}>

<Text>About Screen</Text>

</View>

}
const styles = StyleSheet.create({

about: {

flex: 1,
alignItems: 'center',

justifyContent: 'center',

},
}) i

Here we have created a stateless React component, which shows text

that is center aligned. Now we update StackNavigator to add this

screen to the stack. Open App . js and add this route:

const AppNavigator = createStackNavigator ({
Home: {

screen: HomeScreen

Yo
About: {

screen: AboutScreen
I3

initialRouteName: 'Home',

}
)i
export default class App extends React.Compone

render() {

return <AppNavigator />;

We have also defined an initalRouteName, which will be opened
as the first screen of the application. Now let’s add a button to
HomeScreen. The purpose of this button will be to traverse to
AboutScreen when clicked. We will do this by using react-navigation
prop this.props.navigation.navigate ('TargetRoute'),
which is automatically injected into your component. Let’s update

HomeScreen. js with the following code:

import React from 'react';
import { StyleSheet, Text, View, Button } from
export default class HomeScreen extends React.
static navigationOptions = {
title: 'Welcome',
}i
render () {
const { navigate } = this.props.navigation
return (
<View style={styles.home}>

<Text>Home Screen</Text>

<Button
title="Go About Page"
onPress={() =>
navigate('About’)
}
/>

</View>

const styles = StyleSheet.create({
home: {
flex: 1,
alignItems: 'center',

justifyContent: 'center',

}o
}):

Let’s test our app in in the simulator:

$ yarn start

Figure 4-2 shows the two screens and how users can navigate between

them.

9:58

Welcome < Welcome

Home Screen

Go About Page About Screen

Figure 4-2 Navigating using React Navigation

We have used createStackNavigator , which has created
screens as a stack that can be navigated with the back button at the
top. It manages a stack of screens to provide a drill-down interface for

hierarchical content.

Let’s customize the header next. You can do this on a global level as

well as at the screen level. We start with the global level. Update App. js

with

) ;

Run the app. Figure 4-3 shows the updated header styling for all the

screens, but you can override this for a specific screen by adding this in a

component as a static variable.

Home Screen

Go About Page

Figure 4-3 Header styling updated

NavigatorlOS

If you are only targeting iOS you can also use NavigatorlOS. It wraps
UIKit navigation and allows you to add a backswipe feature to your
app. NavigatorlOS manages a stack of view controllers to provide a
drill-down interface for hierarchical content. Now that we know what

NavigatorlOS does, let’s implement it in our project.

NoteNavigatorlOS helps with the most basic iOS routing. A route is

an object that describes each view in the navigator.

<NavigatorIOS
initialRoute={{
component: HomeScreen,
title: 'Title for screen',
passProps: {myProp: 'foo'},

}}
/>

We have done a little bit of styling in this section, which might be
something new for you if you come from a grid-layout background.
React Native uses Flexbox for styling, which is discussed in detail

next.

Flexbox

In creating the layout in the previous example, you must have seen
the f1lex property mentioned in the styles. This appears because Re-

act Native apps use the Flexbox layout model.

The React Native Flexbox layout model is inspired by the CSS Flex
Box Layout from CSS3. The React Native team has rewritten this feature
specifically for 10S. The main idea behind Flexbox is being able to create a
layout without worrying about different screen sizes or device orientation.
A flex container expands items to fill available free space or shrinks them to
prevent overflow. Let’s get some basic knowledge of Flexbox to expedite

our layout development. First, let’s update the view in HomeScreen. js:

Houseshare/screens/HomeScreen. js
export default class HomeScreen extends React.
static navigationOptions = {

title: 'House Share',

}i

render () {
const { navigate } = this.props.navigation
return (
<View style={styles.container}>
<View style={styles.topBox} />
<View style={styles.bottomBox} />

</View>

) ;

We have created one main view with a style container and two subviews

with the styles topBox and bot tomBox. Now, let’s create the styles:

var styles = StyleSheet.create({
container: {
flex: 1,
flexDirection: 'column'
by
topBox: {
flex: 2,
backgroundColor: '#CCESFF'
by
bottomBox: {
flex: 1,
backgroundColor: '#FFFFCC'

}) i

Turn back to the simulator and refresh the view using Command + R.
Now, rotate the simulator, and you will see it automatically adjust the size

of these colored boxes. Figure 4-4 shows the simulator in portrait mode.

' iOS Simulator - iPhone 6 - iPhone 6 / iO...

House Share

Figure 4-4 Screen in portrait mode

Let’s change the simulator to landscape mode (see Figure 4-5). This can

be done easily using Command + Right/Left arrow key (36 + Left Arrow).
You can see how the box has adjusted its size, and how the title adjusted its
width to use all the available space. Thanks to Flexbox, a pretty laborious
task is simplified.

iOS Simulator - iPhone 6 - iPhone 6 / iOS 8.2 (12D508)

House Share

Figure 4-5 Screen in landscape mode

Now, let’s review the flex properties Flex-direction and flex.

flexDirection

Flexbox is a single-direction layout concept. f1exDirection allows you

to define the direction in which the child elements are going to flow. It can

have two values, row and column. In the previous example we used

column. Let’s change it to row here:

container: {
flex: 1,

flexDirection: 'row

!

Turn back to the simulator and refresh the view with Command + R (see
Figure 4-06).

iOS Simulator - iPhone 6 - iPhone 6 / iO...

House Share

Figure 4-6 Changing the orientation of the box

You can see how the orientation of the box has changed. Now change

the property f1lexDirection to column (see Figure 4-7).

iOS Simulator - iPhone 6 - iPhone 6 / iO...

er = 10:01 PM

House Share

Figure 4-7 Changing the property to column

Flex

You must have seen the £ 1ex value in the stylesheet; it can be either

integers or decimals, indicating the relative size of the box:

container: {
flex: 1,
flexDirection: 'column'
by
topBox: {
flex: 2,
backgroundColor: '#CCESFF',
by
bottomBox: {
flex: 1,
backgroundColor: '#FFFFCC'

Our view says:

<View style={styles.container}>
<View style={styles.topBox} />
<View style={styles.bottomBox} />

</View>

f1lex thus defines the size percentage for the box. We can see that the
container has two views inside, topBox and bottomBox, with f1lex

values of 2 and 1, respectively (see Figure 4-8).

i0S Simulator -

r .
warrier <

iPhone 6 - iPhone 6 / iO...

10:01 F N

House Share

Figure 4-8 Container in 2:1 ratio

Now, update the view and add one topRox view inside the

container VIEW:

<View style={styles.container}>
<View style={styles.topBox} />
<View style={styles.bottomBox} />
<View style={styles.topBox} />

</View>

Refresh the view. The container has three views now: topBox,

bottomBox, and then topBox again (see Figure 4-9).

iPhone 6 - iPhone 6/ iO...

iOS Simulator -

Houge Share

Figure 4-9 Container with three views

This will divide the view into a 2:1:2 ratio, because their £1ex values

are in the ratio 2:1:2.

To get a better sense of how this works, let’s change the £ 1ex values
and see how that changes our screen. Let’s change the £1ex value of
topBox to 1. Update the CSS to:

container: {
flex: 1,
flexDirection: 'column'
b
topBox: {

flex: 1,
backgroundColor: '#CCESFF',

b

bottomBox: {
flex: 1,
backgroundColor: '#FFFFCC'

Refresh the view to see the changes, as shown in Figure 4-10.

iOS Simulator - iPhone 6 - iPhone 6 / iO...

Housg Share

Figure 4-10 View in 1:1:1 ratio

We can see that now the screen is divided in a ratio of 1:1:1, because
the £1lex values of the views are in a ratio of 1:1:1. With Flexbox, it is
easy to create layouts that can resize according to screen size and
orientation. This is just an introduction to Flexbox; we explain more
properties throughout the book as and when needed. You can also

find more options at https://facebook.github.io/react—

native/docs/flexbox.html .

Images

React Native has a built-in component, Image, that will help us to dis-
play images, including network images, temporary local images, and
also images from a local disk, such as the Camera Roll. To start, we

display local images.

Copy a home image from the assets folder and update

HomeScreen. js:

import React from 'react’;

import { StyleSheet, Text, View, Button, Image

export default class HomeScreen extends React.
static navigationOptions = {

title: 'House Share',

https://facebook.github.io/react-native/docs/flexbox.html

}i
render () {

const { navigate } = this.props.navigation
return (

<View style={styles.container}>
<View style={styles.topBox} >
<Image
style={styles.homeBanner}

source={require('../assets/house.

/>

</View>

<View style={styles.bottomBox} />
</View>

) ;

}

const styles = StyleSheet.create({
container: {

flex: 1,
flexDirection: 'column'
b
topBox: {
flex: 1,
backgroundColor: '#C0CO0CO'
b

bottomBox: {
flex: 2,
backgroundColor: '#fff'

b

homeBanner: {
bottom:0,
flex: 1,
alignSelf: 'stretch',
width: undefined,

height: undefined,

}
})i

Now run the simulator. The results are shown in Figure 4-11.

Figure 4-11 Adding images

We can also give any server image URL as the source, and the
Image component will take care of loading it from the network. For a
different screen size you can also give images of a different density
by using the @2x and @3x suffixes in the same folder. We will load an

image from a server later in this chapter.

TouchableHighlight

Touch is one of the ways to interact with a view in an application.
TouchableHighlight is a React Native component that helps us
create clickable views that give a proper response in the event of a
touch. To understand TouchableHighlight with an example, let’s
continue building our app by adding one more view to list the housing
options. This will be done by clicking on the show house image, which

will redirect to another component.

Let’s add the TouchableHighlight component, making the image
we have added into a clickable view. Update the view, remove View, and

add TouchableHighlight in HomeScreen.js:

<View style={styles.container}>
<TouchableHighlight style={styles.t

navigate('HomeListScreen')}>

-

<.image
style={styles.homeBanner}
source={require('../assets/house.
/>
</TouchableHighlight>
<View style={styles.bottomBox} />

</View>

Let us review what we have done here; we have added an onPress
attribute to our TouchableHighlight component for the List
Properties section. Whenever someone presses the List Prop-

ertiesimage,itcalls navigate ('HomeListScreen') .

We have also created a HomeListScreen. js page in the screens
folder:

import React from 'react';
import { Text, View} from 'react-native';
export default HomeListScreen = () => {
return (
<View>
<Text> Home List Screen </Text>

</View>

Finally, update this page in App.Jjs:

import HomeListScreen from './screens/HomeList
const AppNavigator = createStackNavigator ({

Home: ({

screen: HomeScreen

b
About: {

screen: AboutScreen
by

HomeListScreen: {

screen: HomeListScreen

initialRouteName: 'Home',

navigationOptions: {

headerStyle: {
backgroundColor: '#48BBEC',

}y

headerTintColor: '#fff',

headerTitleStyle: {
fontWeight: 'bold',

Refresh the app in the simulator and you’ll see the image. When you

click that image the new page shown in Figure 4-12 appears.

Home List Screen

Figure 4-12 Clickable View with TouchableHighlight

Now we will load the image from a server and then create a nice-

looking property view. This will look something like Figure 4-13.

Mr. Johns Conch house
12th Street, Neverland

Figure 4-13 Property name and address

Create a components folder in the root folder and create

HouseItem. js inside the components folder:

import React from 'react';
import { StyleSheet, Text, View, Image } from
export default HomeItem = (props) => {
return (<View style={styles.row} >
<Image
source={{uri: props.images}}
style={styles.thumbnail}/>
<View style={styles.rightBox}>
<Text style={styles.name}>{props.n
<Text style={styles.address}>{prop
</View>

</View>
) ;

}
const styles = StyleSheet.create({

row: {

flex: 1,

flexDirection: 'row',
alignItems: 'center',
backgroundColor: '#FS5FCFF',
borderWidth: 1,
borderColor: '#dé6d7da’',

o

thumbnail: {
width: 53,
height: 81,

o

rightBox: {
flex: 1,

o

name: {

fontSize: 20,
marginBottom: 8,
textAlign: 'center',
by
address: {
textAlign: 'center',
b
1)

Now open HomeListScreen. js:

HouseShare/screens/HomeScreen. js

-_— . ~

lmport React Irom 'react j;

import { Text, View} from 'react-native';

import HouselItem from '../components/HouseItem

() => A

export default HomeListScreen
return (

<HouseItem name=" Mr. Johns Conch house"

Let’s refresh our application in the i10OS simulator to see the changes (see
Figure 4-14).

i

- List of Properties

Mr. Johns Conch house
12th Street, Neverland

Figure 4-14 Thumbnail image with property name and address

ListView

In the previous section, we populated one element. In this section, we
populate a list of data using ListVview. Before we embark on that,
let’s learn a bit more about a different way to show the Listview
component in React Native. React Native has two components:

FlatList and SectionList.

FlatList is a component designed for populating vertically scrolling
lists of dynamic data. The minimal steps are to create a FlatList
data source and populate it with an array of data similar to the native

TableView data source.

ListView looks very similar to TableView, but the implementation
doesn’t actually use TableView. Rather,ituses Scrollview be-
hind the scenes. Features like swipe to delete, reordering, and so on,

cannot be used directly through ListView.

We will show the list of house address, as an example of the most
common representation of data in mobile devices. With our House-
Share app, we will create a table view showing a list of properties,
each of which has a thumbnail image to the left side. The rest of the

details should appear next to it.

To keep things simple for this chapter, we mock up data instead of
pulling them from some external service (later, you will learn how to pull
the same data from an external API). With these data, we will show the
name of the property, its address, and a thumbnail picture. Replace the

following code in HouseListScreen. js:

HouseShare/screens/HomeListScreen. js
import React from 'react';
import { Text, View, FlatList } from 'react-na

import HouseItem from '../components/HouseItem

const MOCK_DATA = |

{ name: 'Mr. Johns Conch house', address: 'l
{name: 'Mr. Pauls Mansion', address: '625, S
{name: 'Mr. Nalwayas Villa', address: 'll, H
{name: 'Mr. Johns Conch house', address: '12
{name: 'Mr. Pauls Mansion', address: '625, S
{name: 'Mr. Nalwayas Villa', address: 'l11l, H
{name: 'Mr. Johns Conch house', address: '12
{name: 'Mr. Pauls Mansion', address: '625, S
{name: 'Mr. Nalwayas Villa', address: 'l11l, H
1;
export default HomeListScreen = () => {
return (
<FlatList

data={MOCK_ DATA}
renderItem={({item}) => <HouseItem {.

keyExtractor={(item, index) => index.

/>

Refresh your application in the simulator to see the updated view, as

shown in Figure 4-15.

LLL L] ? m

Mr. Johns Conch house
12th Street, Neverland

Mr. Pauls Mansion
625, Sec-5, Ingsoc

Mr. Nalwayas Villa

11, Heights, Oceania

Mr. Johns Conch house
12th Street, Neverland

Mr. Pauls Mansion
625, Sec-5, Ingsoc

Mr. Nalwayas Villa

11, Heights, Oceania

Mr. Johns Conch house
12th Street, Neverland

Mr. Pauls Mansion
625, Sec-5, Ingsoc

Mr. Nalwayas Villa

11, Heights, Oceania

Figure 4-15 Scrollable addresses

Great! Now we have a list of properties that we can scroll through. Let’s

review the implementation now:

import { Text, View, FlatList } from 'react-na

import HouselItem from

We have once again specified what all components will be using in

this section. There is a new component added, FlatList.

Next, we created MOCK DATA, which is an array of hashes with

property details:

var MOCK DATA =[

{name:
{name:
{name:
{name:
{name:
{name:
{name:

{name:

{name:

'Mr.
'Mr.
'Mr.
'Mr.
'Mr.
'Mr.
'Mr.
'Mr.

'Mr.

Johns Conch house', address:
Pauls Mansion', address: '625,
Nalwayas Villa', address: 'l1,
Johns Conch house', address:
Pauls Mansion', address: '625,
Nalwayas Villa', address: 'l1,
Johns Conch house', address:

Pauls Mansion', address: '625,

Nalwayas Villa', address: 'l1,

'../components/Houseltem

12
S
H

'12

S
H

'12

S
H

In this code we added more entries to create a FlatList view. Now,

let’s look at the changes we made in our component:

<FlatList
data={MOCK DATA}
renderItem={({item}) => <Houseltem {.
keyExtractor={(item, index) => index.

/>

We have passed three props in the F1atList component: data,

renderItem, and keyExtractor:

. data is the source of information for the list.

. renderItem takes one item from the source and returns a for-
matted component to render.

. keyExtractor tells the list to use the IDs for the React keys

instead of the default key property.

ScrollView

Although we are not using Scrol1View in our HouseShare applica-
tion, it can be used as an alternate way to populate a list just like we
used ListView. ScrollView is one of the most versatile and use-
ful controls, as it is a great way to list content that is greater in size

than the screen size.

We can add a basic ScrollView by using the following code:

<ScrollView>

<Text>Scroll me plz</Text>

<Image

<Image
<Image
<Image
<Image
<Image

</ScrollView>

source={{uri: "'http://hmp.me

<Image source={{uri: "'htt
source={{uri: "'http://hmp.me
source={{uri: "'http://hmp.me
source={{uri: "'http://hmp.me

source={{uri:

source={{uri:

"'http://hmp.me
"'http://hmp.me

This is basic Scrol1View; if we want to scroll horizontally and we

want to lock that direction, we can do so with the following:

<ScrollView

horizontal={true}

directionallLockEnabled={true}

>

There are many other options available with Scrol1Vview; for docu-

mentation and examples, you can visit https://face-

book.github.io/react—-native/docs/scrollview.html .

https://facebook.github.io/react-native/docs/scrollview.html

<ScrollView> vs. <FlatList>

ScrollView is easy to use and it simply renders all its React child

components at once, whereas FlatList renders items lazily, just
when they are about to appear, and removes items that scroll far off

screen to save memory and processing time.

