

Akshat Paul and Abhishek Nalwaya

React Native for Mobile Development
Harness the Power of React Native to Create Stunning
iOS and Android Applications

2nd ed.

Akshat Paul
Gurgaon, Haryana, India
Abhishek Nalwaya
Jaipur, Rajasthan, India

Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub via the book’s
product page, located at
www.​apress.​com/​9781484244531
. For more
detailed information, please visit
http://​www.​apress.​com/​source-code
.

ISBN 978-1-4842-4453-1 e-ISBN 978-1-4842-4454-8
https://doi.org/10.1007/978-1-4842-4454-8
© Akshat Paul and Abhishek Nalwaya 2019
Standard Apress
Trademarked names, logos, and images may appear in this book. Rather
than use a trademark symbol with every occurrence of a trademarked name,
logo, or image we use the names, logos, and images only in an editorial
fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark. The use in this publication of trade names,
trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.
While the advice and information in this book are believed to be true and
accurate at the date of publication, neither the authors nor the editors nor
the publisher can accept any legal responsibility for any errors or omissions

http://www.apress.com/9781484244531
http://www.apress.com/source-code
https://doi.org/10.1007/978-1-4842-4454-8

that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.
Distributed to the book trade worldwide by Springer Science+Business
Media New York, 233 Spring Street, 6th Floor, New York, NY 10013.
Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

Introduction
React is one of the most popular JavaScript framework as of 2019. It
took web development by storm when first introduced and its popular-
ity has been increasing among the developer community ever since.

React Native took this one step further when first introduced in 2015

and helped build Native iOS apps with common knowledge of web
technologies like JavaScript. In just a few years, React Native has be-
come an important player in native mobile development, and extend-
ing its support for both Apple iOS and Google Android was a game
changer. This required us to write second edition of this book, which
covers both platforms end to end to help you create stunning React
Native apps.

This book is divided into ten chapters and each one teaches a unique
aspect of building React Native applications. By end of this journey
we believe you will be a master developer with React Native and will
be able to publish your app to the Apple App Store or Google Play
Store. We commence our journey with an introduction to React in
Chapter
1
, where you learn about core React concepts like Virtual
DOM, one-way data flows, props, and state, and also build a small
React application. In Chapter
2
we cover how to set up React Native
and start building a simple Hello World program. This chapter also
cover the anatomy of a React Native project and how to debug the
application. In Chapter
3
we discuss design patterns like MVC, as

well as new programming paradigms such as Flux and Redux. In this
chapter you learn about Redux core concepts, how to use Redux with
React Native, and the benefits of including it in a React Native appli-
cation. Chapter
4
covers how to build a user interface (UI) with the
help of Flexbox, navigation with React Navigation, and few critical UI
components, such as touchable highlight, listview, scrollview, and
more. In Chapter
5
we address how to implement device capabilities,

including creating apps to use features like GeoLocation, MapView,

Native Alert, WebView, and deep linking.

Chapter
6
covers a key feature that is essential to any real-world ap-
plication: communication with back-end servers. In this chapter you
learn how to make requests to get data from a server and post data
back to a server using various available React Native options. In
Chapter
7
, we discuss how to access native application program-
ming interfaces (APIs) that do not have a corresponding JavaScript
library; this is building Native Bridge. This skill helps us harness all
the features of native iOS and Android development. Chapter
8
cov-
ers how to write tests for our React Native application using Jest, and
also introduces snapshot testing. This chapter also introduces a static
type check commonly used in the React Native world, called Flow. In
Chapter
9
, once you have learned how to create a full-featured React
Native application, it is equally important to test it with users and push
it onto the Apple App Store and Google Play Store. This chapter de-
scribes how to beta test a React Native application with the distribu-

tion systems available for iOS and Android. We also cover how to
create builds for iOS and Android, which is essential for submitting an
application to the Apple App Store and Google Play Store. In the final
chapter, Chapter
10
, you learn about some popular React Native li-
braries and where to go next, how to get help, and how to stay in
touch with the amazing React Native community.

In all, we hope that by end of this book you are confident in building
your next mobile application with React Native and launching it for
both iOS and Android. All the best!

Acknowledgments
We would like to thank our families, who saw us through this book,

talked things over, offered constructive feedback and provided sup-
port through our strenuous schedule without which conceiving this
book wouldn’t have been possible.

Also, we would like to thank Louise Corrigan, James Markham and
the entire team at Apress. And especially Nancy Chen who gave us
complete creative freedom to do things over the course of this book
which some time took more time then expected. Writing a book is a
long and arduous journey, but you all made it so easy for us.

Table of Contents

Chapter 1:​ Learning the Basics:​ A Whistle-Stop Tour of React
Why React?​

Virtual DOM
One-Way Data Flow
Installation and Setup
Create a Hello World Application
Introduction to Components
Deep-Dive into Components
Properties
State
Summary
Chapter 2:​ The Simplest Program:​ Hello World with React Native
What Is React Native?​

Installation
Installing Node and npm
Installing the React Native Package
Updating React Native
Your First App
Creating a Basic Skeleton
Prerequisites for Running App on a Simulator
Running the App on a Simulator
It’s Not a UIWebView
Enabling Live Reload
What Makes React Native Different?​

Ejecting a React Native Application
Debugging
Reload
Debugging in Chrome
Debugging in Safari
Showing Performance Monitor
The Inspect Element
Summary
Chapter 3:​ Solving Problems Differently with Flux and Redux
MVC Pattern
Flux
Success of Flux
Flux Deep Dive
The Dispatcher
The Need for Dispatcher [dispatch() and waitFor()]
Stores
Actions
Redux
Redux Core Concepts
Action
Reducer
Store
Redux with React Native
Working with the Components
Summary

Chapter 4:​ Canvas, Brush, and Paint:​ Working with the User
Interface
React Navigation
NavigatorIOS
Flexbox
flexDirection
Flex
Images
TouchableHighlig​ht
ListView
ScrollView
<ScrollView> vs.​ <FlatList>
Animations
Summary
Chapter 5:​ Exploring Device Capabilities
MapView and GeoLocation
Reviewing the GeoLocationMap Code
Adding Annotation on a Map
Displaying the Latitude and Longitude of the Current Location
AsyncStorage
Reviewing the AsyncStorage Code
Native Alert
Reviewing the NativeAlert Code
Extending the NativeAlert Example
WebView
Reviewing the WebView Code