Animations

Animations are crucial when it comes to creating a good user experi-

ence. If you think of any popular mobile app, you will likely find anima-
tion at the center of an immersive user experience. React Native pro-

vides an animation API to perform different types of animations with

ease.

There are many different Animated methods that you can use to create

animations, including these:

. Animated.timing (): Animation based on time range.

. Animated.decay (): Animation starts with an initial velocity
and gradually slows to a stop.

. Animated.spring (): This is a simple single-spring physics
model that tracks velocity state to create fluid motions as the to-

Value updates, and can be chained together.

. Animated.parallel (): This starts an array of animations all
at the same time.

. Animated.sequence (): We can perform an array of anima-

tions in order, waiting for each to complete before starting the next.

Let’s add some animation in our HouseShare app. Create a file
FadeInView. js in the components folder and add the following

code:

HouseShare/components/FadeInView. js
import React from 'react';
import { Animated, Text, View } from 'react-na
export default class FadeInView extends React
state = {
fadeAnim: new Animated.Value(0),
}
componentDidMount () {
Animated.timing(

this.state.fadeAnim,

{
tovalue: 1,
duration: 4000,
}
) .start();

}

render () {

let { fadeAnim } = this.state;

return (
<Animated.View
style={{
...this.props.style,
opacity: fadeAnim,

}}

{this.props.children}

</Animated.View>

) ;

We have defined a state this.state.fadeAnim, which is the
opacity value. We have defined this value from 0 as initial state. The
opacity property on the View is then mapped to this animated value. We
have used Animated. timing to increase the opacity from 0 to 1 in
4,000 ms. Next we wrap FadeInView with any View and it can FadeIn
that View for 4,000 ms. Let’s open HomeItem. js and replace the root

View with FadeInView, as shown:

HouseShare/components/HomeItem. js
<FadelInView style={styles.row} >
<Image
source={{uri: props.images}}
style={styles.thumbnail}/>
<View style={styles.rightBox}>

<Text style={styles.name}>{props.n
<Text style={styles.address}>{prop
</View>

</FadeInView>

Run the app and you can see the FadeIn animation on the Home
List page. There are several different configurations available, which

are documented at https://facebook.github.io/react-na-

tive/docs/animated#configuring—animations.

Summary

In this chapter, we learned some of the fundamentals that are essential for

creating a stunning user experience. We covered the following:

« React Navigation

« NavigatorlOS for back-swipe functionality across apps

« The Flexbox layout model

« TouchableHighlight, a wrapper for making views respond
properly to touches

« Using ListView for efficient scrolling of vertical lists

« Using ScrollView for listing content larger than the screen size

« Using the Animate API of React Native to animate a View.

https://facebook.github.io/react-native/docs/animated%2523configuring-animations

The next chapter covers different device capabilities like MapView,

AsyncStorage, Native Alert, WebView, and deep linking.

© Akshat Paul and Abhishek Nalwaya 2019
Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development
https://doi.org/10.1007/978-1-4842-4454-8 5

5. Exploring Device Capabilities

Akshat Paull and Abhishek Nalwaya?
(1) Gurgaon, Haryana, India
(2) Jaipur, Rajasthan, India

Software will give you respect, but hardware will give you the

power.
—Akshat Paul

Mobile devices are not just limited to making phone calls; they are
some of the most advanced pieces of consumer technology ever invented.
Their real power lies in the various capabilities that reside in a smartphone.
The 10S and Android platforms allow us to use various device features to
make a more captivating application experience for our users. This chapter

explores the following device capabilities:

. MapView and Geolocation
. AsyncStorage

. Native Alert

. WebView

. Deep linking

https://doi.org/10.1007/978-1-4842-4454-8_5

MapView and GeolLocation

In this section, we will learn how to use iOS and Android location ser-
vices with a React Native application. Location services are used
very often in many popular apps, especially in travel, navigation, ride
sharing, and so on. This single feature significantly improves the user

experience and the bonus is that it’s very easy to implement.

Before we learn about GeoLocat ion, though, we need to learn about
MapView, which is essentially designed to show a location on a map. We
use the react-native-maps npm module (

https://www.npmjs.com/package/react-native-maps),

which is a component for 10S and Android to show maps. Access your

terminal to create an application to implement this capability:

$ expo init GeoLocationMaps

This creates a React Native app with Expo CLI. Next, add the react -

native-maps npm module, using yarn:

$ yarn add react-native-maps

react-native-maps (https://github.com/react-commu-

nity/react-native-maps) is one of the best modules for map

https://www.npmjs.com/package/react-native-maps
https://github.com/react-community/react-native-maps)

views. It includes numerous customization options available to help

you design the best possible experience with maps.

Because App . js is the entry point in a React Native app, update the

following code in that file:

GeoLocationMaps/App.Jjs
import React from 'react';
import { StyleSheet, Text, View } from 'react-
import MapView from 'react-native-maps';
export default class App extends React.Compone
constructor (props) {
super (props) ;
this.state = {
region: {
latitude: 37.3230,
longitude: -122.0322,
latitudeDelta: 0.0922,
longitudeDelta: 0.0922,

}
}i
}
render() {
return (
<MapView
style={styles.container}
initialRegion={this.state.region}

/ >

}
const styles = StyleSheet.create({

container: {
flex: 1,

}o
}):

Now build your application by executing following the command, and

open an i0S or Android simulator:

$ yarn start

You will see the map shown in Figure 3-1.

Lawrence Expy

Q

e

Prospect Rd

Saratoga

m_

O

py elojeieg-ajealuunsg PAlG CZUY 2O N S De Anza Bivd

©
©
>
=
c
=
v
w

.

Cupertino

Figure 5-1. GeolLocation MapView

Reviewing the GeoLocationMap Code

Let’s now understand what we have done in this part of our program.

import React from 'react';
import { StyleSheet, Text, View } from 'react-naf

import MapView from 'react-native-maps';

We have imported the MapView component from react-native-

maps. Next, we used the MapView component to plot a map:

export default class App extends React.Compone
constructor(props) {
super (props) ;
this.state = {
region: {

latitude: 37.3230,
longitude: -122.0322,
latitudeDelta: 0.0922,
longitudeDelta: 0.0922,

}i

render () {
return (
<MapView
style={styles.container}
initialRegion={this.state.region}
/ >
)i

Here, we have set the initial state for the region with certain 1ati-
tude, longitude, latitudeDelta, and longitudeDelta
parameters, which will be later set when we render the function with
the MapVview component. In the Mapview component, we are using
the region state, which is supplied with 1atitude, longitude,
longitudeDelta, and latitudeDelta. These should always be
numbers (integer or float), as they help us plot a specific region on
the map. Finally, we have added some style with Flex and registered

our component.
10S devices show Apple Maps by default. We can choose to use a

different provider like Google. Update provider to google with this

code:

<MapView

style={styles.container}
provider="google"
initialRegion={this.state.region}

/ >

Now run the application. You can see that instead of Apple Maps, it
loads Google Maps (Figure 5-2).

Sunnyvale

Cupertino

Fremont Older
Jpen Space

Preserve

Champagne

Fountain

Saratoga

Figure 5-2. Geolocation with Google Maps

There are numerous customization options available. You can check

https://github.com/react-community/react-native-

maps/blob/master/docs/mapview.md for more details.

Adding Annotation on a Map

Annotations provide a way to highlight specific coordinates on a map. This
valuable information is commonly added for any mobile application using a
geolocation feature. Let’s add an annotation marker to our application and
update initial state with the new state annotations, with parameters

latitude and 1ongitude for the marker.

constructor (props) {
super (props) ;
this.state = {
region: {
latitude: 37.3230,
longitude: -122.0322,
latitudeDelta: 0.0922,
longitudeDelta: 0.0922,
by
coordinate: {
latitude: 37.3230,
longitude: -122.0322,

https://github.com/react-community/react-native-maps/blob/master/docs/mapview.md

Now update the MapView component with the new prop called

coordinate:

<MapView
style={styles.container}
provider="google"
initialRegion={this.state.region}

>

<Marker coordinate={this.state.coordinate}

</MapView>

Refresh and observe the changes. You will see something like the screen

shown in Figure 5-3.

Sunnyvale

vens Creek
yunty Park

Fremont Older
Open Space
Preserve

Saratoga

iPhone XR 1

Figure 5-3. MapView with added parameters

Displaying the Latitude and Longitude of
the Current Location

In this final part of our geolocation application, we will display our
present latitude and longitude on the screen. In the previous exam-
ple, we had a constant location; in this part, we will move to our cur-
rent location in real time. That sounds like something exciting, so let’s
start building it. There are two ways to check for the current location
on our maps. One is to simply add showsUserLocation={true}
to the MapVview component. Another way is to use
NSLocationWhenInUseUsageDescription geolocation. Let’s try
the first option. If you are using gelocation on an existing project, you
need to update NSLocationWhenInUseUsageDescriptionin
info.plist foriOS and <uses-permission
android:name="android.permission.ACCESS FINE LOCA-
TION" />inAndroidManifest.xml for Android. Because we
have created a project with Expo, which initially uses react-native

init, gelocation is enabled by default.

Update the App.js Marker component with the following code:

<MapView

~d+crl A=l ~d+~r1 A~ ~NArndE AadmAa]

SLyic—idLyiEdD.LULLALLCL]
provider="google"
showsUserLocation={true}
initialRegion={this.state.region}

>

<Marker coordinate={this.state.coordinate}

</MapView>

Now refresh the application to load it on the 10S simulator and you will

see something similar to Figure 5-4.

Allow “"Expo” to access your
location while you are using
the app?

Allow Expo experiences to use

your location

Don't Allow

iPhone XR -12.1

Figure 5-4. Access location prompt

If we allow this request, the map will move to the location we specified
in our code; in this case it’s Apple’s headquarters in Cupertino, California
(Figure 3-5).

Sunnyvale

Cup Li.'tno

vens Creek
sunty Park

Fremont Older
Open Space
Preserve =
|85)
\53)
Champagne

Fountain

Saratoga

iPhone XR - 12.1

Figure 5-5. Moving to a specified map location in the code

Now let’s use the other method to get the user’s current location, using

the Geolocation API, which is extended from the Geolocation web spec (

https://developer.mozilla.org/en-—

US/docs/Web/APT/Geolocation). Let’s first update the ref for

MapView to this.map, so that we can use it:

<MapView

>

ref={ref => { this.map = ref; }}
style={styles.container}
provider="google"
showsUserLocation={true}
followUserLocation={true}
loadingEnabled={true}

initialRegion={this.state.region}

<Marker coordinate={this.state.coordinate}

</MapView>

Now add navigator.geolocation.watchPosition inthe

same file:

componentDidMount () {

navigator.geolocation.watchPosition(

(position) => {

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation

console.log(position);
this.map.animateToRegion ({
latitude: position.coords.latitude,
longitude: position.coords.longitud
latitudeDelta: 0.005,
longitudeDelta: 0.005

})i
}o

(error) => console.log(error.message),

{ enableHighAccuracy: false, timeout: 2

Here, in componentDidMount, we get the current position from the
watchPosition function in navigator.geolocation, which
continuously checks for location because we’ll need to get the location
coordinates as the user moves. The Google Maps geolocation API has a

watchPosition method that will help us get the location coordinates

whenever they change. There are also other functions available like

getCurrentPosition , which checks the current location just once

when the app is refreshed (Figure 5-6).

iPhone XR -12.1

Figure 5-6. Map showing the current location

Because we have a console log, we can see the position as it appears in

the console, as shown in Figure 5-7.

[15:
[15:
[15:
[15:
[15:
[15:
[15:
(15:
[15:
[15:
[15:
[15:

17

17

1y -
17 (-
1A

17

57]
57]
57]
57]
571
57]
:57]
57]
57]
57]
:57] }

:57] Object {

1171
1y A
17
1
174
117/

“"coords": Object {
"accuracy": 5,
"altitude": 0,
"altitudeAccuracy": -1,
"heading": 301.29,
"latitude": 37.41347243,
"longitude": -122.20759654,
"speed": 34.2,

},

"timestamp": 1544089673352.4421,

Figure 5-7. Current location displayed in the console log

We can now see the current location. Next, let’s try to change the

location. To change a location, from the Simulator menu bar, select Debug

» Location » Freeway Drive (see Figure 5-8). Freeway Drive will

continuously change the simulator location.

@ Simulator File Edit Hardware Debug Window Help

Slow Animations
Graphics Quality Override

Color Blended Layers
Color Copied Images
Color Misaligned Images
Color Off-screen Rendered

Open System Log... %/

Simulate Memory Warning 0 #M
Trigger iCloud Sync

None
e Custom Location...
v Show Parallel Testing Devices City Run
City Bicycle Ride
Freeway Drive
v Apple

Figure 5-8. Change location using Simulator

We can see that the location is changed dynamically in the app. Because
we chose to use Freeway Drive, we can see that the location and maps

continuously move along a freeway (Figure 5-9).

Junipero Serra Fwy

iPhone XR - 12.1

Figure 5-9. Location changed to freeway

AsyncStorage

AsyncStorage is a key/value-based storage system. It can be easily
implemented and is globally available to the app. This persistence system is
simple and asynchronous, and also a recommended way to store data. To
create an AsyncStorage example application, execute the following

command:

Sexpo init AsyncStorage

Add the following code in App. js:

import React from 'react';
import { StyleSheet, Text, View, TextInput, Bu
export default class App extends React.Compone
constructor (props) {
super (props) ;

this.state = {storedText: '', inputBoxText

async componentDidMount () {

this.setState({storedText: await this.retr

onPressSave = async () => {

try {

await AsyncStorage.setItem('@AsyncStorag
this.setState({storedText: this.state.in
} catch (error) {

console.log("Error in saving data");

}
}
retrieveData = async () => {
try {
const value = await AsyncStorage.getItem
return value;
} catch (error) {
console.log("Error in Fetching Data'")
}
}

render () {
return (

style={styles.textField}
placeholder="Type here!"
onChangeText={(text) => this.setStat
/>
onPress={this.onPressSave}
title="Save"
color="blue"
accessibilityLabel="Click will save
/>

Text from local Storage:

{this.state.storedText}

}
const styles = StyleSheet.create({

container: {
flex: 1,
backgroundColor: '#fff',
alignItems: 'center',
justifyContent: 'center',

by

header: {
fontFamily: 'Georgia',
fontSize: 20,
fontWeight: 'bold',
paddingTop: 40,

by

text: {
fontFamily: 'Georgia',
fontSize: 18,
fontStyle: 'italic',
paddingTop: 10,

by
textField: {
height: 40,

width: 300,
borderColor: '#CO0COCO',
borderBottomWidth: 1,

}):

Let’s build our application to see the results. You can enter the text in a

text box as shown in Figure 5-10 and then click Save.

Text from local Storage:

iPhone XR - 121

Figure 5-10. Storage is updated

Once that is done, refresh for the result shown in Figure 5-11.

Save

Text from local Storage:

This text is from local storage

Figure 5-11. Text from the AsyncStorage mechanism

This time the text below, “This text is from local storage,” is coming

from the AsyncStorage mechanism that we have put in place.
Reviewing the AsyncStorage Code

In this example, we have included the AsyncStorage default component in
our list of components to be used for the sample application. Let’s go

through how exactly the code for this example works.

import React from 'react’;

import { StyleSheet, Text, View, TextInput, Buttc

We use this AsyncStorage React component within our App compo-
nent. Previously, we also specified a key that we will use with

AsyncStorage.

Inside our App component we have set up constructor and
componentDidMount methods and also created onPressSave and

retrieveData methods. Let’s discuss them one by one.

constructor (props) {
super (props) ;

this.state = {storedText: '', inputBoxText

In constructor we have specified blank values for storedText
and inputBoxText, which we will keep updating as and when their state

changes.

async componentDidMount () {

this.setState({storedText: await this.retr

componentDidMount is invoked only at the .time of initial
rendering and is responsible for showing the text below “This text is from
local storage,” once we have updated the storage and refreshed the app
again. We have used async and await for calling retrieveData,

which means the execution will wait until the function is completely

executed.

retrieveData = async () => {

try {
const value = await AsyncStorage.getItem
return value;
} catch (error) {

console.log("Error in Fetching Data")

The method retrieveData is used to retrieve the value stored in
local storage. Calling AsyncStorage.getItem retrieves the value

stored in local storage.

onPressSave = async () => {
try {
await AsyncStorage.setItem('@AsyncStorag
this.setState({storedText: this.state.in
} catch (error) {

console.log("Error in saving data");

Updating storage updates AsyncStorage values, which are persisted

permanently.

render() {
return (
<View style={styles.container}>
<TextInput
style={styles.textField}

placeholder="Type here!"
onChangeText={(text) => this.setStat
/>

<Button
onPress={this.onPressSave}
title="Save"
color="blue"
accessibilityLabel="Click will save
/>
<Text style={styles.header}>Text from
<Text style={styles.text}>{this.state.

</View>

The preceding code sets up various sections of our
AsyncStorageExample component. Here, we can change a text input
field to update the text InputMessage state. We also have an
onPress prop for the TouchableHighlight component, which calls
the updatedStorage method and persists the values permanently. In the

end, we display the saved message by accessing the present state of the

message.

const styles = StyleSheet.create({
container: {
flex: 1,
backgroundColor: '#fff',
alignItems: 'center',

justifyContent: 'center',

b

header: {
fontFamily: 'Georgia',
fontSize: 20,
fontWeight: 'bold',
paddingTop: 40,

b

text: {
fontFamily: 'Georgia',
fontSize: 18,
fontStyle: 'italic',
paddingTop: 10,

b

textField: {

height: 40,

width: 300,

borderColor: '#COCOCO',

borderBottomWidth: 1,

}
}) i

Finally, we set up a Ul style with some self-explanatory Flex settings

and register our AsyncStorageExample component.

Native Alert

Alerts are used to provide important information to application users.
Basic alerts consist of a dialog box with a specific title, message, and
buttons. Occasionally alert boxes appear in an application to display
a piece of important information. The buttons for an alert could either
be a simple OK to proceed with the app, or OK, Cancel, Ask Me Lat-
er, and so on, which require the user to make a decision. Tapping this
button could be linked to execute an inPress callback to execute a

piece of code. By default an alert dialog box will have one button.

Let’s create a project to understand more about Native Alert:

S expo init NativeAlertApp

React Native provides the component Alert that works for both 10S

and Android. Let’s add a button that will open an alert box when clicked.
Update App . js with the following code:

import React from 'react';
import { StyleSheet, Text, View, Button, Alert
export default class App extends React.Compone

onPressButtonl () {

Alert.alert(
'Alert Title',

'Alert Message',

}

render () {
return (
<View style={styles.container}>
<Button

onPress={this.onPressButtonl}
title="Button 1"
color="#841584"
accessibilityLabel="Learn more about
/>

</View>

const styles = StyleSheet.create({

container: {

flex: 1,
backgroundColor: '#fff',
alignItems: 'center',

justifyContent: 'center',

b

Let’s build this application and test it in the simulator. Figure 5-12

shows the result.

4:51
<« DeepLinkA...

Button 1

Figure 5-12. A button that will open an alert dialog box when clicked

Tap the Button 1 button to see an alert box, as shown in the example in

Figure 5-13.

Alert Title
Alert Message

OK

Figure 5-13. An alert dialog box

Reviewing the NativeAlert Code

Now that you have created a new NativeAlert project, create a new

NativeAlert component :

export default class App extends React.Component
onPressButtonl () {
Alert.alert(
'Alert Title',

'Alert Message',

}

render () {
return (
<View style={styles.container}>
<Button

onPress={this.onPressButtonl}
title="Button 1"
color="#841584"
accessibilityLabel="Learn more about Bt
/>

</View>

In the component NativeAlert, we have used onPress callback.
The Alert method passes the strings 'Alert Title' and 'Alert
Message ', which produce an alert dialog box containing a title, a
message, and a button. Alert provides two methods, alert and prompt,
as shown next. Alert creates and displays an alert, whereas prompt

creates and displays a prompt to enter some text.

static alert(title: string, 1

static prompt(title: string,

Extending the NativeAlert Example

Now, to add some more buttons to the application, replace the following

code for your NativeAlert component in App. Js:

export default class App extends React.Component

onPressButtonl() {

Alert.alert(
'Alert Title',

'Alert Message',

}

onPressButton2 () {
Alert.alert(
'Alert Title',
'Alert Message with Buttons',

[

{text: 'Button 1', onPress: () => console..
{text: 'Button 2', onPress: () => console..:
{text: 'Cancel', onPress: () => console.lo

1,

}

render () {
return (
<View style={styles.container}>
<Button
onPress={this.onPressButtonl}
title="Button 1"
color="#841584"
accessibilityLabel="Learn more about B
/>
<Button
onPress={this.onPressButton2}

title="Button 2"

color="#841584"
accessibilityLabel="Learn more about Bt

/>

Let’s refresh our view to see the changes made in Figure 5-14.

5:01
< DeepLinkA...

Button 1

Button 2

Figure 5-14. Two buttons added on the screen

Click Button 2 to view the result shown in Figure 5-15.

Alert Title
Alert Message with Buttons

Button 1

Button 2

Cancel

Figure 5-15. Select Button 1, Button 2, or Cancel

Tapping Button 2 fires an onPress callback that uses the alert
method of Alert to set title, message, and buttons for our alert box.

In this part of the NativeAlert component we have three buttons.

WebView

WebView is responsible for rendering web content in a Native view. That
simply means WebView is an environment for loading a web URL inside
your React Native application. WebView allows you to display web

content as part of your app, but it lacks some of the features of fully

developed browsers. Let’s begin by generating an application for this:

S react-native init WebViewApp
Syarn add react-native-webview

Sreact-native link react-native-webview

Now use one of the following commands to build the app. The first
command is for an 10S simulator and the second one is for an Android

simulator.

Sreact-native run-ios

Sreact-native run-android

Next, open App . s and replace its code with the following code:

import React, {Component} from 'react’';
import {StyleSheet, SafeAreaView} from 'react-
import { WebView } from "react-native-webview"
export default class App extends Component<Pro
render () {
return (
<WebView
style={{marginTop: 20}}
source={{ uri: "https://www.wikipe

/> i

}
const styles = StyleSheet.create({

container: {
flex: 1,
backgroundColor: '#F5FCFF',
b
})i

Let’s build the application by running:

react-native run-ios

The result is shown in Figure 5-16.

WIKIPEDIA

The Free Encyclopedia

English

5 763 000+ articles

Deutsch
2 245 000+ Artike!

Italiano

1 481 000+ voci

Polski

1 310 000+ hasol

B&EE

1 130 000+ B

Pyccknn

1513 000+ cTaTen

X

1034 000+ 48

Espaiol

1 491 000+ articulos

Francais

2 062 000+ articles

Portugués
1 011 000+ artigos

XA Read Wikipedia in your language v

Commons

& more

w Wiktionary

Y~ Free dictionary

Wikipedia is hosted by the Wikimedia Foundation, a non-profit
organization that also hosts a range of other projects.

- < Wikivoyage
Freely usable photos A |

by

iPhone X - 121

Free travel guide

Wikibooks
Free textbooks

Figure 5-16. WebView with a URL

Reviewing the WebView Code

In this example, we have created a component App that returns a
WebView. The following code creates a view with our desired URL loaded

in the WebView.

export default class App extends Component<Props:
render () {
return (
<WebView
style={{marginTop: 20}}
source={{ uri: "https://www.wikipedia.c

/>

Deep Linking

Deep linking is a technique that allows an app to be opened to a spe-
cific Ul or resource, in response to some external event. The deep
refers to the depth of the page in an app’s hierarchical structure of
pages. This is a very important feature for user engagement, as it
also makes an app more responsive and capable of navigation to ar-
bitrary content in response to external events like push notifications,

e-mails, web links, and so on.

There are two ways of implementing deep linking: using a URL
scheme or universal links. Although URL schemes are a well-known
way of using deep linking, universal links are the new method Apple
has implemented to easily connect your web page and your app un-
der the same link. We implement URL schemes in our example that
will handle external URIs. Let’s suppose that we want a URI like
myapp://article/4 to open our app and link straight into an arti-

cle screen that shows article number 1.

We are using The React Native CLI instead of Expo CLI because we
want to use customization in 10S and Android code. We can create the

project using Expo and can then eject also.

S react-native init DeepLinkApp

$ yarn add react-navigation

S react-native link react-native-gesture-handl

After creating the project, we will add React Navigation and then use

the 1 ink command to link React Native gesture handling. Create an src
folder in the root folder and add the Article. js and Home. js files.

Next, add following code in Home . j s:

import React from 'react';
import { Text } from 'react-native';
class Home extends React.Component {
static navigationOptions = {
title: 'Home',
}i
render() {

return <Text>Hello from Home!</Text>;

}

export default Home;

We have created a simple React component that rendered Text
Hello from Home !. We next create a file Article. js inthe src

folder and add the following code:

import React from 'react';

import { Text } from 'react-native';
class Article extends React.Component {
static navigationOptions = {
title: 'Article',

}i
render () {
const { id } = this.props.navigation.state

return <Text>Hello from Article {id}!</Tex

}
export default Article;

We have now created two components, Home . js and Article. s,
and we can add this in React Navigation routes. Open App . j s and update

the following code:

import React, {Component} from 'react’';

import {Platform, StyleSheet, Text, View} from

import { createAppContainer, createStackNaviga

import Home from './src/Home';

import Article from './src/Article';

const AppNavigator = createStackNavigator ({
Home: { screen: Home },

Article: { screen: Article, path: 'article/:

b
initialRouteName: "Home"
}
)i
const prefix = Platform.0S == 'android' ? 'mya

const App = createAppContainer (AppNavigator)

const MainApp = () => <App uriPrefix={prefix}

export default MainApp;

We have thus far created React Navigation and created routes for

two pages. We have configured our navigation container to extract
the path from the app’s incoming URI. On Android, the URI prefix typ-

ically contains a host in addition to the scheme, so we have used

myapp://myapp/.

Now we have to write custom code for iOS and Android. First, open the
10S project in the 10S folder by clicking DeepLinkApp.xcodepro].
Select the project title from the folder list and navigate to the Info tab as
shown in Figure 5-17. Scroll down to the URL Types section and add one.
For the new URL type, set the Identifier to mychat and the URL Scheme
to mychat.

BERQAOEo B8

> [E DeepLinkApp

[0 A DeepLinkApp & General Capabilities Resource Tags Info Build Settings Build Phases Build Rules
P . | DeepLinkApp = = T
N > Required device capabilities 3 (1 item)
bl oraries Bundle version I 1
P [l DaepLinkAppTests Launch screen interface file base name { LaunchScreen
P .| Products Executable file s $(EXECUTABLE_NAME)
P [._| Frameworks Application requires iPhone environm... $ YES e
D . | Recovered References Bundle versions string, short (3 1.0
» Supported interface orientations & (3 items)
Bundle display name 2 DeepLinkApp
» App Transport Security Settings (o (2 items)
View controller-based status bar app... NO z
Bundle OS Type code Eo APPL
Bundle creator OS Type cede 5 222
Localization native development region 2 en Lo
Bundle name & $(PRODUCT_NAME)
» Document Types (0)

» Exported UTIs (0)

| » Imported UTIs (0)

¥ URL Types (1)

myapp
Identifier myapp URL Schemes myapp
No ;
image Icon n Role Editor
specified

P Additional url type properties (0)
+

Figure 5-17. Deep linking using Xcode

Open AppDelegate.m in the root folder and add the following code
before @end.

- (BOOL)application: (UIApplication *)applicati

sourceApplication: (NSString x)sourceApplicat

return [RCTLinkingManager application:applic

sourceApplication:source

Now let’s update the code for Android. To configure the external linking

in Android, we need to create a new intent in the manifest. Open

/src/main/AndroidManifest.xml to add the new intent-

filter inside the MainActivity entry with a VIEW type action:

<intent-filter>
<action android:name="android.intent
<category android:name="android.inte
<category android:name="android.inte
<data android:scheme="myapp" android

</intent-filter>

Let’s start running the app, first with i0S:

Sreact-native run-ios

The result is shown in Figure 5-18.

iPhone X -12.1

Figure 5-18. Running the app with iOS

To test the DeepLink, open the Safari browser and type
myapp://article/4. That will automatically open the app and open
Article 4 (Figure 5-19).

12:44
< Safari

= &%)

myapp://article/4 Cancel < Home Article

Hello from Article 4!

iPhone X - 121 iPhone X - 121

Figure 5-19. Traversing to the DeepLink page

You can also open the DeepLink page by running this command on your

terminal (Figure 5-20):

xcrun simctl openurl booted myapp://article/3

12:41

< Home

Hello from Article 3!

Openin "DeepLinkApp"?

Cancel Open

iPhone X - 121 iPhone X - 121

Figure 5-20. Traversing to the DeepLink page

Summary

This chapter covered various capabilities of iOS and Android devices
using React Native. These capabilities helped us build features be-
yond just a Ul. We learned how to use GeolLocation and loading
maps for your app, AsyncStorage to persist data, Native alerts to
share important info in your app, WebView to load HTMLS5 content,

and finally deep linking.

Chapter 6 discusses how to interact with a back-end server because
no real-world application is complete without connecting to a back

end and consuming APls.

© Akshat Paul and Abhishek Nalwaya 2019
Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development
https://doi.org/10.1007/978-1-4842-4454-8 6

6. Communicating with Servers

Akshat Paull and Abhishek Nalwaya?
(1) Gurgaon, Haryana, India
(2) Jaipur, Rajasthan, India

Communication is everyone’s panacea for everything.
—Tom Peters

After learning about the powers of device capabilities with many
examples, it’s time to get back to our SmartHouse application. So far, you
have been populating your app locally with some dummy data, but no
application can survive without communicating with a server. This chapter
covers how to interact with network APIs. You will explore the following

topics:

XMLHttpRequest

. WebSocket

. Fetch

. Getting data from a server

. Posting data to a server

https://doi.org/10.1007/978-1-4842-4454-8_6

Earlier you were getting all the data from a dummy data object, which
was static within your application. It’s rare that any production appli-
cation will work entirely with static data. Fortunately, React Native
provides many ways to interact with network APIs. The following sec-

tions cover the ways the network stack is supported in React Native.
XMLHttpRequest

XMLHttpRequest is an API that provides the ability to transfer data
between a client and a server. It provides an easy way to retrieve data from
a URL without having to do a full-page refresh. In React Native, the
XMLHttpRequest API is applied on top of the 10S networking APIs.

This is the code snippet to use XMLHt tpRequest.

var request = new XMLHttpRequest();

request.onreadystatechange = (e) => {
if (request.readyState !== 4) {
return;
}
if (request.status === 200) {
console.log('success', request.responseText),
} else {
console.warn('error');
}
}i

request.open('GET', 'https://backendwebsite.com/¢

request.send();

Using XMLHt tpRequest is quite tedious. However, because it is

compatible with the browser API, it lets you use third-party libraries
directly from npm (e.g., Parse). For more information on this API,

please refer to its documentation at https://developer.mozil-

la.org/en-US/docs/Web/APT/XMLHttpRequest .

WebSocket

WebSocket is a protocol that provides full-duplex communication channels
over a single Transmission Control Protocol (TCP) connection. With the
WebSocket API it is possible to open two-way interactive
communication. With this API, you can send messages to a server and
receive event-driven responses without having to poll the server again and

again for a reply. This is how the code looks for a WebSocket:

var ws = new WebSocket('ws://example.com/path');
ws.on('open', function() {
// connection opened
ws.send('example data');
}) i
ws.on('message', function(e) {
// a message received
console.log(e.data);

}):

ws.on('error', function(e) {

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

// an error occurred
console.log(e.message);
})i
ws.on('close', function(e) {
// connection closed

console.log(e.code, e.reason);

})i

Fetch

Fetch is a popular networking API. It was created by a standard
committee and has well-defined requests, responses, and the process to bind

them. The following is an example of a post request with fetch:

fetch('https://example.com/endpoint/"', {
method: 'POST',
headers: {
"Accept': 'application/json',
'Content-Type': 'application/json',
by
body: JSON.stringify({
firstParam: 'yourValue',

secondParam: 'otherValue',

})
})

Fetch returns a promise because networking is an async operation,

which means it will not wait for execution, so we can resolve using a then

and catch block. We can get a response and error like this:

fetch('https:// example.com/endpoint')
.then((response) => response.text())
.then((responseText) => {

console.log(responseText);

})

.catch((error) => {

console.warn(error);

)i

Now that you know how to interact with network APIs, let’s use one of

the options, fetch, to get and post data to a server. To keep things
simple, we have hosted a simple back-end server with restful APls

that you can consume for your application.

We will be using following the URLSs to get and post data to a back-

end server. For a quick test, you can use cur1 to see the response

you get from making a request to these URLs.

https://github.com/curl/curl

Use this code to get an initial seed list of properties:

Scurl 'http://www.akshatpaul.com/list-all-prop

[
{

name: "Mr. Johns Conch house",
address: "12th Street, Neverland",
images: {

thumbnail: "http://hmp.me/0l5"

}

by

{

name: "Mr. Pauls Mansion",
address: "625, Sec-5, Ingsoc",
images: {

thumbnail: "http://hmp.me/0l6"
}

b

{

name: "Mr. Nalwayas Villa",
address: "11, Heights, Oceania",
images: {

thumbnail: "http://hmp.me/0l7"

}

To get the list of properties that the users have saved, run

Scurl 'http://www.akshatpaul.com/list-properti

You might see few results here that are created by other readers of
this book.

To post data to the server to save a property we use the following API:

url: 'http://www.akshatpaul.com/properties'

Getting Data from a Server

First, let’s get get some data from our back-end server that we use to
populate the list of properties we have already added in our back-end server.
So far this is getting populated from the JavaScript Object Notation (JSON)
we have stored on our client application itself. Insert the following code

into the HomeListScreen. js component:

1Mmport KReaCt I1Iroin reacCt
import { FlatList } from 'react-native';

import HouseItem from '../components/Houseltem';
export default class HomeListScreen extends React
constructor (props) {
super (props) ;
this.state = {

dataSource: null,

}

componentDidMount () {

return fetch("https://www.akshatpaul.com/1list
.then ((response) => response.json())
.then ((responsedson) => {

this.setState({

dataSource: responsedJdson,

})

})

.catch((error) => {
console.log(error)
})i
}

render () {

return (
<FlatList
data={this.state.dataSource}
renderItem={({item}) => <Houseltem {...:

keyExtractor={(item, index) => index.to!