Deep Linking
Summary
Chapter 6:​ Communicating with Servers
XMLHttpRequest
WebSocket
Fetch
Getting Data from a Server
Saving Data to a Server
Summary
Chapter 7:​ Native Bridging in React Native
Native Bridge
Prerequisites for the Example
Native Bridge for Android
Summary
Chapter 8:​ Testing
Flow
Benefits of Using Flow
Jest
Jest with React Native
Snapshot Testing with Jest
Summary
Chapter 9:​ Getting Ready for the World
Apple Developer Account
Google Play Console
iOS Build Process
Create a CSR File

Generating iOS .​ipa(iPhone Application Archive)

Generating Android .​apk(Android application package)

Beta Testing with TestFlight
Summary
Chapter 10:​ The Ecosystem:​ Extending React Native
Popular React Native Libraries
UI
Forms
Type Checking and Linting
Testing
Interacting with APIs and Back End
Routing
Utilities
Where to Get Help
React Native Repository
Stack Overflow
Stay Updated with React Native
React Native Communities
Knowledge
Discussions and Proposals
Summary
Index

About the Authors and About the Technical
Reviewer

About the Authors

Akshat Paul
is a soft-
ware archi-
tect and au-
thor of the
books
React Na-
tive for iOS
Developme
nt
and
RubyMotio
n iOS De-
velopment
Essentials
.

He is also a
seasoned
technical
reviewer for
books on the topics of React, React Native, and Microservices with

top publishers. He has extensive experience in DevOps, mobile, and
Web development.

In other avatars, Akshat frequently speaks at conferences and mee-
tups on various technologies. He was an invited speaker at the React
Native Conference EU, Devops@scale Amsterdam, TheDevTheory
Conference, RubyConfIndia, and the #inspect-RubyMotion Confer-
ence Brussels. He was also the keynote speaker at technology lead-
ership events in Bangkok and Kuala Lumpur on TDD. Besides writing
code, Akshat spends time with his family, is an avid reader, and is ob-
sessive about healthy eating. More information about Akshat can be

found at
https://www.akshatpaul.com/
.

Abhishek Nalwaya
is the author of three books and has spoken at many conferences and
meetups, such as RubyConf India and the RubyMotion conference. He has
extensive experience in DevOps, Web, and mobile development. Besides
programming, Abhishek loves to run and cook healthy food. More
information about Abhishek can be found at
http://www.nalwaya.com/
.

https://www.akshatpaul.com/
http://www.nalwaya.com/%2523_blank

About the Technical Reviewer

Alexander Chinedu Nnakwue

has a back-
ground in
mechanical
engineering
from the
University
of Ibadan in
Nigeria and
has been a
front-end
developer
for more
than three
years work-
ing on both
Web and
mobile technologies. He also has experience as a technical author,
writer, and reviewer. He enjoys programming for the web, and occa-
sionally, you can also find him playing soccer. He was born in Benin
City and is currently based in Lagos, Nigeria.

(1)
(2)

© Akshat Paul and Abhishek Nalwaya 2019

Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development

https://doi.org/10.1007/978-1-4842-4454-8_1

1. Learning the Basics: A Whistle-
Stop Tour of React

Akshat Paul and Abhishek Nalwaya
Gurgaon, Haryana, India
Jaipur, Rajasthan, India

The journey of a thousand miles begins with one step.

—Lao Tzu

Before you embark on your React Native journey, you must know a
little bit about React (also known as ReactJS or React.js). In this chapter,
we quickly look at the core concepts of React, which will help you to work
on React Native. This chapter introduces the following topics:

Introduction to React
Virtual Document Object Model (DOM)

One-way data flow
React installation and setup
Creating a first React Hello World app
Introduction to components

1 2

https://doi.org/10.1007/978-1-4842-4454-8_1

Props and state

Let’s get started! React is different from most popular web technolo-
gies, and you will learn why as you move through this chapter. Its
core concepts will open your mind to a new way of thinking if you
have spent a considerable amount of time with traditional frame-
works; this new way of thinking is sometimes called the React way of
thinking. You might have heard the phrase “Write once, run every-
where,” but dismissed it as nearly impossible due to the explosion of
different form factors (web, mobile, tablets). React has a different
guiding principle: “Learn once, write anywhere.” That seems quite dif-
ferent, and liberating. We begin this first chapter with a quick tour of
React, which will help prepare you for React Native. If you have an
elementary knowledge of React, you can skip this chapter and move
on to Chapter 2.

According to the official documentation, React is a JavaScript (JS)

library (not framework) for creating user interfaces (UIs). It was built
in a combined effort by teams from Facebook and Instagram. React
was first introduced to the world in 2013, and has taken it by storm,

with community-wide acceptance and the benefit of being the tech-
nology at the heart of Facebook. According to official documentation,

some consider React to be the V in a model-view-controller (MVC)

framework, because React makes no assumptions about the rest of
the technology stack used. You can use whatever technology you

wish and you can create a single section of your app with React or
React Native; you can also conveniently make changes in an already
created application by incrementally adding React to it.

Why React?

Do we really need another JavaScript library in a world full of Java-
Script libraries and frameworks? There is hardly a month that goes by
without a new JavaScript framework introduced.

React came into existence because its creators were faced with a
significant problem: how to build large applications in which data
change frequently. This problem occurs in almost any real-world ap-
plication and React was created from the ground up to solve it. As
you know, many popular frameworks are MVC or model-view-wild-
card (MV*), but here’s a point to be noted and reiterated: React is not
an MV* framework. It’s a just a library for building composable UIs for
UI components with data that change over time. Unlike popular JS
frameworks, React does not use templates or Hypertext Markup Lan-
guage (HTML) directives. React builds UIs by breaking the UI into
many components. That’s it, nothing else. This means that React
uses the full features of programming languages to build and render
views.

The following are some of the advantages of choosing React for your
next project:

React uses JavaScript extensively: Traditionally the views in
HTML are separated from the functionality in JavaScript. With Re-
act, components are created and there is one monolithic section
where JavaScript has intimate knowledge of your HTML.

Extendable and maintainable: Components are formed by a
unified markup with its view logic, which actually makes the UI
easy to extend and maintain.

Virtual DOM: React applications are blazing fast. The credit for
this goes to the virtual DOM and its diffing algorithm.

One-way data flow: Two-way data binding is a great idea, but in
real-world applications it produces more pain than benefit. One of
the common drawbacks with two-way data binding is that you have
no idea how your data get updated. With one-way data flow, things
are simple: You know exactly where data are mutating, which
makes it easier to maintain and test your app.

To have a strong foundation with a new technology, it’s necessary to
understand its core concepts. The next section explores a few unique
concepts of React, which will bring you one step closer to under-
standing this amazing technology.