/>

Now, build or refresh the application and navigate to the of list of all the

properties. Figure 6-1 shows it loaded on an 10S simulator .

List of Properties

Mr. Johns Conch house
12th Street, Neverland

Mr. Pauls Mansion
625, Sec-5, Ingsoc

Mr. Nalwayas Villa
11, Heights, Oceania

Mr. Johns Conch house
12th Street, Neverland

Mr. Pauls Mansion
625, Sec-5, Ingsoc

Mr. Nalwayas Villa
11, Heights, Oceania

Mr. Johns Conch house

Figure 6-1. Populating the app with static data fetched from a server

All these data are coming from a back-end server. Let’s walk through
this code. Here, we first removed the MOCK_DATA , which is no longer

required. We then modified the component type:

export default HomeListScreen = () => {

}

To
export default class HomeListScreen extends Re

}

Earlier we had created a stateless component, but because we would

like to use life cycle methods and maintain state, we have modified

our stateless component to a state component.

Next, we added the following code in our HomeListScreen state

component:

constructor(props) {

super (props) ;
this.state = {
dataSource: null,

}

componentDidMount () {
return fetch("https://www.akshatpaul.com/1
.then ((response) => response.json())
.then ((responsedson) => {
this.setState({

dataSource: responsedson,

})
})

.catch((error) => {

console.log(error)

})i

Here, we have created a constructor that sets the initial state for
the dataSource property as null. This is the property that will store

the data we will pull from a back-end server.

Next, we use a life cycle method componentDidMount () . We are
making use of this life cycle method because we assume we would
only be required to make a get call to the back-end API to get the list

of properties once.

The structure of this request is straightforward: We use fetch to

make a call that returns a promise. This promise is then resolved and

we pass the response JSON to dataSource using the setState

object .

Finally we have the placed catch() method to log any error. To load the
data received from the back-end server, we are not making any changes in

the earlier component except replacing MOCK _DATA with

this.state.dataSource.

render () {
return (

<FlatList
data={this.state.dataSource}
renderItem={({item}) => <Houseltem {.
keyExtractor={(item, index) => index.
/>

)i

Saving Data to a Server

In your housing application, so far you are able to get data from a back-end
server. This section shows you how to save data to a back-end API. For this
we will create a component to add new properties and make request to a
back-end API to save the data. For this purpose, we already have a back-
end API ready to be consumed:

URL : http://www.akshatpaul.com/properties

Let’s first add a button to HomeScreen that will navigate us to the

Addproperty page . Add the following code along with styling:

import React from 'react';
import { StyleSheet, Text, View, Image, Toucha
export default class HomeScreen extends React.
static navigationOptions = {
title: 'House Share',
}i
render () {
const { navigate } = this.props.navigation
return (
<View style={styles.container}>
<TouchableHighlight style={styles.t
navigate('HomeListScreen')}>
<Image
style={styles.homeBanner}
source={require('../assets/house.
/>
</TouchableHighlight>
<TouchableHighlight style={styles.bu

onPress={()=> navigate('AddNewProp
underlayColor="'#99d9f4'>

<Text style={styles.buttonText}>Ad
</TouchableHighlight>

<View style={styles.bottomBox} />

</View>

) ;

}
const styles = StyleSheet.create({

container: {
flex: 1,
flexDirection: 'column'
b
topBox: {
flex: 1,
backgroundColor: '#C0CO0CO'
b
bottomBox: {
flex: 2,
backgroundColor: '#fff'
b
homeBanner: {
bottom: 0,
flex: 1,
alignSelf: 'stretch',
width: undefined,

height: undefined,
by

button: {
flex: 1,
backgroundColor: '#48BBEC',

borderColor: '#48BBEC',
borderWidth: 1,
borderRadius: 8,
alignSelf: 'stretch',
justifyContent: 'center',
margin: 10

by

buttonText: {
fontSize: 18,
color: 'white',

alignSelf: 'center'

}) i

Here, we have added a new button using the following code along with
its styling:

<TouchableHighlight style={styles.button}
onPress={()=> navigate('AddNewProp
underlayColor="#99d9f4"'>
<Text style={styles.buttonText}>Ad
</TouchableHighlight>
button: {
flex: 1,

backgroundColor: '#48BBEC',
borderColor: '#48BBEC',
borderWidth: 1,

borderRadius: 8,

alignSelf: 'stretch',
justifyContent: 'center',
margin: 10

b

buttonText: {
fontSize: 18,
color: 'white',

alignSelf: 'center'

We must also add a corresponding navigation route in App. Js
createStackNavigator:

const AppNavigator = createStackNavigator({

AddNewProperty: {

screen: AddNewProperty

Let’s refresh to see the changes on the home screen (Figure 6-2).

House Share

oozQg
——sman
— — IHEE

Add New Property

||||||||||||

Figure 6-2. Showing the Add New Property button on the home page

If we click Add New Property it will take us to a new screen that will be

empty. Let’s create a new file in the screens folder,

AddNewProperty. js, and add the following code in it:

import React from 'react';
import { StyleSheet, Text, View, TouchableHigh

import Houseltem from '../components/HouseItem
export default class AddNewProperty extends Re
constructor(props) {
super (props) ;
this.state = {

name: ,

address:

}
onPressButtonPOST () {

fetch('https://www.akshatpaul.com/prop
method: 'POST',
headers: {

Accept: 'application/json',

'Content-Type': 'application/json'
by

body: JSON.stringify({
property: {

name: this.state.name,

address: this.state.address,

})y
})

.then((responseData) => {
AlertIOS.alert(

"Created"

})

.done();

render () {
return (
<View style={styles.container}>
<TextInput style={styles.textBox} plac
<TextInput style={styles.textBox} plac
<TouchableHighlight style={styles.

onPress= {this.onPressButtonPO

underlayColor="'#99d9f4'>
<Text style={styles.buttonText
</TouchableHighlight>

</View>

) ;

}

var styles = StyleSheet.create({

container: {
flex: 1,

flexDirection:

justifyContent:

'column',

'center’',

alignItems: 'center',

backgroundColor:

by
textBox: {

width:300,
height:60,

'#F5FCFF ',

borderColor: 'gray',

borderwWidth: 1,

alignSelf: 'center',

marginTop: 10,

by
button: {
height: 60,

backgroundColor:

'#48BBEC ',

borderColor: '#48BBEC',
borderWidth: 1,
borderRadius: 8,
alignSelf: 'stretch',
justifyContent: 'center',
margin: 10

by

buttonText: {
fontSize: 18,
color: 'white',

alignSelf: 'center'

Let’s step through this piece of code in detail. We created a new
component, AddNewProperty, and added a constructor with two

properties, name and address instantiated with an empty string:

constructor (props) {
super (props) ;
this.state = {

name: ,

address:

Next, we created the following component:

<View style={styles.container}>
<TextInput style={styles.textBox} plac
<TextInput style={styles.textBox} plac
<TouchableHighlight style={styles.
onPress= {this. onPressButtonP
underlayColor="'#99d9f4'>
<Text style={styles.buttonText
</TouchableHighlight>

</View>

This is a simple form having two input fields, name and address,
along with styling, which we added at the end. Just as in construc-
tor, the state for these two properties was set to an empty string.
We update the state with setState once the user fills in the form

and pass it to the function onPressButtonPost.

You should notice we added a bind in render here. Because we are
using ES6 while declaring React components, React no longer auto-
binds. Therefore we must resolve this by explicitly calling bind in

render.

NoteThere are other binding patterns to handle this. Here are a few

popular ones in React:

1. Binding in render (the one we have used in our application)

onChange={this.handleChange.bind (this) }

2. Using an arrow function in render

onPress={e => this.handleChange (e) }

3. Binding in constructor itself

constructor (props) {

super (props) ;

this.handleChange =

this.handleChange.bind (this);

4. Using an arrow function in call property

handleChange = () => {

// call this function from render

// and this.whatever in here works fine.

b

Next, we created a method onPressButtonPost where the post

request is made to a back-end post API.

onPressButtonPOST () {
fetch('https://www.akshatpaul.com/propert
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
by
body: JSON.stringify ({
property: {
name: this.state.name,

address: this.state.address,

)y
})

.then((responseData) => {
AlertIOS.alert(

"Created"

})

.done();

Here, we are using the updated values of the name and address

properties and making a post request using fetch. Once our re-

quest is completed we get an alert box with a Created message.

This was simple. Now let’s try our code on a simulator. Once we
navigate from the home screen to the add new property screen, we get the

form shown in Figure 6-3.

< House Share

name

address

Add House

Figure 6-3. Form to submit a record

Let’s fill in some values to submit to our back-end API (Figure 6-4).

< House Share

Mr.Pauls Mansion

11, Golden View, San Francisco

Add House

Figure 6-4. Page to add new house

Once we submit the data to the back-end API we get the Created

message in an alert box (Figure 6-5).

Created

OK

Figure 6-5. Alert after successful submission

If you curl this URL, you will get something like this JSON of user-
added properties:

Scurl 'http://www.akshatpaul.com/list-properti

[
{

name: "Mr. Paul's Mansion",

address: "11, Golden View, San Francisco",
images: {

thumbnail: "http://hmp.me/0l7"

}

}

]

NoteThis API shows data submitted by various readers of this
book. Your data set might differ.

Refresh the app and go to the List of Properties section (Figure 6-6).

List of Properties

Mr. Paul's Mansion

11, Golden View, San Francisco

Figure 6-6. Output showing Mr. Paul’s Mansion address

NoteBy default, iOS will block any request that’s not encrypted us-
ing Secure Sockets Layer (SSL). If you need to fetch from a clear
ext URL (one that begins with http) you will first need to add an
App Transport Security (ATS) exception. If you know ahead of time
what domains you will need access to, it is more secure to add ex-
ceptions just for those domains; if the domains are not known until
[funtime you can disable ATS completely. Note, however, that since
January 2017, Apple’s App Store review requires reasonable justifi-

cation for disabling ATS.

Summary

This chapter covered various network APIs that are reimplemented
from the ground up by the React Native team. You also learned about
various options like XMLHt tpRequest, WebSocket, and Fetch. Be-
cause no application is complete without making server calls, you
added this capability into your housing application and learned how to

get data from a server, add new records, and save them to a server.

In Chapter 7 we explore Native Bridge for iOS and Android. By using
Native Bridge we can access Native iOS or Android APIs from

JavaScript.

© Akshat Paul and Abhishek Nalwaya 2019
Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development
https://doi.org/10.1007/978-1-4842-4454-8 7

7. Native Bridging in React Native

Akshat Paull and Abhishek Nalwaya?
(1) Gurgaon, Haryana, India
(2) Jaipur, Rajasthan, India

Learn the rules like a pro, so you can break them like an artist.
—Pablo Picasso

So far, you have learned how to build applications using modules and
APIs available out of the box with React Native. There are times, however,
when an application has to access a native i0OS or Android API and its
corresponding React Native module is not yet available. Perhaps you will
have to reuse some existing bespoke Swift, Kotlin, or Objective-C code
with your React Native application. In such scenarios we create something
called Native modules, which allow us to write code in the native language

of a platform. This chapter covers the following topics:

. What is Native Bridge

. Preprequisite for Native Bridge
. Native Bridge for iOS

. Native Bridge for Android

https://doi.org/10.1007/978-1-4842-4454-8_7

The concept of Native modules is a bit advanced, but in our experi-
ence every production-quality application at some point requires you
to delve into a little bit of native programming. Therefore, we consider
this an essential skill to know in your journey to becoming a master in

React Native.
Native Bridge

To better undersand Native modules, we will create a Counter ex-
ample in Swift for iOS and Java in Android, and this will be used in
our React app. This will be a cross-platform example, so the same
React code will work in both iOS and Android.

Because many readers of this book might not have worked in Swift or
Java, we have tried to keep the use of both these languages very ba-

sic, so it should be easily understandable.
Prerequisites for the Example

Because we are writing some code in Native, you should have the following

development setup installed on your computer.

« Xcode for running the app for iOS
« Android Studio for running the app for Android

. React Native

We will first create a React Native app with the React Native CLI. We
could also use the Expo CLI, but then we would have to eject it to build a

Native bridge.

$ react-native init CounterNativeModuleApp

$ cd CounterNativeModuleApp

This will create the basic structure of the React Native app. It also
contains two folders, 10S and android, which have native code in
Objective-C and Java, respectively. We first learn about bridging in

iIOS, and then use same repo to build for Android.
i0OS Native Bridge

We will create a Counter class in Swift, which will have a static class
variable count and two methods: one for incrementing the count and
the other for getting the count value. We will then access this Swift
class from JavaScript. Let’s start by opening the
CounterNativeModuleApp.xcodepro] file in the ios folder. It

should open Xcode with your iOS code.

Create a new file by going to File » New » File and selecting Swift, as

shown in Figure 7-1.

s | o Coumteriatveloddelos) ™ Phose X8 InGesirq | Processen) fies

Chotse a temgiate for your new fle
v B Coumternatrmebdod selpp
v M Courterat rebcd el oo
B AoDeegete
. AcpDwejate n

08 wacrOs

BB meges scanenn
|
. LaunchGoreen o
B renm

v Ml Braries

Swift Fie

» B ACTAAmatn sotepr

> B heac

> B RCTACtenSrent soteprsf

» B RCTBID sooteproy

» B ncr N sodepry

» B ACTimage scodepry

» B RCTUnking scodeprof

» B RCTNetwork scodepro)

» B RCTSettings sodepro|

» B RCTT

» B RCTVDrstion scodeprd

» B ACTWebSocket scodeprol
v [l Counterhat sl A (g Tess

B Conternan vadca sadis Tests m

» M Supoatng Fles
» M Products
» M frerewons

Figure 7-1 Creating a new file in Swift

Now give the file the name Counter and remember to select
CounterNativeModuleApp for the Group setting, as shown in Figure
1-2.

v+ CounterNativeModuleApp) ™ Phone XR CounterNativeModuleApp: Ready | Today at 9:45 AM

Counler{
v B CounterNativeModuleApp

v I CounterNativeModuleApp
B
B AppDetegate.n
B AppDelegate.m
I images.xcassets
B info.plist Box Sync
. LaunchScreen.xib

= =i
M chap7 o [}
B CounterNativeModuleApp * [}
)
]
[

android

#: Applications
B mainm

¥ M Uibraries
» B RCTAnimation xcodeproj ™ Deskton

. 0os
) Pictures

> B React.xcodeproj
» B RCTActionSheet.xcodeproj
» B RCTBIob.xcodeproj Targets ¥ ye¢ CounterNativeModuleApp
» B RCTGeolocation xcodeproj @ CounterNativeModuleAppTests
» B RCTImage.xcodeproj y=¢ CounterNativeModuleApp-tvOS
» B RCTLinking.xcodeproj @ CounterNativeModuleApp-tvOST
» B RCTNetwork xcodepro]
» B RCTSettings.xcodeproj
» B RCTText.xcodeproj
» B RCTVibration.xcodepro)
» B RCTWebSocket.xcodeproj
¥ I CounterNativeModuleAppTests
B CounterNstiveModuleAppTests.m Previous
» Bl Supporting Files
» Bl Products
» B Frameworks

Group Nl CounterNativeModuleApp

New Folder Create

Figure 7-2 Selecting proper group in Xcode

As we are writing code in Swift and the repo, which is generated in
Objective-C, we need a bridge to communicate between them. Click Create

Bridging Header (Figure 7-3).

Would you like to configure an Objective-C bridging header?

Adding this file to CounterNativeModuleApp will create a mixed Swift and
Objective-C target. Would you like Xcode to automatically configure a bridging
header to enable classes to be accessed by both languages?

Cancel Don’t Create Create Bridging Header

Figure 7-3 Creating a bridging header

We can see that two files, Counter.swift and

CounterNativeModuleApp-Bridging—-Header.h, are created

by Xcode.

Counter.swift is where we will write our Counter class and
CounterNativeModulelApp-Bridging-Header.h will have
header details. Remember that in a project we have only one bridging
header file, so if we add new files, we can reuse this file. Update the
following code in the CounterNativeModuleApp-Bridging-
Header.h file:

#import "React/RCTBridgeModule.h"

Now let’s add a Swift class:

import Foundation
@objc(Counter)
class Counter: NSObject {
@objc
static var count = 0
@objc
func increment() {
Counter.count += 1

print("count is \(Counter.count)")

In the preceding code we have created class Counter, which is in-
herited from NSObject. The root class of most Objective-C class hi-
erarchies is NSObject, from which subclasses inherit a basic inter-
face to the runtime system and the ability to behave as Obijective-C

objects.

You can see that we have used @objc before a function and class.

This will make that class, function, or object available to Objective-C

NoteThe eobic attribute makes your Swift API available in Objec-

ive-C and the Objective-C runtime.

Now create a new file from File » New » File and select Objective-C File.

Name the file Counter (Figure 7-4).

Choose a template for your new file:
I0S watchOS tvOS macO0S

Source

Cocoa Touch Ul Test

Unit Test Swift File Objective-C File
Class Case Class Case Class

Header File C++ File Metal File

User Interface

Storyboard Launch Screen

Cancel

Figure 7-4 Creating an Objective-C file

This will create a file Counter .m, which will expose the Swift class to
React Native:

#import "React/RCTBridgeModule.h"

@interface RCT EXTERN MODULE (Counter, NSObject
RCT EXTERN METHOD (increment)
@end

React Native will not expose any function of Counter to React

JavaScript unless explicitly done. To do so we can use the
RCT EXPORT METHOD () macro. We therefore have to expose the

Counter class and increment the method to our JavaScript code.