Virtual DOM

In all web applications one of the most expensive operations from which an
app suffers is mutating the DOM. To solve this problem, React maintains a

virtual representation of the DOM (as shown in Figure 1-1), which is called

Virtual DOM (VDOM). Along with a diffing algorithm, React is able to
compute the data against the actual DOM and only update the part of the
DOM that is changed. The amount of change is therefore less, which leads
to a blazing fast application. In the beginning of your application you might
not see it, but as your project balloons to greater complexity (which usually
happens in real-world apps), you will begin to see the benefits of a snappy
experience for users.

Figure 1-1 Virtual DOM and diffing algorithm operations

Manual DOM manipulation is messy, and keeping track of the previ-
ous state of the DOM is very hard. As shown in Figure 1-1, React
solves this problem by keeping two copies of a VDOM. Next, a diffing
algorithm is applied on these two VDOMs, which essentially checks
for the changes that occurred and returns a stream of DOM opera-
tions. These DOM operations are then applied to the actual browser
DOM.

Let’s now understand in terms of components how a VDOM works. In
React, every component has a state; this state is likely observable.
Whenever there is a change in state, React essentially knows that this
change requires a rerender. When the application state changes, it generates
a new VTree; once again the diffing algorithm shares the DOM paths for
required changes, as shown in Figure 1-2. This results in keeping manual

DOM manipulation to a minimum.

Figure 1-2 Components with virtual VDOM

This feature of VDOM is not just important, but a killer feature of Re-
act. DOM access is super slow, and honestly speaking, the world has
made it worse by hitting the DOM again and again in most ap-
plications. To make your application fast, you should access the DOM
as little as possible, and this is beautifully handled by the implementa-
tion of VDOM. You won’t notice this with a small and trivial applica-
tion, but once your app grows to include thousands of DOM elements
all trying to get updated, React will not let your performance suffer.

One-Way Data Flow

React is primarily the V in an MVC pattern, but before you dive into
the idea of one-way data flow in React, you must understand the
challenges of MVC frameworks. One of the biggest challenges of an
MVC framework is managing the view. As you know, the view compo-
nent of the MVC framework is mainly the DOM representation. It is
simple when you write code that interacts with the DOM, but it is very
complicated for the framework to handle various DOM manipulations.

Traditional MVC views generally encompass a lot of heavy UI, and as
the data change even for a tiny element, it eventually rerenders the app
again, and the cycle continues. The reason for this is that typically most of
these MVC frameworks follow two-way data binding (see Figure 1-3).

Figure 1-3 Two-way data binding

In JavaScript, data change in memory and they are bound to a view in
the UI, which means that when data are modified in JavaScript, which is in
memory, the data will be changed in the UI as well. In return, when data
change in the UI (i.e., the DOM) by clicking a button or any other event,
they get updated in memory also, keeping the two in sync. In theory, this
works flawlessly and the idea is romantically perfect. However, in real-
world applications, problems arise when you have a fairly complex and
large application with multiple views representing data in one of your
models. As you add more models and more views, this two-way data
binding ends up as spaghetti with every change in data added to the pot,
which sometimes even ends up in an infinite event loop where one view
updates a model, which in turn updates a view, and so on, as shown in
Figure 1-4.

Figure 1-4 Unwanted spaghetti relationship

Another issue with this system is that making changes comes at a
very high cost. When you introduce a new developer to an application
that is this complex, it’s tough to understand the impact one change
might have in this abyss of spaghetti relationships.

React follows one-way data flow to keep things simple, as shown in
Figure 1-5. It is based on the concept of separation of concerns (SoC). This

is a design principle in computer science in which an application or
program is divided into distinct sections, each addressing a single or
specific concern. The value of this design principle is that it simplifies
development to create a maintainable and scalable application. This leads to
modularized code where an individual section can be reused, developed,
and modified independently. This makes so much sense and is indeed an
example of intelligent thinking.

Figure 1-5 React Native’s one-way data flow

Installation and Setup

To understand practical examples, you must first set up your environ-
ment to run your React code. Because React is just a node module,

there are lot of different ways to set up a React project. We can in-

clude React in existing projects using npm or yarn and start using it.

If you are starting a new project, we recommend using the create-

react-app npm package. It is an out-of-the-box command-line in-
terface (CLI) created by Facebook that creates a basic structure for
the React app and takes care of ES7+ translation though Babel and
Webpack. You don’t need to focus on configuration; instead you can
focus on writing React code. You can find more details about this
module on its official npm page. If it interests you, you can also check
its github repo from here to look at its documentation:

https://www.npmjs.com/package/create-react-app
.

For our purposes, we simply set it up for our development environment
with the following command to install create-react-app:

npm install -g create-react-app

This command installs create-react-app globally.

NoteIf you want to use the multiple-node version on the same ma-

chine, we can use nvm:

https://github.com/creationix/nvm

https://www.npmjs.com/package/create-react-app
https://github.com/creationix/nvm

Now that we have installed create-react-app globally, navigate to
the directory where you want to create a project and run the following
command:

create-react-app <application_name>

where application name is the desired name of the application.

We need to use npm naming conventions, so the name should be in
lowercase and cannot start with a dot or underscore.

We are all set to start working with React, but before we create our first
app we recommend that you install React Developer Tools, a very useful
Chrome extension that allows you to inspect the React component hierarchy
in the Chrome browser. This tool can help boost your productivity. To
install this extension, search for React Developer Tools in the Chrome app
or open the following link in the Chrome browser:

https://chrome.google.com/webstore/detail/reac

Create a Hello World Application

Now let’s create a Hello World project. This command will install the
essential packages and set up our React project.

> create-react-app hello-world

Running that command installs the dependencies needed to build
your project, and it generates the initial project structure. Create Re-
act App installs the latest version of React and React-DOM, as well
as the latest version of react-scripts, a development dependency that
manages all other development dependencies that include starting,

testing, and building your app. Create React App uses Webpack and
Babel under the hood, but it generates only the files you need to work
on your React project.

Traverse into the directory using your terminal or command prompt to
play around with this application using the following commands:

cd hello-world

yarn start

It will automatically open http://localhost:3000/ in your de-
fault web browser and you can see the first page of our app.

yarn is a package manager like npm. It was created by Facebook

and is the default that comes packaged with create-react-app. It

is up to you to choose whether you want to use yarn or npm.

One of the advantages of yarn over
npm is that npm always requires

an Internet connection, whereas yarn can be used offline if you

have installed it at some point in the past. Yarn is also very fast when
it comes to package installations, which saves a lot of time in day-to-
day development.

Introduction to Components

Components are the smallest units in React application development;
they are indeed the most fundamental part of React. React is a library
for building UIs and components are the key for creating any UI in
React. You might think of it as widgets (like in Flutter) that you can
plug in anywhere. These components define how DOM elements are
created and how users can interact with them. The whole concept of
components is that they are totally encapsulated, making them easy
to test and reuse.

Creating reusable components is a work of art, and React provides
many features for you. We will do a deep dive into them soon, but first
let’s open the hello world app we created.

Navigate to App.js in the project folder.

import React, { Component } from 'react';

import logo from './logo.svg';

import './App.css';

class App extends Component {

 render() {

 return (

 <div className="App">

 <header className="App-header">

 <img src={logo} className="App-logo"

 <h1 className="App-title">Welcome to

 </header>

 <p className="App-intro">

 To get started, edit <code>src/App.j

 </p>

 </div>

);

 }

}

export default App;

This is the main App component. As you can see, it’s just a Java-
Script file that contains some HTML code. If you have been building
software for some time, you know it is a best practice to keep your
HTML and JavaScript code separate. Looking at this example, it goes
against this fundamental best practice. The reason this best practice
exists is to decrease coupling and increase cohesion, which means
we write the UI in HTML and logic in JavaScript. The challenge with
this approach is that we can only attach behavior to HTML through
HTML elements (like ID, class, etc.). A library like jQuery is a good

example of this. As your files grow, it becomes difficult to manage and
test your code. React components solve this problem very well.

It lets you create JavaScript objects using HTML syntax. Components
serve two purposes: templates and display logic. Therefore, markup
and code are tied together intimately. Display logic often is quite com-
plex and to express it using template languages does become diffi-
cult. The best way to solve this problem is to generate HTML and
components from JavaScript itself. React JSX solves these problems
with its HTML-type syntax by creating React tree nodes.

Going back to the preceding code snippet, App is a JavaScript class
that is inherited from the React Component class API. Components
can be created in two ways: one using class and the other using func-
tion. Components created using function are also called stateless
components. We discuss this in detail in later chapters.

The App class has a render function or method. As the name sug-

gests, it is used for rendering of our content, JSX markup. render is
always a pure function, which means it is immutable. It’s like a single
frame in a movie, as it represents the UI at a certain point in time. Up-

dating the state inside a render will again call the render function,

which once again, triggers render(), which then does the same
thing, infinitely.

We are also importing Cascading Style Sheets (CSS) in the App
component. Create React App uses Webpack, which takes care of
importing CSS in the final bundle.

Now let’s create a new component Message.js in the project folder
and update it with the following code:

import React, { Component } from 'react';

class Message extends Component {

 render() {

 return (

 <div>

 Hello to React World

 </div>

);

 }

}

export default Message;

Now, we can import the component into the main component App.js
file and render it in the render method with the following code:

import React, { Component } from 'react';

import Message from './Message';

class App extends Component {

 render() {

 return (

 <Message />

);

 }

}

export default App;

Now browse http://localhost:3000/, as shown in Figure 1-6.

Figure 1-6 Browsing for the default message

Before we dive deeper into this component, let’s create a component
using the functional approach:

import React, { Component } from 'react';

const StatelessComponent = () => (

 <div> Hello to StatelessComponent </div>

);

export default StatelessComponent;

This is the preferred way of creating a component if your state is not
changing. It eliminates the class-related extra code like extends And
constructors and makes the code more testable.

Deep-Dive into Components

In this section, we explore the vital concepts of components, which

will help you work with them easily. We will learn about Props and

State, which help manage the flow of data or state. The Props and

State objects have one important difference. Inside a class compo-

nent, the State object can be changed, whereas the Props object

cannot. Now let’s take a deeper look into both Props and State.

Properties

Props is simply shorthand for properties. Props are how components
talk to each other and the data flow is immutable. Props are passed
down the component tree from parent to children and vice versa. One
key point to remember is that props cannot be mutated when refer-
enced from a parent component.

Let’s update our Hello World example to use props. Open App.js and
add the following line:

<Message text="Hello to React World" />

Here we are initializing the Message component with a prop named
text. Let’s update the Message component to display the text:

import React, { Component } from 'react';

class Message extends Component {

 render() {

 return (

 <div>

 {this.props.text}

 </div>

);

 }

}

export default Message;

If you refresh your browser, you will see a message from the property
for your inner HTML.

As your application grows, you need to make sure your components are
correctly created in the first place. In the case of a property, you can specify
a kind of property with a range of validators. This ensures and validates the
kind of data received. Let’s take look at this by updating our Hello World
example. The Message components that we created accept prop text, so

this string will always be required to render a Message component. Let’s
update our Message component.

import React, { Component } from 'react';

 import PropTypes from 'prop-t

class Message extends Component {

 render() {

 return (

 <div>

 {this.props.text}

 </div>

);

 }

}

 Message.propTypes = {

 text: PropTypes.string.isRequired

 };

export default Message;

Now to test this, go to App.js and temporarily remove prop from
Message:

<Message />

Now check the console log in your browser, as shown in Figure 1-7.

Figure 1-7 Checking the console log

Prop validation is a great module that can help developers to hunt

down bugs. Here, the propType keyword signifies a hash of prop
names and their types.

There are many other property types. Note that you can add
isRequired to the end of any propType to make it required.

//some specific JS primitive

 optionalArray: PropTypes.array,

 optionalBool: PropTypes.bool,

 optionalFunc: PropTypes.func,

 optionalNumber: PropTypes.number,

 optionalObject: PropTypes.object,

 optionalString: PropTypes.string,

 optionalSymbol: PropTypes.symbol,

//if a value of a prop is necessary

 numberType: React.PropTypes.number.isR

There is also a default type in properties via the keyword
getDefaultProps. For example, in the same component, you can
mention default types for your text properties:

static defaultProps = {

 text: 'Default Hello World'

}

The defaultProps will be used to ensure that this.props.text
will have a value if it was not specified by the parent component.

State

In the last section, you learned about properties, which are static val-
ues that are passed into your component. State, on the other hand, is
maintained and updated by the component. State is used so that a
component can keep track of information in between any renders that

it does. When you setState it updates the state object and then
rerenders the component. We can think of props variables used for

component initialization, whereas state is like internal data that af-
fects the rendering of components and is considered private data.

Let’s understand this concept by updating our example, creating a new
component Welcome.js in the project folder.

import React, { Component } from 'react';

import PropTypes from 'prop-types';

class Welcome extends Component {

 constructor(props) {

 super(props);

 this.handleChange = this.handleChange.bin

 this.state = { text: '' };

 }

 handleChange(e) {

 this.setState({ text: e.target.value });

 }

 render() {

 return (

 <div>

 <input

 id="text"

 onChange={this.handleChange}

 value={this.state.text}

 />

 Welcome {this.state.text}

 </div>

);

 }

}

Welcome.propTypes = {

 text: PropTypes.string.isRequired

};

export default Welcome;

Update the App.js with this:

import React, { Component } from 'react';

import Message from './Message';

 import Welcome from './Welcome

class App extends Component {

 render() {

 return (

 <div>

 <Welcome />

 <Message text= "Hello to React World"/

 </div>

);

 }

}

export default App;

If you run this snippet, you will see the result shown in Figure 1-8 in

your browser.