Because the Swift object is converted to JSON, there is a type conversion.
RCT EXPORT METHOD supports all standard JSON object types:

string (NSString)

number (NSInteger, float, double, CGFloat,

NSNumber)

boolean (BOOL, NSNumber)

. array (NSArray) of any types from this list

object (NSDictionary) with string keys and values of any
type from this list

function (RCTResponseSenderBlock)

Now let’s update the JavaScript code and access this Counter class
from our React component. To do so, open App . s and update it with the

following code:

import React, {Component} from 'react’';

import {StyleSheet, Text, View, NativeModules,

export default class App extends Component {
increment = () => {
NativeModules.Counter.increment();

}

render () {
return (
<View style={styles.container}>
<Button
onPress={this.increment}
title="Increment"
color="#841584"
/>

</View>

const styles = StyleSheet.create({
container: {
flex: 1,
justifyContent: 'center',
alignItems: 'center',
backgroundColor: '#F5FCFF',

We need to import NativeModule from react-native. The
Counter method increment can be accessed using
NativeModules.Counter.increment () . We have created a

Button and clicking on that but ton calls the increment method.

Now let’s run the app from Xcode by pressing Command + R. Make

sure React Native code is running. If it is not, then run npm start.

We can see an Increment button and a warning message at the bottom as

shown in Figure 7-5. For now, ignore the warning message. We will talk

about that later in the chapter.

Figure 7-5 App running in a simulator

Now open the Xcode and check the console log. Try clicking the
Increment button three times and you will see the output shown in the logs,

as displayed in Figure 7-6.

Bulidtime (184) Runtime

v f} double-conversion
¥ A Semantic Issue

¥ A Declaration shadows a
local variable

B Previous declaration is here
v I} third-party .
v A Value Conversion Issue ein ace F E N_MODULE (Counter, NSObject)

¥ A 'mplicit conversion loses integer {increment)

precision: 'long' to
‘google::int32' (aka "int’)

® Expanded from macro
‘GLOG_DEFINE_int32*

® Expanded from macro "EnvToint"

® Expanded from macro
‘DEFINE_int32'
® Expanded from macro
"DEFINE_VARIABLE'
2018-12-29 11:30:36.858 [info][ti in]

va :::,:,‘;o:;';‘:: <o [RCTCxxBridge.mm:216] Initializing <RCTCxxBridge:
‘google::int32' (ska ‘int’) 0x600002b284b0> (parent: <RCTBridge:
0x60000310d030>, executor: (null))

2018-12-29 11:30:36.921 [warn][tid:main])
[RCTModuleData.mm:67) Module Counter requires main
queue setup since it overrides “init’ but doesn't

Expanded from macro ‘EnvToint! implement ‘requiresMainQueueSetup’. In a future

Expanded from macro release React Native will default to initializing

‘DEFINE_nt32° all modules on a background thread unle

explicitly opted-out of.

i to i 2018-12-29 11:30:36.926 [infol[tid:main][RCTRootView.m:

- 293] Running application CounterNativeModuleApp ({

initialProps =

Expanded from macro
'GLOG_DEFINE_int32"

¥ A Implicit conversion loses
precision: ‘long’ to
‘google=:int32' (aka ‘int’)

rootTag = 1;

1))
Expanded from macro 2018-12-29 11:30:37.189 [info])
‘GLOG_DEFINE int32* [tid:com.facebook.react.JavaScript] Running
Expanded from macro 'EnvTolnt' application "CounterNativeModuleApp" with
e e appParams: ('roothg':l.'x’nitiall"ropi':l)). __DEV_
"DEFINE int32" === true, development-level warning are ON,
= performance optimizations are OFF
©xpended from mecro 2018-12-29 11:30:37.204 [info)
DEFINE_VARIABLE [tid:com.facebook.react.JavaScript] { increment:
v A mplicit conversion loses CUVUICTION: fn] type: sync'
precision: 'long' to count is 1
‘google::int32' (aka 'int’) count is 2
count is 3

® Expanded from macro
'GLOG_DEFINE_int32"

Figure 7-6 Increment displayed in console log

We can see that we have called a Swift class method from a Java-

Script React component.

NoteRemember, if you change any code in iOS Swift or Objective-
C or Android Java, you need to rebuild the project. Only then will

hanges be reflected.

Now let’s fix the warning shown at the bottom of the simulator and in the
browser console:
Module Counter requires main queue setup since it overrides

‘init’ but doesn’t implement ‘requiresMainQueueSetup’. In a fu-
ture release React Native will default to initializing all native

modules on a background thread unless explicitly opted-out of.

To understand that better, let’s understand the thread React Native runs

on:

Main thread: Where UIKit works.

Shadow queue: Where the layout happens.

JavaScript thread: Where your JavaScript code is actually

running.

Every native module has its own GCD (Grand Central Dis-

patch) Queue unless it specifies otherwise.

Now because this Native module will run on a different thread and our
main thread is dependent on it, it is showing this warning. To make this
code to run on MainQueue, open Counter.swift and add the

following function:

@objc

static func requiresMalinQueueSetup() -> Bool

return true

Now run the app again. Remember that because we have changed the
Swift class, we need to rebuild the code. You will see the app running

without the warning now, as shown in Figure 7-7.

Figure 7-7 Application running without warning

Now let’s add the count value to our React screen. To do so we will

add the getCount function to counter. swift and call that method

from JavaScript code. We will create this method as a callback.

NoteReact Native Bridge is asynchronous, so the only way to pass

a result to JavaScript is by using callbacks or emitting events.

Open counter.swift and add the getCount method :

import Foundation

@objc(Counter)

class Counter: NSObject {
@objc
static var count = 0
@objc

func increment() {
Counter.count += 1
print("count is \(Counter.count)")
}
Qobjc
func getCount (_ callback: RCTResponseSenderBlo«
callback ([NSNull(), Counter.count])

@objc

static func requiresMainQueueSetup() -> Bool {

return true

The getCount () method receives a callback parameter that we will
pass from your JavaScript code. We have called callback with an
array of values, which will be exposed in JavaScript. We have passed
NSNull () as the first element, which we consider an error in

callback.

We need to expose this method to counter .m:

#import "React/RCTBridgeModule.h"
@interface RCT EXTERN MODULE (Counter, NSObject
RCT EXTERN METHOD (increment)

RCT_ EXTERN METHOD (getCount:

@end

Let’s update the React code to take the count from the getCount
method that we just created. Update App . js with following code:

import React, {Component} from 'react’;
import {StyleSheet, Text, View, NativeModules,

export default class App extends Component {

constructor (props) {
super (props) ;
this.state = { count: 0 };
this.updateCount();

}

increment = () => {
NativeModules.Counter.increment();
this.updateCount();
}

updateCount = () => {
NativeModules.Counter.getCount((error, co

this.setState({ count: count});

})
}

render () {
return (
<View style={styles.container}>
<Text>Counter from Native Code:</Text>
<Text>{this.state.count}</Text>
<Button
onPress={this.increment}
title="Increment"
color="#841584"
/>

</View>

const styles = StyleSheet.create({
container: {
flex: 1,
justifyContent: 'center',
alignItems: 'center',
backgroundColor: '#F5FCFF',

Rebuild the source code and run the app. You can then see the counter

value and when you click Increment, it will increase the count as show, in

Figure 7-8.

Counter from Native Code:
0

Counter from Native Code

Increment Increment

iPhone XR - 12.1

Figure 7-8 Application demo in simulator

Try to refresh the page by pressing Command + R. The count value
will be the same and does not reset to 0. If you rebuild the code, how-

ever, then the value will be reset to 0.

Native Bridge for Android

In this section we will make the same JavaScript code work with An-
droid. This time we will create a Counter class in java and expose

the same functions, increment and getCount, to Javascript.

Open Android Studio (Figure 7-9) and select Open an existing Android
Studio project, and then select the android folder inside our

CounterNativeModuleApp.

Welcome to Android Studio

o

Android Studio
Version 3.2.1

3¢ Start a new Android Studio project

-~ Open an existing Android Studio project

Check out project from Version Control «
[4' Profile or debug APK
* Import project (Gradle, Eclipse ADT, etc.)

¥ Import an Android code sample

@ Events + # Configure + Get Help ~

Figure 7-9 Open the React Native app in Android Studio

Once the project is opened and it has downloaded all gradle dependency
(gradle is the dependency manager of Java), we will create a class
Counter. Click Menu » File » New » Java Class. Name the file
Counter and then click OK (Figure 7-10).

£
i

X % 3

1512 Swatare 4 Buld Vacaes 3 2 Faverites

T android) I app) B wrc) B main) B java) Dn com) B counternativemoduledsp | A nw-pPireiolu g LAaqn!
Anvois - '
CLapp

B mandtest

Project setup: synced sucoessfully » 2912/8, 3971 2 Cancnl - 4se85ms |

mandn) oy 63080 O

Figure 7-10 Creating a Counter class

Add the following code in Counter. java file:

package com.counternativemoduleapp;

import
import
import
import
import
import

public

com. facebook.react.bridge.NativeModule;
com. facebook.react.bridge.ReactApplicat
com. facebook.react.bridge.ReactContext;
com. facebook.react.bridge.ReactContextB
com. facebook.react.bridge.ReactMethod;
com. facebook.react.bridge.Callback;

class Counter extends ReactContextBased

private static Integer count = 0;

public Counter (ReactApplicationContext rea

super (reactContext);

}
@ReactMethod

public void increment() {
count++;

System.out.println(count);

}
@ReactMethod

public void getCount
Callback successCallback) {

successCallback.invoke(null, count);

}

@Override
public String getName() ({

return "Counter";

We have created the Native module Counter , which is a Java class
that is inherited from ReactContextBaseJavaModule.
ReactContextBaseJavaModule requires that the function get-

Name is called; this is always implemented. The purpose of this

method is to return the string name of the Native module, which rep-
resents this class in JavaScript. Here we will call this Counter so
that we can access it through React .NativeModules.Counter in

JavaScript. Instead of Counter, you could also use a different name.

Not all functions are exposed to JavaScript. To expose a function to

JavaScript, a Java method must be annotated using @ReactMethod. The
return type of bridge methods is always void, so we create a function
increment with @ReactMethod where we have to increase the value

of the static variable count and then print the value in the console:

@ReactMethod
public void increment() {
count++;

System.out.println(count);

We have also created a getCount function that has callback as a

parameter. It returns a callback and passes the value of count.

@ReactMethod
public void getCount
Callback successCallback) {

successCallback.invoke(null, count);

The next step 1s to register the module, because if a module 1s not
registered it will not be available from JavaScript. To create a file, click
Menu » File » New » Java Class. Name the file

CustomCounterPackage and then click OK (Figure 7-11).

W andreid) bg app) B sre) B i) B jeva) DN com) DN cousternatimmosiests | A Q- PrB8enlnm ZRA AQQT

& Arrod - O% O
v app
B manfests
e
D8 com.counternativemodulesop
; © Counte
© Vanactity
L © VanAppication
5 genaratedave
¥res
2 Gradie Scripts
By Symc
fe ® Projectsetup: mynced successfuly a1 291218, 3171 9 coce (B 43685 me

X %

2 Swerer b BidVaderts i 2 Favortes

W vemiw BN £ oo tose @ 000 ® tvern Loa

Figure 7-11 Creating a new Java class

Now add the following code in CustomCounterPackage:

package com.counternativemoduleapp;

import com.facebook.react.ReactPackage;

import com.facebook.react.bridge.NativeModule;
import com.facebook.react.bridge.ReactApplicat
import com.facebook.react.uimanager.ViewManage
import java.util.ArrayList;

import java.util.Collections;

import java.util.List;

public class CustomCounterPackage implements R

@Override

public List<ViewManager> createViewManager

return Collections.emptyList();

}

@Override
public List<NativeModule> createNativeModu
ReactApplicationContext reactConte
List<NativeModule> modules = new Array
modules.add(new Counter (reactContext))

return modules;

We need to override the createNativeModules function and add

the Counter object to the modules array. If this is not added there, it

will not be available in JavaScript.

A CustomCounterPackage package needs to be provided in the
getPackages method of the MainApplication. java file. This file
exists in the android folder in your react-native application
directory. Update the following code in
android/app/src/main/java/com/CounterNativeModuleA

pp /MainApplication.java:

package com.counternativemod

imnnr+ andrnid ann Annlicatinne

Eallll e g MALMAL e S AP O LA e e M sk

import com.facebook.react.ReactApplication;
import com.facebook.react.ReactNativeHost;
import com.facebook.react.ReactPackage;
import com.facebook.react.shell.MainReactPacka
import com.facebook.soloader.SoLoader;
import java.util.Arrays;
import java.util.List;
import com.counternativemoduleapp.CustomCounte
public class MainApplication extends Applicati
private final ReactNativeHost mReactNativeHo
@Override
public boolean getUseDeveloperSupport() {
return BuildConfig.DEBUG;
}
@Override
protected List<ReactPackage> getPackages()
return Arrays.<ReactPackage>asList(
new MainReactPackage(),

new CustomCounterPackage()

}
@Override

protected String getJSMainModuleName() {

return "index";

s
}i
@Override
public ReactNativeHost getReactNativeHost()

return mReactNativeHost;

}

@Override
public void onCreate() {
super.onCreate();

SoLoader.init(this, /* native exopackage *

We don’t need to change any JavaScript code written in iOS, as we
have exposed the same class name and function. If you skipped the

iIOS section earlier, you need to copy the React JavaScript code from

App.Js.

Now run the app through Android Studio or from react-native

run-android (Figure 7-12).

_android _ app we) ha main java) tu com) b c “~ ",wo-m s aRE R L22Q

Android = Q% & @ Jaea < w Java

i v kowpp This file is indented with 2 spaces instead of 4 OK Indent with 4 spaces Show Settings
: manifests
& e private final ReactNativetost mReactMativeHost = mew ReactNativeHost(sppication this) {
: com.counterativemoduleapp e ;-h;ib;o\ — - R
B c ean getUseDeveloperSupport return BuildConfig.. 3 : .
% ® Counter 1) Click on run icon
< © CustomCounterPackage gOverr ide
@ © MainActivity 1 ol @ protected List<ReactPackage> getPackages() {
€ MainApplication return Arravs.<sastist(
w @ @ Select Deployment Target
> 15 generatedJava 27
res 2
» (S Gradie Scripts 3 Nexus 5X AP 28 (Android 9, AP 28) *_ 2) Select emulator
32§
35
6
8 |
2
43
44
45
46
48
£ 3) Click OK
g Bullkd Sync B 4
: A ¥ ® Build: completed successfully at 20/12/18, 3:2 Create New Virtual Device 1Bsms
v @ Run build sers/ab hek_nalwaya/Documel - - 128618 ms
2 > @ Load build Use same selection for future launches Cancel m ——
E » » @ Configure build
; % & Caiculate task graph 32 ms
a » @ Run tasks 12 5 27
-
g

Figure 7-12 Run the application from Android Studio

This will launch the Android emulator with the app (Figure 7-13). If

you don’t find an emulator in the list, you need to download a few by

clicking Create New Virtual Device.

Figure 7-13 Application running in Android emulator

We can see the counter change when we click Increment and the

JavaScript code is calling the Java code.

Summary

This chapter covered Native Bridge for both iOS and Android. You
created a class in Swift and Java and through NativeBridge you were

able to access these classes in JavaScript code.

In Chapter 8 you learn about testing in React Native, including type
checking using Flow, using Jest with React Native, and understand-

ing how to use snapshot testing.

© Akshat Paul and Abhishek Nalwaya 2019
Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development
https://doi.org/10.1007/978-1-4842-4454-8 8

8. Testing

Akshat Paull and Abhishek Nalwaya?
(1) Gurgaon, Haryana, India
(2) Jaipur, Rajasthan, India

Testing is not the point. The point is about responsibility.

—Kent Beck

We do agree with Kent Beck here that testing your code is your
responsibility. However, React Native makes it really simple to write tests
for your application in comparison to traditional native code for i0OS and

Android. This chapter covers the following topics:

Static type checking with Flow

Jest with React Native

. Snapshot testing
Flow

Flow is a static type checker for JavaScript. It’s not essential to use

Flow, but it really enhances your development efficiency. Type check-

https://doi.org/10.1007/978-1-4842-4454-8_8

ing allows you to detect possible issues early by running tests on your
project code base. In short, we would say Flow is a productivity mod-

ule for developers.

To set up Flow for React Native applications, first open your terminal

and simply install the following npm module:

$ npm install -g flow-bin

This will install the £1ow module globally. Navigate to your React
Native application folder and from the root directory, execute the following

command:

S flow init

This will create a . f1owconfig file where all your Flow configura-

tions will reside.

Now, check your application for any errors with the following

command;:

S flow check

Found 0 errors

Typically, at the beginning of any project, you will find no errors. As
you proceed with day-to-day development, however, you can find is-

sues right away and resolve them.
Benefits of Using Flow

Although Flow is a great addition to any React Native application, it’s not
mandatory. However, we recommend that you include it in your React

Native project to experience the following benefits:

« You can code faster without the hassle of running the source code
every time to find any issues or bugs.

« It is especially helpful for extensive projects with multiple team
members working in parallel. Refactoring can become a night-
mare, and Flow helps you focus only on your changes and elimi-
nates worry about breaking other parts of the source code.

« Flow helps developers to understand idiomatic JavaScript. It un-
derstands and provides feedback on common JavaScript patterns,
which helps developers to create elegent solutions.