Figure 1-8 Resulting message using state

Now when you add some name in the text box, it will automatically
reflect in label, as shown in Figure 1-9.

Figure 1-9 Autopopulating the label

Let’s look at the code. In the same component, you initialized the state
in constructor, in which you set up the initial state of the message and
also bind the handleChange function we have created:

constructor(props) {

 super(props);

 this.handleChange = this.handleChange.bind(

 this.state = { text: '' };

 }

Like any other language, JavaScript class has constructors, a func-
tion that will get called whenever a new object is created. It’s impor-

tant to call a super if we want to update the constructors. Calling this
function will call the constructor of our parent class and allows it to ini-
tialize itself.

NoteThe constructor is only the place where you can change or set

the state by directly overwriting the this.state fields. In all other

instances you have to use this.setState.

Next, unlike the last example, you access this state using
this.state.text, which prints the initial text of the message state:

{this.state.text}

Now, display a text box above your message statement. As you type in
the text box, the message gets updated in real time using the concept of
state:

<input

 id="text"

 onChange={this.handleChange}

 value={this.state.text}

 />

Let’s see what you added to your component. First, you introduced a
function named handleChange:

handleChange(e) {

 this.setState({ text: e.target.value });

}

This new function, handleChange, takes an event called (e) and
updates the value text state.

The input box has an onChange event that calls your custom method

handleChange whenever the state gets updated. As you type in the
text box, your printed message gets updated instantaneously.

Summary

This chapter provided a quick tour of React. Before you begin with
the next chapter, let’s recap what you have learned so far. We intro-
duced the React library and the reasons behind its invention. Then
you learned how to install and set up React. You studied the funda-
mentals of this technology, such as VDOM, one-way data flow, and
JSX. You also got an introduction to components, and took a closer
look at components, understanding how to use states and props with
components.

Now that you are equipped to code and work in the React ecosystem,

the your journey begins in the next chapter as we start working with
React Native.

(1)
(2)

© Akshat Paul and Abhishek Nalwaya 2019

Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development

https://doi.org/10.1007/978-1-4842-4454-8_2

2. The Simplest Program: Hello World
with React Native

Akshat Paul and Abhishek Nalwaya
Gurgaon, Haryana, India
Jaipur, Rajasthan, India

Big things have small beginnings.

—Prometheus

In the last chapter, you got a good overview of the React ecosystem.

Now it’s time to get your hands dirty with React Native. In this chap-
ter, you will set up your development environment by installing the
prerequisites and then you will create your first React Native
application.

The best way to learn is through practical examples. We continue this
theme throughout the book, as you will follow simple examples to
learn React Native by programming yourself to understand the key
concepts.

1 2

https://doi.org/10.1007/978-1-4842-4454-8_2

This chapter explores the following topics:

An introduction to React Native
The essentials of React Native
The installation of React Native
Your first application
The anatomy of a React Native application
How to debug your application

NoteYou might face a situation where different projects work on dif-

ferent Node versions. Therefore, it’s recommended you install Node

Version Manager (NVM) to help keep multiple node versions that can

be switched between projects.

What Is React Native?

React Native is an open source platform for developing native mobile
applications; it was developed largely by a team at Facebook. The
cool part of working with React Native is that your program uses stan-
dard web technologies like JavaScript (JSX), CSS, and HTML, yet
your application is fully native. In other words, your application is fast
and smooth, and it is equivalent to any native application built using
traditional iOS technologies like Objective-C and Swift. However, Re-
act Native does not compromise in terms of performance and overall
experience, like popular hybrid frameworks that use web technolo-
gies to build iOS apps.

React Native aims to bring the power of React, which was explained
in Chapter 1, to mobile development. In the words of the React team,

“Learn once, write anywhere.” Working with React and React Native,

you will see how many of your components built for the Web using
React can be easily ported to your React Native iOS apps with little or
no modification. React Native introduces a highly functional approach
to constructing UIs that is very different from the traditional iOS devel-
opment approach.

Although React Native was built by Facebook developers, it’s an

open source project. The code is available at https://github.-

com/facebook/react-native
.

Installation

Let’s do a quick, one-time setup of React Native. React Native is an
assortment of JavaScript and Swift code, so you need tools that cre-
ate, run, and debug your native application written in JavaScript. Let’s
go one by one.

Installing Node and npm

Node.js is an open source platform built on Chrome’s JavaScript
runtime; it offers a way to easily build fast, scalable programs. Node.js
allows you to run JavaScript in terminal, and helps create modules. If you
are using nvm, which is the suggested way of using node type:

https://github.com/facebook/react-native

> nvm install node

If you don’t want to use nvm, you can also install Node.js by running
the following command in terminal:

>brew install node.

Homebrew is the package manager for Mac. You can also download

the Node installer from https://nodejs.org
and install it manual-
ly if you are using another operating system. For Windows operating

systems you can visit https://nodejs.org
and install Node using
a wizard.

npm is also installed along with node, which is a package manager

for Node.js. If you’re from the iOS world, it’s similar to CocoaPods.

Check your Node installation by running the following command in
terminal:

>> node –v

v10.8.0

>> npm –v

6.2.0

Installing the React Native Package

https://brew.sh/
https://brew.sh/

To use React Native, starting your project from scratch using create-
reactive-app by Facebook is the best way to start. It is an npm
module:

npm install -g create-react-native-app

Updating React Native

Both React Native and iOS are fast-moving frameworks. It is recommended
that you update them every time a new release is available. Upgrading
React Native is simple. First install module react-native-git-
upgrade:

$ npm install -g react-native-git-upgrade

Next, run the following command to start the process of upgrading to
the latest version:

$ react-native-git-upgrade

For more information on React Native upgrades, you can refer to the

Facebook official documentation at https://face-

book.github.io/react-native/docs/upgrading
.

https://facebook.github.io/react-native/docs/upgrading

NoteYou should only need to update the global installation of cre-

ate-react-native-app very rarely, and ideally never.

Your First App

Now that you are all charged up about React Native and have your
system set up, it’s time to create your first application. To keep things
simple, in the beginning just follow along. Sometimes you might feel
disconnected by monotonously typing in the code, but following along
is enough for now. Remember that mimicry is a powerful form of
learning; it’s how we learned most of our skills, such as talking, read-
ing, and writing, and it’s how you will learn to program with React Na-
tive. As you proceed, this method will help you understand thoroughly
why you authored certain pieces of code.

Throughout the book, you will create one application and take it from
just Hello World to a full-blown, distribution-level application, except in
a few places, where we need to digress to explore a concept inde-
pendently. Before you set it up, then, let’s talk about the problem you
plan to solve. The app you will create during the course of this book
plans to solve a few housing problems; it will be a very primitive ver-
sion of any popular property search application. Let’s call it House-
Share. It will have some rudimentary features like listings, creating an
entry, geolocating a property, and a few more. As you move along,

you will see how various React Native features fit with your
application.

That’s quite a lot, but in this chapter you just create the basic struc-
ture for your project using React Native and some Hello World code.

Creating a Basic Skeleton

Fire up your terminal and type in the following command:

create-react-native-app HouseShare

...

...

...

Success! Created HouseShare at
/Users/abhisheknalwaya/Documents/book/HouseShareInside that directory,
you can run several commands:

yarn start

Starts the development server so you can open your React Native app in the
Expo application on your phone.

yarn run ios

 (Mac only, requires Xcode)

Starts the development server and loads your app in an iOS simulator.

yarn run android

 (Requires Android build tools)

Starts the development server and loads your app on a connected Android
device or emulator.

yarn test

Starts the test runner.

yarn run eject

Removes this tool and copies build dependencies, configuration files, and
scripts into the app directory. If you do this, you can’t go back!

We suggest that you begin by typing this:

cd HouseShare

yarn start

Happy hacking!

So far we have used Expo a few times, so what is Expo? Expo is an
open source tool chain that is built around React Native to help build
iOS and Android apps. Expo is the fastest way to kickstart your React
Native development. Because it comes out of the box with React Na-
tive, you don’t need to perform any additional setup on your machine.

The only extra thing you need to do is to install the Expo application
from the Apple App Store for iOS and the Google Play Store for An-
droid. Using this app, you will be able to test and interact with the ap-
plication you are building during the development stages.

This code uses the CLI tool to construct a React Native project that is
ready to build and run as is. This command creates the basic folder structure
for your React Native iOS project.

> cd HouseShare

> yarn start

You should see output similar to Figure 2-1.

This will start a development server for us and print a QR code in your
terminal.

Figure 2-1 Terminal output when we build a React Native application

To use this QR code, download the Expo app (
https://expo.io/

) for iOS or Android on your device.

If you are using Android, just scan the QR code in your terminal from
the Expo app and your app we automatically load. If you are using
iOS, select “s” in your terminal, as shown in Figure 2-2.

Now open the e-mail, shown in Figure 2-3:

Figure 2-2 Press the s key if you are using iOS

https://expo.io/

Figure 2-3 Expo link received in e-mail

NoteYour mobile device needs to be connected to the same wire-

less network as your computer. Otherwise you will not able to open

the app.

If the Expo app is already installed on your device and you click the link it
will automatically run the React Native app in the Expo app, as shown in
Figure 2-4.

Figure 2-4 React Native application opened in Expo app

That was really quick and easy. Without installing the iOS and An-
droid software development kit (SDK), we can run the app on our de-
vice using Expo.

Thanks to a single command, the basic structure of your project is in
place and your application is loaded in the device. Also note that the
terminal always needs to be open. This is the Node package manag-
er for React Native. If you kill this, the app will stop working.

Terminal is opened to start the React Native Packager and a server to
handle the preceding request. The React Native Packager is respon-
sible for reading and building the JSX (you’ll look at this later) and
JavaScript code.

Set up your project in any editor you prefer. React Native does not
force you to use nor does it have a preference for any specific editor,
so you can continue to use your favorites.

Now let’s update some code in our application. Add the following code
in App.js:

import React from 'react';

import { StyleSheet, Text, View } from 'react-

export default class App extends React.Compone

 render() {

 return (

 <View style={styles.container}>

 <Text>

 Hello World

 </Text>

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 alignItems: 'center',

 justifyContent: 'center',

 },

});

Just save the file, and then check the Expo app on your device. It
automatically reloads the page and shows you the screen shown in Figure 2-
5.

Figure 2-5 Updated text component appears on the screen on save

That was quick! In a fraction of a second you can see the changes
you applied. You don’t need to compile the code and restart the simu-
lator for React Native changes. If you have done any native iOS app
development before, pressing Refresh to see the changes might
seem like a miracle.

Now, let’s understand the code. At the top of the file are the following
lines:

import React from 'react';

import { StyleSheet, Text, View } from 'react-

This loads the React module and assigns it to a React variable that
can be used in your code. React Native uses the same module-load-

ing technology as Node.js; this is roughly equivalent to linking and
importing libraries in Swift.

You are assigning multiple object properties to a single variable; this
is called destructuring the assignment. This cool feature is in there in
versions of JavaScript after ES6. Although it is optional, it’s very ben-
eficial; otherwise, every time you use a component in your code, you

would have to use a fully qualified name for it, such as

React.Stylesheet, and so on. This saves quite a bit of time.

Next, you create a view:

export default class App extends React.Compone

 render() {

 return (

 <View style={styles.container}>

 <Text>

 Hello World

 </Text>

 </View>

);

 }

}

React basic building blocks are called components. You can use the

React.Component method to create custom component classes.

This class has just one function, render(), which is responsible for
what is shown on the screen. You use JavaScript syntax extensions
(JSX) for rendering the UI. JSX is a JavaScript syntax extension that
looks similar to XML.

Now you define the styling of your app. Here you will use Flexbox; it is
similar to what CSS is to HTML. For now, you can type this code. We

explain styling in the next chapter.

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 alignItems: 'center',

 justifyContent: 'center',

 },

});

You can see that this styling is very similar to CSS; you can define
font size, alignment, and so on.

Prerequisites for Running App on a Simulator

Using the Expo iOS or Android application to test your app, there is a
downside: You can’t always carry your devices for testing your appli-
cation. For such purpose there are simulators provided by both iOS
and Android to be set up on your development machine. The follow-
ing are few prerequisites to set them up.

iOS

iOS apps can be developed only on an Apple Mac with OSX
installed. You need OSX version 11 or above.

You need Xcode 9 or above, which includes the iOS SDK and
simulators. React Native only supports iOS7 or above. Xcode can
be downloaded from the Apple App Store.

It’s helpful if you are enrolled in the Apple iOS Developer Program. If

you’re not in the iOS Developer Program, you won’t be able to do the
following:

Test applications on actual devices.

Access beta OS releases.

Test flight for beta testing.

Submit your app to the App Store.