« Flow provides real-time feedback, hence saving a great deal of
time and improving code quality.

« Flow provides easy integration. As seen earlier, it takes only a few

minutes to set up Flow with your project.

Jest

Jest is a unit test framework that is built on top of Jasmine. React Na-
tive supports testing of components using Jest (it’s also the recom-
mended framework used at Facebook for React Native). Besides Re-
act Native, you can also use Jest for other JavaScript projects built
using TypeScript, Node, Angular, React for Web, Vue, and many

more.

Key featues of the Jest testing framework include the following:

Snapshot testing: Jest allows you to create tests that keep
track of large objects. This helps you to write better test cases of
Ul elements.

. Zero configuration: Jest works out of the box and is configura-
tion free.

. Fast and isolated: Tests are parallelized by running them in
their own processes, which helps maximize performance. Jest
runs previous failed tests first and reorganizes the runs based on
how long it took to execute the tests.

. Simple APIs: Jest makes use of simple conventions that devel-

opers are used to. Jest covers the entire toolkit, with updated doc-

umentation that is well maintained.

Code coverage: No additional setup is required to pull a built-in

code coverage report.

Jest with React Native

Jest is included out of the box with the React Native framework for versions
0.38 and later. You are not required to use Jest, though. Instead, you can
also use a Mocha testing framework. When you set up the project initially,

create a new project with the following command:

S react-native init jestBasics

You will get Jest preloaded, and the following package. json code

will already be present:

"scripts": {
lltest": lljest"

}o

"devDependencies": {

"jest": "24.1.0",

"react-test-renderer": "16.6.3"
}i
"jest": {

"preset": "react-native"

There will be a folder created, tests_, which includes only one

file for now, App.Js:

[%%
* @format
* @lint-ignore-every XPLATJSCOPYRIGHT1

* /
import 'react-native';
import React from 'react';
import App from '../App';
// Note: test renderer must be required after
import renderer from 'react-test-renderer';
it('renders correctly', () => {

renderer.create(<App />);

})s:

Ifyourun yarn test ornpm test, your tests will run. Because is

there nothing much there yet, you should get the following result:

$ yarn test

yarn run v1.9.4

$ Jest

PASS _ tests_ /App.js

v renders correctly (2650ms)

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 5.756s

Ran all test suites.

This was the case if you generated your project using the React Na-
tive CLI, but what about Expo? In previous chapters we used Expo to
speed up our development process. With Expo the setup process is
slightly different because the Expo CLI does not come with Jest out of
the box.

For this you would have to set up Jest manually with an include

jest-expo, which is not very complicated. You could try this in an
existing Expo application you created in a previous chapter or set up

a new one.

Navigate to your project folder and add jest-expo to your project

using the following command:

S yarn add jest-expo --dev or $ npm i jest-exp

Open package. json and add the following code:

"scripts": {

"test": "node modules/.bin/jest"
b
"jest": {

"preset": "jest-expo”

Also, createa test folder and add at least one test file with the

following sample test:

it('works', () => {
expect(l).toBe(1l);
})i

Open the terminal and run the following code:

$ yarn test OR npm test

yarn test

yarn run v1.9.4

$ node modules/.bin/jest

PASS _ tests_/Example-test.js

v works (3ms)

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

Snapshots: 0 total
Time: 2.288s
Ran all test suites.

Done in 3.75s.

Snapshot Testing with Jest

Snapshotting is a really useful technique in Ul development that
helps ensure that there are no unexpected changes in the Ul during
development. With Jest we can capture snapshots of React trees,
which help us to compare if there was a breaking change in subse-

guent changes.

A snapshot test case for a mobile app will render a Ul component,
take a snapshot, and then compare it to a reference point in the past
by storing a snapshot alongside the test case. If the test fails, that
means two snapshots did not match due to an unexpected change in
the Ul. Snapshots should be updated to a new version when a satis-

factory Ul component is ready.

Let’s add our first snapshot test and check the report. Add the following

test in the same App . js file. For ease of understanding we are using a

project created with the React Native CLI named jestBasics.

test ("component renders correctly", () => {
const tree = renderer.create(<App />).toJSON

expect(tree).toMatchSnapshot();
})i

Run the Jest report again with the following command:

npm test
> jestBasics@0.0.1 test /Users/akshatpaul/myap
> jest
PASS _ tests /App.js
v renders correctly (132ms)
v component renders correctly (5ms)
» 1 snapshot written.
Snapshot Summary
» 1 snapshot written from 1 test suite.

Test Suites: 1 passed, 1 total

Tests: 2 passed, 2 total
Snapshots: 1 written, 1 tota:
Time: 1.114s, estimated 2s

Ran all test suites.

Great! Our test passed and created a snapshot of the render output of our

component. This snapshot is saved in a new folder, snapshots |,

which resides inside the test folder. You will find a snapshot file

App.Js.snap. Open that file if you want to see what’s inside a snapshot.

// Jest Snapshot v1l, https://goo.gl/fbAQLP
exports['component renders correctly 1'] = '
<View
style={
Object {

"alignItems": "center",

"backgroundColor": "#F5FCFF",

"flex": 1,

"justifyContent": "center",

<Text
style={
Object {
"fontSize": 10,
"margin": 10,

"textAlign": "center",

Welcome to React Native!
</Text>
<Text

style={

Object {
"color": "#333333",
"marginBottom": 5,

"textAlign": "center",

To get started, edit App.]Js
</Text>
<Text
style={
Object {
"color": "#333333",
"marginBottom": 5,

"textAlign": "center",

Press Cmd+R to reload,
Cmd+D or shake for dev menu
</Text>

</View>

~

)
4

Do not modify this snapshot. Instead, make some change in your

App . Jjs component and see how the snapshot changes and the report fails.

Let’s make the following change in our styling:

const styles = StyleSheet.create({
container: {
flex: 1,
justifyContent: 'center',
alignItems: 'flex-start',
backgroundColor: '#FS5FCFF',
b
welcome: {
fontSize: 10,
textAlign: 'center',
margin: 10,
by
instructions: {
textAlign: 'center',
color: '#333333',

marginBottom: 5,

},
}) i

Here we have only made one small change in alignItems,

changing the setting from center to flex—-start. Run the report again

and see if the test fails:

npm test
> jestBasics@0.0.1 test /Users/akshatpaul/myap

> jest

FAIL _ tests__ /App.js
v renders correctly (135ms)
X component renders correctly (9ms)
® component renders correctly
expect(value).toMatchSnapshot ()
Received value does not match stored snaps
- Snapshot
+ Received
@@ -1,9 +1,9 @@

<View
style={
Object {
- "alignItems": "center",
+ "alignItems": "flex-start",
"backgroundColor": "#F5FCFF",
"flex": 1,
"justifyContent": "center",
}
}
8 | const tree = renderer.create(<App
19 |
> 20 | expect (tree).toMatchSnapshot();
| A
21 | });
22 |
at Object.toMatchSnapshot (_ tests /App

» 1 snapshot failed.

Snapshot Summary

» 1 snapshot failed from 1 test suite. Inspec

Test Suites: 1 failed, 1 total

Tests: 1 failed, 1 passed, 2 total
Snapshots: 1 failed, 1 total

Time: 0.886s, estimated 1s

Ran all test suites.

npm ERR! Test failed. See above for more deta

Perfect! Our test failed, and this shows how snapshot testing with
Jest really helps during development of a substantial React Native
application if one developer makes a change, for example, that might

hinder the Ul build by someone else.

Summary

Testing is a crucial component in any mobile app development. In this
chapter you learned about using Flow to keep your code type
checked to assist in detecting issues with your code early and resolv-
ing them before they become bugs. Next, you learned about testing
with Jest and how to set it up for both React Native CLI apps and
those generated using the ExpoCLI. In the end, we introduced the
powerful technique of snapshot testing with Jest, which makes build-

ing Uls and maintaining them much easier.

Chapter 9 covers iOS and Android app submission to the Apple App

Store and Google Play Store, respectively.

© Akshat Paul and Abhishek Nalwaya 2019
Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development
https://doi.org/10.1007/978-1-4842-4454-8 9

9. Getting Ready for the World

Akshat Paull and Abhishek Nalwaya?
(1) Gurgaon, Haryana, India
(2) Jaipur, Rajasthan, India

The last 10 percent to launch something takes as much energy

as the first 90 percent.

—Rob Kalin

That’s a strong quote, but it usually proves quite right. However, when
it comes to launching our application with React Native, it is a piece of
cake. This chapter covers how you can create a build to distribute your
React Native application for both 10S and Android. We also introduce some
third-party platforms that are available to make distribution totally stress

free. Here are the topics covered in this chapter:

. The Apple and Google Play distribution systems
. Creating a build for iOS or Android

. Beta testing

Apple Developer Account

https://doi.org/10.1007/978-1-4842-4454-8_9

To create builds for 10S devices for testing or to distribute applications to
actual users on the Apple App Store, you must first create and pay for an
Apple Developer Account. An individual developer account costs around
US$99 and works perfectly for independent developers, or even for
developers who are part of a small organization. However, if your company
policy requires you to be a member of a team, then your company can go
open Enterprise account. Table 9-1 lists the differences so you can

determine what works best for your organization.
Table 9-1. Selecting Your Options

Only Apple De-

Enterprise
Apple veloper
Program
ID Program
Xcode developer tools v v v
Xcode beta releases v v v
Test on device v v v
Developer forums v v v
OS beta releases X v v
Advanced a
e X v v

capabilities

Code-level support

Distribution outside

Apple App Store

App Store distribution

App Store connect

Safari extensions

Offering custom apps

Distribution of custom

apps to your employees

Distribution of your pro-
prietary apps to your

employees

Only
Apple

Apple De-
veloper

Program

Enterprise

Program

Only Apple De-

Enterprise
Apple veloper
Program
ID Program
US$99 US$299
Cost Free
(annually) (annually)

To create your Apple Developer Account, visit https://develop=

er.apple.com/.

Google Play Console

In the case of Android, you explicitly do not need to have a paid ac-
count from Google Play at the time of development or testing. Howev-
er, eventually when you have to distribute your application (i.e., pub-
lish it to the Google Play Store) you would have to pay a one-time
registration fee of US$25. However, this will only be required toward
the end of the chapter if you wish to publish your app to the Play

Store.To learn more about the Google Play Console visit

https://play.google.com/apps/publish/.

i0S Build Process

https://developer.apple.com/
https://play.google.com/apps/publish/

To get ready, we must set up our Apple Developer Profile. Apple has a
specific way of setting up certificates, IDs, and profiles. Not to worry; we’ll
learn about them all by setting them up for our React Native app. Once you
have your paid Developer account, log in into

https://developer.apple.com/ . You’ll have two options, as

shown in Figure 9-1.

& Developer Account

Akshat Paul

® Membership
© Certificates, IDs & Profiles
A App Store Connect

@ CloudKit Dashboard

X Code-Level Support Wx\ 'Ea—:‘\ﬁ:‘
Certificates, Identifiers & Profiles App Store Connect

[E Documentation

© Downloads

O Forums

= Bug Reporter

@ Account Help

%, Contact Us

Figure 9-1. Apple Developer console

The first option is Certificates, Identifiers & Profiles and the second
one is App Store Connect. The App Store is the place where we will
upload our application build to be submitted to Apple for publishing

our app to the App Store and also for beta testing our application us-
ing TestFlight.

Open the Certificates, Identifiers & Profiles page, select Development
on the left, and then click the plus (+) button on the right to begin the

https://developer.apple.com/

development and distribution certificate process (Figure 9-2).

" DeVE[Oper Discover Design Develop Distribute Support Account Q
Certificates, Identifiers & Profiles Akshat Paul ~
i0S, tvOS, watchOS v iOS Certificates (Development) +|Q
+ Certificates 1 Certificates Total
All Name a [Type Expires
Pending

Development

Production

Figure 9-2. Beginning the development and distribution process

You will then have the option to create either a development or
distribution certificate (Figure 9-3).

,
[9 Developer Discover Design Develop Distribute Support Account Q
Certificates, Identifiers & Profiles Akshat Paul ¥
i0S, tvOS, watchOS - Add iOS Certificate
“¢ Certificates Request) Generate) Download
Al) ’ =
Pending
Development What type of certificate do you need?
Production
{ Keys
Al Development
D] Identifiers

® i0S App Development
App IDs Sign development versions of your iOS app.

Pass Type IDs

Apple Push Notification service SSL (Sandbox)

Establish connectivity between your notification server and the Apple Push Notification service
iCloud Containers sandbox environment to deliver remote notifications to your app. A separate certificate is required for
each app you develop.

Website Push IDs

App Groups

Merchant IDs

Figure 9-3. Selecting development and distribution certificates

We will require both because we plan to publish our application to the
App Store and the process is the same for both. Select iOS App
Development and continue to the next step. There you will see in-
structions how to generate the certificate on your Mac machine,
which will be then uploaded. For this you will make use of the Key-

chain utility.
Create a CSR File

In the Applications folder on your Mac, open the Utilities folder
and launch Keychain Access. From the Keychain Access drop-down menu,
select Keychain Access » Certificate Assistant » Request a Certificate
from a Certificate Authority. In the Certificate Information window, enter

the following information:

1.
In the User Email Address field, enter your e-mail address.

" In the Common Name field, create a name for your private key

(e.g., John Doe Dev Key).
3.
The CA Email Address field should be left empty.

4.
In the Request is group, select Saved to disk.

Click Continue within Keychain Access to complete the CSR
generating process. Once this is complete, click Continue and you see an

option to upload the CSR file in your developer portal (Figure 9-4).

[¢ Developer Discover Design Develop Distribute Support Account Q

Certificates, Identifiers & Profiles Akshat Paul ~
i0S, tvOS, watchOS v Add iOS Certificate

All
Pending
Development Generate your certificate.
Production

Keys
Al When your CSR file is created, a public and private key pair is automatically generated. Your private key

is stored on your computer. On a Mac, it is stored in the login Keychain by default and can be viewed in
' Identifiers the Keychain Access app under the "Keys" category. Your requested certificate is the public half of

App IDs your key pair.

Pass Type IDs

Website Push IDs Upload CSR file.

iCloud Containers Select .certSigningRequest file saved on your Mac.
App Groups

Merchant IDs

Music IDs Choose File...

Maps IDs

Figure 9-4. Certificate upload page on Apple Developer portal

Once the CSR file is uploaded, click Continue. At the last step you will
have the option to download the certificate. Double-click it and it will

get loaded in your Keychain.

Next, follow the same steps and set up distribution certification. On
successful completion you can check both your installed certificates

in Keychain » My Certifications.

We next create an App ID that will be unique for every application.
Under Identifiers, select App IDs and then click the plus (+) button (Figure
9-3).

® Developer Discover Design Develop Distribute Support Account Q

Certificates, Identifiers & Profiles Akshat Paul ~
i0S, tvOS, watchOS v iOS App IDs Q
°! Certificates 3 App IDs Total
All Nt -l ID
Pending

Development

Production

i Keys
All

' Identifiers
App IDs
Pass Type IDs
Website Push IDs
iCloud Containers
App Groups
Merchant IDs
Music IDs

Maps IDs

Figure 9-5. Listof App ID page on Developer portal

That will open the screen shown in Figure 9-6.

.’ Developer Discover Design Develop Distribute Support Account
Certificates, Identifiers & Profiles Akshat Paul ~
i0S, tvOS, watchOS - Register iOS App IDs Q

i Certificates
All
Pending
Development

Production

Keys

All

Identifiers
App IDs
Pass Type IDs
Website Push IDs
iCloud Containers
App Groups
Merchant IDs
Music IDs

Maps IDs

Devices
All
Apple TV
Apple Watch
iPad
iPhone

iPod Touch

] Provisioning Profiles
All
Development

Distribution

Registering an App ID

The App ID string contains two parts separated by a period (.) — an App ID Prefix that is defined as your
Team ID by default and an App ID Suffix that is defined as a Bundle ID search string. Each part of an
App ID has different and important uses for your app. Learn More

App ID Description

Name: sampleReactNativeApp

You cannot use special characters suchas @, &, *, ', "

App ID Prefix

Value: 3B6MD2Q9YFD (Team ID)

App ID Suffix

¢ Explicit App ID
If you plan to incorporate app services such as Game Center, In-App Purchase, Data Protection,

and iCloud, or want a provisioning profile unique to a single app, you must register an explicit App
ID for your app.

To create an explicit App ID, enter a unique string in the Bundle ID field. This string should match
the Bundle ID of your app.

Bundle ID: | com.sampleRN.app| I

We recommend using a reverse-domain name style string (i.e.,
com.domainname.appname). It cannot contain an asterisk ().

Wildcard App ID

This allows you to use a single App ID to match multiple apps. To create a wildcard App ID, enter
an asterisk (*) as the last digit in the Bundle ID field.

Figure 9-6. Registering an App ID in the Apple Developer portal

Q

Make a note of the Bundle ID, as it’s the same ID that we have to use in

our App ID. We will use this once we open our code to create the build for

our application. In our example we have named it com. sampleRN. app,

but you can use any nomenclature you desire. Click Continue, and your
App ID will be listed within the App IDs section (Figure 9-7).