Android

React Native requires a recent version of the Java SE Develop-
ment Kit (JDK).

Download and install Android Studio. Choose a Custom setup when

prompted to select an installation type. Make sure the check boxes next
to all of the following are selected:

Android SDK
Android SDK Platform
Performance (Intel ® HAXM)

Android Virtual Device
Install Android Virtual Devices (AVDs) by opening the AVD

Manager from within Android Studio. You can also use
genymotion.

Running the App on a Simulator

Now let’s go back to our application and start the app (see Figure 2-6):

yarn start

Figure 2-6 Running demo application on simulator

This will install Expo client on the emulator and run your React Native

app. You can also use commands like yarn ios or yarn android
to start the simulator with the app installed in it rather than loading the
app inside the Expo simulator app.

It’s Not a UIWebView

You are using web technologies, but your app does not have a web
component; it has a native component. Open Debug ➤ View Debugging ➤
Capture View Hierarchy (see Figure 2-7).

Figure 2-7 Using the Native component

As you traverse through the tree of UIWindow, you’ll see that there is
no UIWebView in the code, and “Hello World !!” is the call of RCTText,
as shown in Figure 2-8.

Figure 2-8 “Hello World !!” is the call of RCTText

Enabling Live Reload

Another cool feature of React Native is live reload. It reloads your ap-
plication view inside the iOS simulator the moment there is a change.

By default it is active. To deactivate this option, you need to access
the developer menu from the application opened in the iOS simulator
by shaking the device and then selecting the Disable Live Reload
option.

What Makes React Native Different?

Before you dive deeper into the React Native world, you must understand
why there was a need for another framework to build mobile apps. We

already live in a world full of frameworks and tool chains that are capable
of building mobile apps. Prior to the inception of React Native, building
mobile apps using web technologies was possible via two strategies:

WebView-based: These frameworks use common web technolo-
gies like HTML and JavaScript and use WebView to load the appli-
cation. An example is the popular framework Phonegap.

Native apps using web technologies: These frameworks again use
common web technologies like HTML and JavaScript (to be pre-
cise, they imitate using JavaScript and HTML) to create native
apps. An example is the popular framework Titanium Appcelerator.

Apps created using these strategies have performance issues. Web-
View-based apps are slow because they use the DOM, and DOM
manipulations are expensive, which leads to performance issues. As

stated in a blog post at Flipboard (see http://engineer-

ing.flipboard.com/2015/02/mobile-web/
), “You cannot
build a 60fps scrolling list view with DOM.” This is one of the funda-
mental problems with apps developed through this technique: Al-
though development time might be quick, you end up with a sluggish
experience.

The other strategy, where the framework imitates JavaScript and
HTML, and converts them to native code, has other challenges. Al-
though the final app is native in nature, there is a basic issue during

http://engineering.flipboard.com/2015/02/mobile-web/

this conversion from JavaScript to native: It runs on the main thread.

In these apps, you interface directly with native objects all the time,

which leads once again to a slow and sluggish experience.

React Native is fundamentally different from these two approaches. It
runs all layouts on separate threads, and your main thread is free to
update the UI, which makes the animation and UI rendering smooth,

just like 100 percent pure native apps.

React Native uses the JavaScriptCore framework to run JavaScript.
In iOS 7, Apple introduced a native Objective-C API for JavaScript-
Core. This framework allows JavaScript and Objective-C to talk to
each other. This means you can create and call JavaScript functions
from Objective-C or call back into Objective-C from JavaScript. It all
works like a charm.

React Native is different in one more aspect. As seen in your Hello
World example, you write a component in JavaScript just like you

would with React, except that instead of using an HTML div, you use

tags like View and Text. In the case of an iOS application, a View is

basically a UIView.

Ejecting a React Native Application

Before we get into exploring the application structure, we have to eject our
application from the Expo project (see Figure 2-9). You should not eject an

app from the Expo environment until it is needed. We are doing this here to
understand how create-react-native works.

yarn eject

Figure 2-9 Ejecting Expo application

This will create two folders for iOS and Android in the repository. If
you open the project HouseShare, it looks like a normal Xcode project. It
has the following folder structure:

|ios

 |- HouseShare

 |- HouseShare.xcodeproj

 |- HouseShareTests

|android

node_modules

App.js

App.test.js

index.js

package.json

yarn.lock

NoteThe folder structure defined here might be changed or modi-

fied as the framework evolves, but the majority of the functionality re-

mains the same.

If you open the project in Xcode, it will have a different folder structure.
The “folders” in Xcode are actually groups and are not necessarily linked to
a folder like we see in Finder.

iOS: The iOS folder has two folders and one file. As seen earlier,

there is a HouseShare folder, which has all the Objective-C code,

such as AppDelegate, Images.xcassets,

Info.plistLaunchScreen.xib, and other files. Another folder

is HouseShareTests, which is where all your test cases reside.

Finally, there is your Xcode project file,

HouseShare.xcodeproj, which is used to load into Xcode to
build your application.

package.json: This folder contains metadata about your app,

and it will install all dependencies when you run the npm install. If
you’re familiar with Ruby, it’s similar to a Gemfile.

node_modules: All of the Node modules mentioned in pack-

age.json will be downloaded to this folder. This folder also con-
tains the code for the React Native framework.

App.js: This is the file where you begin programming your
application.

AppDelegate.m: This is the starting point of any iOS app.

Android: React Native also supports development for Android. All
your native Android code resides in this folder.

Let’s open the AppDelegate.m file from
HouseShare/ios/HouseShare/AppDelegate.m:

#import "AppDelegate.h"

#import <React/RCTBundleURLProvider.h>

#import <React/RCTRootView.h>

@implementation AppDelegate

- (BOOL)application:(UIApplication ∗)applicati

{

 NSURL ∗jsCodeLocation;

 jsCodeLocation = [[RCTBundleURLProvider shar

 RCTRootView ∗rootView = [[RCTRootView alloc]

 moduleName:@"HouseShare"

 initialProperties:nil

 launchOptions:launchOptions];

 rootView.backgroundColor = [[UIColor alloc]

 self.window = [[UIWindow alloc] initWithFram

 UIViewController ∗rootViewController = [UIVi

 rootViewController.view = rootView;

 self.window.rootViewController = rootViewCon

 [self.window makeKeyAndVisible];

 return YES;

}

@end

RCTRootView is a Swift class provided by React Native, which is in-

herited from the iOS UIView Class. It takes your JavaScript code

and executes it. It also loads the index bundle URL, which has

your code written in App.js and also a program added by the React
Native framework.

NoteAfter ejection, you need to use Xcode to run the iOS app and

Android Studio to run the Android app.