,
. Deveioper Discover Design Develop Distribute Support Account Q
Certificates, Identifiers & Profiles Akshat Paul ~

i0S, tvOS, watchOS - iOS App IDs + || Q

Certificates 4 App IDs Total
o Name ID
Pending
Development

X sampleReactNativeApp com.sampleRN.app

Production

Keys
All

Identifiers
App IDs
Pass Type IDs
Website Push IDs
iCloud Containers
App Groups
Merchant IDs
Music IDs
Maps IDs

Figure 9-7. App ID shown in the Apple Developer portal

Next, we create a Development and Distribution profile for the
sampleReactNative application. Scroll down to the Provisioning

Profiles section and select Development, then click the plus (+) button
(Figure 9-8).

.
o Developer Discover Design Develop Distribute Support Account Q

Certificates, Identifiers & Profiles Akshat Paul ¥

i0S, tvOS, watchOS - iOS Provisioning Profiles (Development) 7 Q

~: Certificates 2 Profiles Total

Al Name 4 Type Status

Pending °
Development

: L
Production

Keys

All

Identifiers
App IDs
Pass Type IDs
Website Push IDs
iCloud Containers
App Groups
Merchant IDs
Music IDs

Maps IDs

Devices
All
Apple TV
Apple Watch
iPad
iPhone

iPod Touch

Provisioning Profiles
All
Development

Distribution

Figure 9-8. i0S Provisioning Profiles list page in the Apple Developer portal

Select the appropriate App ID from the drop-down list. In our case it
will be the App ID we created in the previous section for our

sampleReactNative app (Figure 9-9).

[Developer Discover Design Develop Distribute Support Account Q

Certificates, Identifiers & Profiles Akshat Paul ~
i0S, tvOS, watchOS - Add iOS Provisioning Profiles (Development) 7] [
%% Certificates Generate 9, Download
Al
Pending
Development D Select App ID.
Production
@ Keys
Al If you plan to use services such as Game Center, In-App Purchase, and Push Notifications, or want
- aBundle ID unique to a single app, use an explicit App ID. If you want to create one provisioning
[io) Identifiers profile for multiple apps or don't need a specific Bundle ID, select a wildcard App ID. Wildcard App
App IDs IDs use an asterisk (*) as the last digit in the Bundle ID field. Please note that iOS App IDs and Mac

App IDs cannot be used interchangeably.
Pass Type IDs

Website Push IDs

App ID: [sampleReactNativeApp (com.sampleRN.app) 3]

iCloud Containers

App Groups

Figure 9-9. AddiOS Provisioning Profiles page on the Apple Developer portal

Click Continue. Your Development Provisioning profile will be gener-
ated. Double-click it and it will be loaded in your Xcode automatically.
Before proceeding to the next section, create a Distribution Provision-
ing profile for our sampleReactNative app using the same

process.

Now that all our basic setup is completed, in the next section you
learn how we create a build for our application and distribute it among

our team members using TestFlight.

Generating iOS .ipa(iPhone Application Archive)

Before we create our build and host it on TestFlight for testing, we should

load our source code in Xcode. From the root of your React Native source

code, navigate to the appropriate folder and click the Xcode project file
(Figure 9-10).

Name

> B _ tests

» | | android
- App.js
app.json
babel.config.js
index.js

v Bl ios

» | | HouseShare
» | HouseShare-tvOS
» | | HouseShare-tvOSTests

 HouseShare.xcodeproj

» | HouseShareTests
» | | node_modules
package.json
yarn.lock
& Macintosh HD > [Users > & akshatpaul » myapps >

Figure 9-10. Folder structure of iOS project

Double-click this to load your application in Xcode. Click the General

tab for the application to add the settings shown in Figure 9-11.

® ® » #% HouseShare) /* Generic iOS Device
B 2 R CANANS ORISR ER 05 & HouseSh
¥ |2 HouseShare 01 AH
'V . HouseShare
main.jsbundle ¥ Identity

h | AppDelegate.h
m AppDelegate.m
"1 Images.xcassets
Info.plist
LaunchScreen.xib
m| main.m
¥ i Libraries
» & RCTAnimation.xcodeproj L
» 5 React.xcodeproj ¥ Signing
P &) RCTActionSheet.xcodeproj
» & RCTBIob.xcodeproj
P & RCTGeolocation.xcodeproj
> 'ﬂ RCTImage.xcodeproj
» 2 RCTLinking.xcodeproj
» &) RCTNetwork.xcodeproj
P &) RCTSettings.xcodeproj
P & RCTText.xcodeproj
> .LI RCTVibration.xcodeproj
» [RCTWebSocket.xcodeproj

N HouseShareTests

¥ Deployment Info

m HouseShareTests.m
P> . Supporting Files
> Products
P i Frameworks

Display Name HouseShare
Bundle Identifier com.sampleRN.app‘
Version 1.0

Build 1

Automatically manage signing

Team Akshat Paul

Provisioning Profile Xcode Managed Profile (1)

Signing Certificate iPhone Developer: Akshat Paul (ZW896J6KK3)

Deployment Target

Devices iPhone

Main Interface

Device Orientation Portrait
Upside Down
Landscape Left
Landscape Right

Status Bar Style Default

Hide status bar

Requires full screen

Figure 9-11. Xcode General tab settings for the project

Build Settings

B

ooo

Build Phases Build Rules

Use the App ID you had created in previous section as the Bundle

Identifier. This has to be same, as mentioned in the Developer con-

sole, and unique for every application you create. It is essentially a

unique identifier for your app in Apple’s system.

Next, let’s add some app icons and a launch screen for our sample

application. It’s fine to keep your launch screen simple, with just text

that comes out of the box when you initialize a React Native applica-

tion. However, we must add all types of icons for our build to be suc-
cessful and submitted to Apple for both App Store release and testing
with TestFlight.

To add icons to your application, select Images.xcassets » Applcon

folder from the project directory from Xcode (Figure 9-12).

C XoN Il 2 /% HouseShare) /* Generic i0S Device HouseShare: Ready | Today at 8:48 PM 2 @ |

Q = o B8 (2 < & HouseShare) HouseShare) Images.xcassets) Applcon <)
Ga / / rd
¥ |5 HouseShare i Applcon

¥ . HouseShare

Applcon App leon

main.jsbundle

h AppDelegate.h
m AppDelegate.m

Images.xcassets 2x 3x 2% 3x
Info.plist
iPhone Notification iPhone

i0s 7-12 Settings - i0S 7-12
m main.m 20pt 29pt

v Libraries

LaunchScreen.xib

» &) RCTAnimation.xcodeproj
> & React.xcodeproj

> & RCTActionSheet.xcodeproj
» 2 RCTBIob.xcodeproj

» &) RCTGeolocation.xcodeproj

P & RCTImage.xcodeproj iPhone Spotlight iPhone App
i0S 7-12 i0S 7-12
40pt 60pt (

2x 3x 2x 3x

P & RCTLinking.xcodeproj

> & RCTNetwork.xcodeproj

» _. RCTSettings.xcodeproj

» |5 RCTText.xcodeproj

» & RCTVibration.xcodeproj

> [RCTWebSocket.xcodeproj
Y HouseShareTests 1x

m HouseShareTests.m App Store

> Supporting Files i0s

> Prod::is i Uil

> Frameworks

Figure 9-12. Iconimage set screen in Xcode

The icons shown here represent the same icon for your application to be
used at different places; in short, they represent your application icon in
various sizes. We won’t get into a tutorial here about how to create these
icons, because that’s a designer’s area of expertise. For our work, we can

use some application—we suggest downloading Icon Set Creator for your

Macintosh—to generate all sizes of icons for 10S devices (Figure 9-13).

There are many online sites that can help you perform the same task.

Support

Mac App Store Preview

Open the Mac App Store to buy and download apps.

Icon Set Creator
Nicolas Miari

ko 4.7, 62 Ratings

Free - Offers In-App Purchases

View in Mac App Store A

Figure 9-13. An app for creating an icon set on Mac

Next drag and drop your icons into the Applcon pane, as shown in

Figure 9-14.

® ®) /% ...) /* Generic i0S Device HouseShare: Ready | Today at 8:56 PM 2
B 2 Q AN © = b 8|3 < & HouseShare) i) HouseShare) [Images.xcassets) | Applcon
2]
¥ | HouseShare Applcon
V. HouseShare

main.jsbundle
AppDelegate.h

AppDelegate.m

Im

"~ Images.xcassets
Info.plist
LaunchScreen.xib

main.m

=
o
=3
[
=1
3
w

RCTAnimation.xcodeproj
React.xcodeproj
RCTActionSheet.xcodeproj
RCTBIlob.xcodeproj
RCTGeolocation.xcodeproj
RCTImage.xcodeproj
RCTLinking.xcodeproj
RCTNetwork.xcodeproj
RCTSettings.xcodeproj

PPrrrrreeP e

RCTText.xcodeproj

& RCTVibration.xcodeproj
@ RCTWebSocket.xcodeproj

HouseShareTests

vV VvV VvV VvV Vv VvV VvV VvVyVvVVvVvy?"r

m HouseShareTests.m

| S
| S
| S

Supporting Files
Products

Frameworks

Figure 9-14. Iconimage set screen in Xcode

iPhone Notification
i0S 7-12
20pt

fl houseShare-icon-20.png

houseShare-icon-20@2x.png &

houseShare—icon-ZOqé;;?,;(..png'. e
Wl houseShare-icon-29.png
Wl houseShare-icon-29@2x.png
houseShare—m;
houseShare-icon-40.png
) houseShare-icon-40@2x.png
houseShare-icm',ls‘OTmm
houseShare-icon-60@2x.png M
= = [RRGHE SBotlight
L8l houseShare-icon-60@3x.png P
8l houseShare-icon-76.png ZLI

i3l houseShare-icon-76@2x.png

Wl houseShare-icon-83.5@2x.png
N

il houseShare-icon-1024.png

iPhone App
i0S 7-12
B0nt

@ ||

<a>

|
App Icon

Once this is done, you will see all your icons automatically set up and

you’re ready for the next step, which is setting up your launch screen.

Select LaunchScreen.xib to add or modify the launch screen for your

application. In our sample application, we will keep the same default

launch screen because it won’t break our build or stop us from up-

loading it. However, for a real-world application that is supposed to be
published to the App Store, it is better to have a proper launch

screen.

Next, let’s create our build, which is actually done using the Archive
command. Before we create the build, please select Generic 10S Device as
the target, as shown in Figure 9-15. The reason for changing this from a
simulator to Generic 10S Device is that your Archive command will be
disabled if you don’t make this change. On the XCode menu bar, select
Product » Archive and the build process will begin.

@ Xcode File Edit View Find Navigate Editor %L Debug Source Control Window Help

® ®) /A HouseShdre) /* Generic iOS Device Run ER Succeeded | Today at 9:08 PM
Test #8U |
ElﬁQ&®i_5D@SS< gHouseSI
Ao, Iyq AaD
Buildtime (213) ULNINE] @ HouseShare ¢ MSO rce Tags Info Build Settings
v (5) HouseShare 3 issues v ldgniit
entity f
v Misplaced View Build For . >
Frame for "Powered by React Perform Action >
v Native" will be different at run time. . e
Build #B

LaunchScreen.xib

Width will be 440 at run time but
is 441 in the canvas.

Clean Build Folder {»8K eRN.app

Frame for "HouseShare" will be

v different at run time. Scheme >
LaunchScreen.xib Destination >
Vertical position will be 140 at run
time but is 140 in the canvas. V¥ Signing Create Bot...

Width will be 440 at run time but

e Al o canvas Automatically manage signing

v Warning

the transform cache was reset.
Team Akshat Paul

v @ double-conversion 1 issue

v Somantclssie Provisioning Profile Xcode Managed Profile (1)

v Declaration shadows a local variable Sianing Certificate iPhone Developer: Akshat Paul (ZW896J6KK3)

Figure 9-15. Xcode archive generation

When successfully built, you’ll get the window shown in Figure 9-16
with a list of all your Archives. If this window does not appear for some
reason, even after a successful build or by mistake you close it, you can

reopen it. This is Xcode Organizer.

Creation Date v Version Status Archive Information

Name

B HouseShare 27-Jan-2019 at 9:08 PM 10 (1) -
% HouseShare
|8} 27-Jan-2019 at 9:08 PM

[Distribute App J

Validate App

Details

Version 1.0 (1)
Identifier com.sampleRN.app
Type i0S App Archive
Team Akshat Paul

Download Debug Symbols

Description

Figure 9-16. Xcode Organizer

Click Distribute App and you will be presented with a few options.
Select 10S App Store and after few steps your ipa will be ready to be
uploaded to App Store Connect (Figure 9-17).

Review HouseShare.ipa content:

() HouseShare.app -
~ HouseShare.app

SUMMARY

Team: Akshat Paul

Certificate: Unknown

Profile: None

Symbols: Included

Bitcode: Included
Architectures: armv7 and arm64

Cancel Previous . UT)IOE(T ’

Figure 9-17. Xcode Organizer detail screen

Before clicking Upload, you need to first create the application on the
App Store Connect. Go to
https://developer.apple.com/account and select the App

Store Connect icon or visit

https://appstoreconnect.apple.com/ . There you’ll find

several options. Select My Apps, as shown in Figure 9-18.

https://developer.apple.com/account
https://appstoreconnect.apple.com/

App Store Connect

[4 ‘ =
My Apps App Analytics Sales and Payments and
Trends Financial
Reports
° p
. lllllll
Users and Agreements, Resources and
Access Tax, and Help

Banking

Figure 9-18. App Store Connect home page

Inside My Apps you will see all your 10S applications. Click the plus
(+) button and select New App to create new App Store app for our React
Native application (Figure 9-19).

App Store Connect My Apps v

+ ooo

New App
New macOS App

New iOS App Bundle

Figure 9-19. App Store Connect create new app

Once selected, the form displayed in Figure 9-20 will appear.

New App

Platforms ?

v/ i0S tvOS

Name 7

House Share

Primary Language 7

English (Australia) ¥
Bundle ID 7

sampleReactNativeApp - com.sampleRN.app v
SKU 7

come.sampleRN2019.app

User Access 7

Limited Access ®) Full Access

‘ Cancel ’ ‘ Create ’

Figure 9-20. App Store Connect form to create a new app

Fill it out with the proper details for your application. You can select

the appropriate Bundle ID from the drop-down list. A SKU has to be

added, which can be different from the Bundle ID. This SKU is not vis-
ible to App Store users. For user access, if you have created any spe-
cific user group already you can select it. If not, select Full Access,

especially if this is your first application.

Click Create and your empty app will be created on App Store Connect.
Go back to Xcode and continue where we left off. Click Upload and shortly
your application build will be uploaded on App Store Connect (Figure 9-

21).

Archive upload complete:

App "HouseShare" successfully uploaded.

Export... | Done |

Figure 9-21. Organizer success screen

You can check your application build on App Store Connect in a few.

From App Store Connect, you can submit your application to Apple

for review. After a successful review of your application without is-
sues and errors, your app will be live on the Apple App Store for

users in two to five days.

Before you publish your application for end users, it must be thor-
oughly tested. This process is called beta testing and can be

achieved using TestFlight.

Generating Android .apk(Android application
package)

Just like Apple, Google expects all Android apps to be signed with a
certificate before they get installed on a device either for testing or

publishing in the Google Play Store.
To begin this process, first navigate to the folder where your Java
Development Kit (JDK) is installed. In the case of Macintosh, if you are not

sure where your JDK is installed, type the following command in your

terminal:
$ /usr/libexec/java home

This will print the path to the jdk folder. Navigate to that directory and

type the following command:

S sudo kevtool -aenkev -v -kevstore mv-release

When you execute this command, it will ask few questions and re-
quire a password to be set for your keys. Please remember the pass-
word because it will be used later when applying these settings for

your React Native application.

Copy the my-release-key.keystore file in the android/app
directory in your React Native application folder (Figure 9-22).

4 android
b .gradle
b .settings
4 app
b .settings
> build
b src
&, .classpath
.project
BUCK
(& build.gradle M
proguard-rules.pro
> build
b gradle
b keystores
.project
(& build.gradle
» gradle.properties

(A

gradlew
a® gradlew.bat
(& settings.gradle

Figure 9-22 Android folder structure of app

NoteAlways make sure to keep your keys private and never commit

in the project directory.

Next, we need to add some configurations in two files. First open

android/gradle.properties and add the following settings:

MYAPP RELEASE STORE FILE=my-release-key.keystore
MYAPP RELEASE KEY ALIAS=my-key-alias

MYAPP RELEASE STORE PASSWORD=*#****

MYAPP RELEASE KEY PASSWORD=*#****

As mentioned earlier, provide the password you set when you were

generating your keys.

Next, open android/app/build.gradle. In

signingConfigs » release section, add the following config:

signingConfigs {
release {

if (project.hasProperty('MYAPP REL

storeFile file(MYAPP RELEASE S

storePassword MYAPP RELEASE ST

keyAlias MYAPP RELEASE KEY ALI

keyPassword MYAPP RELEASE KEY

In the same file inside the bui1dTypes > release section, add

the following config:

buildTypes {

release {

signingConfig signingConfigs.relea

Finally, to generate an apk, go to the android folder in your React

Native application and execute the following command:
$ gradlew assembleRelease

This will generate the apk build that can you can find at
android/app/build/outputs/apk/release/app-re-

lease.apk. This apk can be distributed to users and submitted to
the Google Play Store.

Beta Testing with TestFlight

TestFlight is a utility that is included when you set up your Apple De-
veloper Account. It allows you to invite users to test your application,
provide you with feedback, and provide you with valuable test infor-

mation like crashes, and so on.

Each build is active for 90 days and you can invite up to 25 internal
testers (which does not require App Store review) and up to 10,000

external testers, which is only applicable after App Store review.

Let’s also set up our sample React Native application for TestFlight. The
process 1s pretty simple. Inside App Store Connect, select your application
and click the TestFlight tab (Figure 9-23).

App Store Connec t My Apps v~ House Share v At paul o ?

App Store Features TestFlight Activity

iOS Builds

External Testers Invitations Installations

Figure 9-23 App Store Connect TestFlight tab

You will see the recently uploaded build available. It will mention
missing compliance. Under App Information, select Test Information
from the menu pane. Click the Missing Compliance message again

and click Start Internal Testing.

You can invite up to 25 users to participate in internal testing. To add
users, return to the App Store Connect home screen and select
Users and Access. From there, you can add your testing users and

segregate them into groups if required.

Your testers would have to install the TestFlight application from the
Apple App Store to access the build, which will be installed separately

on your iOS device.

TestFlight is a good option, but it is limited to only iOS device testing.
Besides TestFlight we would recommend TestFairy and HockeyApp
as alternatives that can be used for both iOS and Android. Whereas
TestFairy is a paid utility, HockeyApp is completely free (at the time of
this writing).

Summary

In this chapter we finally reached the end of the development cycle
for a mobile application, creating a build that can be tested by users
and submitted to the Apple App Store or the Google Play Store. You
learned about the signing process for both systems: Whereas Apple
has specific steps in its signing process, the Google Android process
is fairly quick. Both, though, are designed to keep the rights and de-
vices of users from being misused. You also learned about beta test-

ing with TestFlight and some other popular options.

© Akshat Paul and Abhishek Nalwaya 2019
Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development
https://doi.org/10.1007/978-1-4842-4454-8 10

10. The Ecosystem: Extending React
Native

Akshat Paull and Abhishek Nalwaya?
(1) Gurgaon, Haryana, India
(2) Jaipur, Rajasthan, India

Civilization advances by extending the number of operations

which we can perform without thinking about them.

—Alfred North Whitehead

If you have come this far, you can proudly say you have become a React
Native developer. In this final chapter you learn how expedite your React
Native development by using some very useful, stable, and popular
libraries. These are designed to make your life a bit easier and help you

create your apps faster. This chapter covers the following topics:

. Popular React Native libraries

. Community, Help, and where to go from here

Popular React Native Libraries

https://doi.org/10.1007/978-1-4842-4454-8_10

From the time of its inception the React Native ecosystem has grown
by leaps and bounds. The React Native community is vibrant and ex-
ceptionally productive: With every passing week, something new is
always coming up to untangle the complications of development. By
the time you have reached this chapter and we have completed this
book, a lot more must have happened (later in this chapter we share
ways to stay updated with the community). However, this chapter pro-
vides a curated list of libraries organized based on categories to help

you increase the velocity of your React Native development.

Ul

Styled-components

Styled-components allows you to write actual CSS code to style your
components. It removes the mapping between components and
styles: Using components as a low-level styling construct makes it

easy. See https://github.com/styled-

components/styled-components.

Lottie-react-native

Lottie is a mobile library for Android and iOS that parses Adobe After
Effects animations exported as JSON with bodymovin (an After Ef-
fects extension to export anmations for the Web) and renders them

natively on mobile platforms. Access the Lottie mobile library here:

https://github.com/styled-components/styled-components

https://github.com/react-native-community/lottie-

react—native.

React-native-vector-icons

This library is perfect for buttons, logos, and navigation and tab bars.
It is easy to extend, style, and integrate into your project. It provides
customizable icons for React Native with support for
NavBar/TabBar/Toolbar, image source, and full styling. See

https://github.com/oblador/react-native-vector-

icons.

Forms

Formik

Formik is a simple library that helps you with the three parts that
make forms in React complicated: getting values in and out of form

state, validation and error messages, and handling form submission.

See https://github.com/jaredpalmer/formik.

Redux-form

Redux-form is the most convenient way to manage a form state in

Redux. To make use of this module you must have some idea about

https://github.com/react-native-community/lottie-react-native
https://github.com/oblador/react-native-vector-icons
https://github.com/jaredpalmer/formik

the Redux state container and higher order components. See

https://github.com/erikras/redux—form/.

Type Checking and Linting
ESLint

ESLint is an open source project that has as its ultimate goal to pro-
vide a pluggable linting utility for JavaScript. There are many popular
ESLint configurations available from popular projects that can import
for your application while also creating new custom linting rules

based on your requirement. See https://eslint.org/.

Prop-types

Prop-types is a library that helps in runtime type checking for React

props and similar objects. See https://www.npmjs.com/pack-

age/prop-types.

Flow

Flow is a static type checker for JavaScript that helps identify prob-
lems with your code early instead of guessing and checking. Flow

provides real-time feedback as you code and make your changes.

See https://flow.org/.

https://github.com/erikras/redux-form/
https://eslint.org/
https://www.npmjs.com/package/prop-types
https://flow.org/

Testing

Jest

Jest is a testing framework that is simple to use and integrate with
your React Native application. It comes out of the box with React Na-

tive versions 0.38 and above. Jest also allows for snapshot testing,
which is a brilliant way to manage changes in the Ul. See url:

https://jestjs.io/.

Enzyme

Enzyme is a testing tool that was created and open sourced by
Airbnb. It supports tons of features like shallow rendering, full DOM
rendering, and static rendered markup. It is a great add-on, along with
Jest. Enzyme APIs are intuitive and flexible as they imitate Jquery

APls for DOM manipulations. See

https://github.com/airbnb/enzyme.

Chai

Chai is an assertion testing library based on test-driven and behavior-

driven development. Just like Enzyme, Chai also enahances other

testing frameworks. See https://www.chaijs.com/.

Mocha

https://jestjs.io/
https://github.com/airbnb/enzyme
https://www.chaijs.com/

Mocha is a JavaScript testing framework that helps make asyn-
chronous testing simple. Mocha runs test serially and provides accu-
rate reporting, while mapping uncaught exceptions to the correct test

cases. See https://mochajs.org/.

Interacting with APIs and Back End

Axios

Axios is an HTTP client for JavaScript that helps make HTTP re-
quests to REST endpoints and perform CRUD operations. Axois sup-
ports Promise API, intercept request and response, helps transform
request and response data, and has many more features. See

https://github.com/axios/axios.

Apolio

If you plan to use GraphQL you will end up using Apollo, which is an
implementation of GraphQL that helps manage data in the cloud.
Apollo includes two open source libraries for the client and server, in

addition to developer tools that provide everything you need to run a

graph API in production with confidence. See https://www.apol-

lographgl.com/docs/react/recipes/react-native.html.

React-native-firebase

https://mochajs.org/
https://github.com/axios/axios
https://www.apollographql.com/docs/react/recipes/react-native.html

React-native-firebase is a collection of official React Native modules
connecting you to Firebase services; each module is a lightweight
JavaScript layer connecting you to the native Firebase SDKs for both

iIOS and Android. See https://github.com/invertase/re-

act—-native-firebase.

Routing
React Router

React Router is a collection of navigational components that com-
pose declaratively with your application. Whether you want to have
URLSs that can be bookmarked for your web app or a composable
way to navigate in React Native, React Router works perfectly. See

https://reacttraining.com/react-router.

React Navigation

React Navigation was born from the React Native community’s need
for an extensible yet easy-to-use navigation solution written entirely

in JavaScript (so you can read and understand all of the source), on

top of powerful native primitives. See https://reactnaviga-

tion.org/.

Utilities

https://github.com/invertase/react-native-firebase
https://reacttraining.com/react-router
https://reactnavigation.org/

Lodash

Lodash is a JavaScript library that provides utility functions for com-
mon programming tasks using the functional programming paradigm.
Lodash is the most commonly used library in any application and it is
very popular in the JavaScript world. See

https://lodash.com/docs/4.17.11.

Ramda

Ramda is a library designed specifically for a functional programming

style, one that makes it easy to create functional pipelines and never

mutates user data. See https://ramdajs.com/.

Moment

Moment . js is brilliant for managing dates in JavaScript, which is
something you will always stumble on when developing an applica-

tion. See https://momentjs.com/ .

Reselect

Reselect is a simple “selector” library with Redux. Having key fea-
tures like selectors can compute derived data, allowing Redux to
store the minimal possible state. Selectors are efficient; a selector is

not recomputed unless one of its arguments changes. They are also

https://lodash.com/docs/4.17.11
https://ramdajs.com/
https://momentjs.com/

composable, and they can be used as input to other selectors. See

https://github.com/reduxjs/reselect.

Validate.js

Validation is part of any application. validate. js serves this pur-

pose by providing a declarative way of validating JavaScript objects.
With validate. js, validation constraints can be declared in JSON

and shared between clients and the server. See https://vali-

datejs.org/.

React-native-device-info

This is a simple library, and as its name suggests, it provides device
information for React Native for iOS and Android. It has a long list of

APls to provide in-depth information about the device on which an

application is running. See https://github.com/rebeccahugh-

es/react—-native—-device—-info.

Where to Get Help

This section provides some suggestions on where to get help in the

React Native community.

React Native Repository

https://github.com/reduxjs/reselect
https://validatejs.org/
https://github.com/rebeccahughes/react-native-device-info

The React Native repository is maintained by a full-time Facebook

React Native core team, but there is huge community that is always
contributing to keeping this framework stable. You can always raise
an issue if you find one with the framework in the GitHub repository,

and there you can also find solutions to past issues. See

https://github.com/facebook/react-native/issues.To

report a bug in the framework you can use the bug report format

available at https://github.com/facebook/react—

native/issues/new?template=bug_report.md.

Stack Overflow

Stack Overflow is a place where people across the React Native
community help each other. You can post questions and get answers
pretty quickly. You can also help fellow developers as you proceed in
your journey toward becoming an expert in React Native (or any oth-
er technology). By giving answers to various questions, your score on
Stack Overflow increases, which is a kind of motivation for helping
others. Many developers actually boast about their Stack Overflow

stats. See

https://stackoverflow.com/questions/tagged/react—

native?sort=frequent for alist of exisiting questions on React

Native. To ask a question with a React Native tag, go to

https://github.com/facebook/react-native/issues
https://github.com/facebook/react-native/issues/new%253Ftemplate%253Dbug_report.md
https://stackoverflow.com/questions/tagged/react-native%253Fsort%253Dfrequent

https://stackoverflow.com/questions/ask?tags=re-

act—-native.

Stay Updated with React Native

You should also stay in tune with the latest happenings in React Na-

tive with the official documentation available at ht tps: //github. -

com/facebook/react-native-website . The official blog of

React Native maintained at https://facebook.github.io/re—

act-native/blog/ will keep you updated on what is new. You can

also connect with the official React Native Twitter account, which

keeps updated with both React Native and Reactjs. See

https://twitter.com/reactjs.

React Native Communities

Sometimes if you don’t get an answer quickly on GitHub issues or
Stack Overflow, it’s a good idea to get in touch with the larger com-
munity instantly. For that you can join the React Discord channel and
connect with fellow developers. Incidentally, it’s not necessary for you
have questions; you can always share your discovery or maybe your
next open source React Native project. This is a good way to get

some visibility. See https://discordapp.com/invite/0%cbP-

KXt5bZjGYbn .

https://stackoverflow.com/questions/ask%253Ftags%253Dreact-native
https://github.com/facebook/react-native-website
https://facebook.github.io/react-native/blog/
https://twitter.com/reactjs
https://discordapp.com/invite/0ZcbPKXt5bZjGY5n

Another way to interact with the React Native developer community is
to be part of various online groups and forums. Here are a few

recommended ones you can join:

. React Native Spectrum: https://spectrum.chat/react—

native

. React Native Facebook group: https://www.facebook. -

com/groups/react.native.community

. Expo forum: https://forums.expo.io/

Knowledge

Besides the official React Native blog, there are some amazing posts written
on other blogs by community members that can further enhance your

knowledge. Here are two recommended ones:

« Devio community: https://dev.to/t/reactnative

« React Native on Medium: https://medium.com/tag/react-

native

Discussions and Proposals

React Native, although very powerful, is still a young framework and
its core team is always looking for great proposals, improvements,
and discussions. Be part of this problem-solving effort and contribute

to this thriving community. You can do this by following the formal

https://spectrum.chat/react-native
https://www.facebook.com/groups/react.native.community
https://forums.expo.io/
https://dev.to/t/reactnative
https://medium.com/tag/react-native

channelat https://github.com/react-native-

community/discussions—-and-proposals.

Summary

Now we have reached the end of our book and our last summary. In
this chapter we provided information about various React Native li-
braries that can expedite our development time and give access to
the enormous treasure trove of features built over time by the React
Native community. You also learned about how to stay updated on
this fast-moving framework by getting information from the right

sources.

Although you have learned a lot during the course of this book, to tru-
ly master this topic you have to keep practicing and creating apps.
There is no better way to become an expert at a technology than
learning on your own in a real-world scenario. You can contribute to
the developer community by creating a module that still does not ex-
ist or by contributing to existing open source React Native repos. We
are very excited about React Native, just like you, and look forward to
seeing your work making a mark in the mobile development and Re-

act Native world.

https://github.com/react-native-community/discussions-and-proposals

Index

A

Alert method

Android Virtual Devices (AVDs)
Animations

Apple Developer Account

Beta testing with test flight
generating android apk
generating 10S ipa

App Store connect

icons

settings

Xcode archive generation
Xcode Organizer

Xcode project file

10S build process

add provisioning profiles

App ID

certificate uploaded on Apple Developer portal
create development and distribution process
Keychain Access

Select development

populated list with options
AsyncStorage

B

Beta testing

C

catch() method

Communication

fetch

server

get data

saving data (see Data saving, server)
WebSocket

XMLHttpRequest
componentDidMount() method

D,E

Data saving, server
AddNewProperty
Addproperty page
alert box message
back-end API

list of properties
navigation route
post request
setState

simulator
Debugging, React Native
in Chrome

FPS Monitor

inspect element

reload option

in Safari

Deep linking
Android

defined

i0S

navigation container
React component
Safari browser
universal links

URL schemes
Device capabilities
AsyncStorage
addMessage method
getlnitialState
retrieveData
updatedStorage method
Update Storage
GeoLocation
annotations

Google Maps

latitude and longitude
MapView component
NativeAlert

add buttons

alert and prompt method
Button

new component

WebView
code review
with URL
Dispatcher

F

Fetch

list of properties
network APIs
Flexbox
flexDirection

flex values
landscape mode screen
NavigatorIOS
portrait mode screen
styles

Flux

actions

benefits

data flow

definition
dispatcher
dispatch() method
predictable code
stores

waitFor() method

Freeway Drive

G

GeoLocation
getCount() method

getCurrentPosition function

H, I

_handleListProperty function

J,K

Java Development Kit (JDK)
JavaScript Object Notation (JSON)
Jest

definition

features

React Native framework

Snapshot testing

L

ListView
Lodash
M

MapView component

Mocha

Model-view-controller (MVC) framework
MVC pattern

N,O,P,Q

NativeAlert component

Native Bridge

for Android

creating Counter class
creating Java class
CustomCounterPackage
open app

run application

development setup

10S

Counter class

Counter.swift

creating bridging header
creating file in Swift
creating Objective-C file
getCount method
NativeModules.Counter.increment()
open Xcode

RCT_EXPORT METHOD()
selecting proper group
thread
NSLocationWhenInUseUsageDescription

R

Ramda

RCT EXPORT METHOD()
React

advantages

components

HTML properties
property types

state

creating Hello World project
installation

MVC

one-way data flow
problems

spaghetti relationship
two-way data binding
VDOM

components

working principle
React Native
communities

create basic structure project
CLI tool

Expo app

terminal output
debugging

in Chrome

FPS Monitor

inspect element

reload option

in Safari

Hello World application
destructuring

108 simulator

render function

Xcode editor
HouseShare project
Android
AppDelegate.m
index.10s.js

10S folder

node modules
package.json
RCTRootView
installation

cli module

Node and npm
JavaScriptCore framework
live reload

prerequisites

RCTText

repository

running app on simulator
Stack Overflow
TouchableHighlight
web technologies
WebView-based

React Native application
React Native CLI
React-native-firebase
React Native libraries

forms

routing

testing

type checking, linting
Ul

utilities
react-native-maps
react-native-maps npm module
React Navigation
createStackNavigator
creating HomeScreen React component
creating screen
definition

Reducers

Redux

actions

advantages

data flow

definition

functional programming
with React Native
components

folder structure

reducer code

todo reducer
visibilityFilter reducer
reducers

store

Reflux

populated list with options

S

ScrollView

animations

code

Separation of concerns (SoC)
Server

get data

HomeListScreen

10S simulator

MOCK DATA

setState object

10S simulator

saving data, (see Data saving, server)
Snapshot testing

Stack Overflow

Static type checking

flow

flow, benefits

Swift class method

T
TestFlight

TouchableHighlight
U

User interface

add images

Flexbox (see Flexbox)
ListView component
ScrollView
TouchableHighlight

Vv

Virtual DOM (VDOM)
components

working principle

w

watchPosition method
WebSocket
WebView

XY, 2

XMLHttpRequest

	Front Matter
	1. Learning the Basics: A Whistle-Stop Tour of React
	2. The Simplest Program: Hello World with React Native
	3. Solving Problems Differently with Flux and Redux
	4. Canvas, Brush, and Paint: Working with the User Interface
	5. Exploring Device Capabilities
	6. Communicating with Servers
	7. Native Bridging in React Native
	8. Testing
	9. Getting Ready for the World
	10. The Ecosystem: Extending React Native
	Back Matter