To start, run yarn start on terminal, as shown in Figure 2-10.

Figure 2-10 Starting the application without Expo

Now open HouseShare.xcodeproj. This Xcode project file will
open your project in Xcode. Next, let’s load your application in the iOS
simulator. To build your application and load it in the simulator, simply
click the Run button at the top left (or execute Command + R), as shown in
Figure 2-11. This will compile, build, and fire up your project in the iOS

simulator

Figure 2-11 Building the application using Xcode

This will open the simulator and you can see the app running.

Debugging

Debugging with React Native is in line with how we debug web apps; in
short, it’s really simple. To access debugging options, share the simulator by
selecting Share Gesture from the Hardware menu. This will open a menu
that provides several debugging options, as shown in Figure 2-12.

Figure 2-12 Debugging options for React Native applications

You must disable this menu for the final build
because your end user
should not see these options. To disable it, open the project in Xcode
and select Product ➤ Scheme ➤ Edit Scheme (or press Command +

<). Then select Run from the menu on the left and change the Build
Configuration to Release.

Let’s review each of the options shown in Figure 2-12.

Reload

The Reload option refreshes the screen in the simulator with the lat-
est React Native code without compiling the project again. This can
be done in two ways: selecting the Reload option from the menu or
pressing Command + R. This will reload all the changes made in the
JavaScript code.

Any changes made in your Swift or Objective-C files will not be re-
flected because these changes require recompilation. Also, if you add
any assets like images, the app needs to be restarted.

Debugging in Chrome

This is one of the best and most frequently used options for debugging your
JavaScript code written in React Native. As with web apps, you can debug

your React Native application in Chrome. When you click Debug in
Chrome, it opens http://localhost:8081/debugger-ui in
Chrome (Figure 2-13).

Figure 2-13 Debugging in Chrome

Install the React Developer Tools, which is a Chrome extension for
debugging both your React application and React Native code. It al-
lows you to inspect the React Native component hierarchies in the
Chrome Developer Tools. To install it, please visit the Chrome web-

store or go to https://chrome.google.com/webstore/de-

tail/react-developer-tools/fmkadmapgofadopljb-

jfkapdkoienihi?hl=en
.

Once the extension is installed, press Command + Option + J or se-
lect View ➤ Developer ➤ Developer Tools in your Chrome browser to
access the Developer Tools console.

You will see a new tab called React in your Chrome DevTools. This
shows you the root React components that have been rendered on the page,

https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi%253Fhl%253Den.

as well as the subcomponents that they ended up rendering. You can also
see props, state, components, and event listeners, as shown in Figure 2-14.

Figure 2-14 Debugging in Chrome DevTools

Look at Figure 2-15 and you can see a similar hierarchy to your Xcode:

Hello World is wrapped in RCTText and that is in turn wrapped in
RCTview.

Figure 2-15 Debugging the app with the React tab in Chrome DevTools

Debugging in Safari

If you do not have Chrome, you can also use Safari for debugging,

but Chrome is preferred for debugging React Native apps.

Showing Performance Monitor

Many applications use a lot of animations and graphics. The smoothness of
these animations for your application is defined in frames per second (FPS);
this is used extensively in gaming apps. When you select Show FPS
Monitor from the menu, it shows a few properties for your app in the
simulator (see Figure 2-16). Although you might not find much use for

these properties in your Hello World app, they are great for animation-
intensive apps to prevent them lethargic performance, which can create a
bumpy user experience.

Figure 2-16 Additional properties in the simulator

The Inspect Element

You can also inspect a React Native element from the simulator, somewhat
similar to how you inspect an element in a browser, although you can’t
currently change live values of properties as you can in a browser. For now,
you can see your stylesheet properties for any object. Click the
HelloReact!! text (Figure 2-17) and it will open the details of that element.

Figure 2-17 Click the text to see element details

The details of that element are shown in Figure 2-18 at the bottom left.

Figure 2-18 Font details

You can see that the font size for Hello World is 25 and it is center
aligned.

Summary

In this chapter, you were introduced to React Native. You learned
how to set up the React Native development environment and you
wrote your first application. You also learned about Expo and the fold-
er structure of React Native applications and how to debug. You are
now all set to explore creating a UI with React Native for your iOS
application.

Chapter 3 introduces about Flux and Redux, a pair of very important
design patterns that are commonly used with React Native
applications.

(1)
(2)

© Akshat Paul and Abhishek Nalwaya 2019

Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development

https://doi.org/10.1007/978-1-4842-4454-8_3

3. Solving Problems Differently with
Flux and Redux

Akshat Paul and Abhishek Nalwaya
Gurgaon, Haryana, India
Jaipur, Rajasthan, India

Simplicity is prerequisite for reliability.

—Djikstra

Flux is an application architecture introduced by Facebook for build-
ing client-side applications. It complements the React paradigm of
composable view components by using a unidirectional data flow. It’s
more of a pattern than a framework, and one can start using Flux im-
mediately without an excess load of code. Redux is a predictable
state container for JavaScript applications, which means it helps us to
write applications that behave consistently in different environments:

client, server, or native. It also makes your applications easy to debug
and test.

1 2

https://doi.org/10.1007/978-1-4842-4454-8_3

Before we delve into its details, it is important to know one of the most
popular, commonly used MVC patterns. We can then learn about
what challenges we face with MVC and how Flux and Redux can
solve these challenges.

This chapter covers the following topics:

MVC pattern
MVC problem
Flux
Flux deep dive
Redux
Redux core concepts
Redux with React Native
Benefits of using Redux

MVC Pattern

Historically, an MVC pattern separates code into three distinct parts: model,
view, and controller. The main purpose of this pattern is to isolate
representation of information from user interaction. Let’s describe each of
these parts individually.

Model: This element manages the behavior and data of an
application.

View: This is the representation layer of the model in the UI.

Controller: This element takes user input and makes necessary
manipulations to the model, which causes the view layer to get
updated.

MVC is legendary and it’s an amazing way to structure your code.
Things get a bit ugly, though, when your source code begins to grow and
get complex. Although MVC is a very popular pattern to design
applications, it comes with its own set of problems. Figure 3-1 shows how

MVC works.

Figure 3-1 Simple MVC pattern

Figure 3-1 shows the simplest implementation of MVC, and this works

pretty well with small applications. As your application grows, though, so
does the demand for new features, and there should be room to
accommodate more models and views. Let’s look at what happens when our
model and view increase in an actual application (Figure 3-2).

Figure 3-2 MVC pattern for a large application

Wow! That is an explosion of arrows. Welcome to the real world
where many models and views interact with each other. A controller
triggers another model and this goes on like spaghetti, which often
ends up in an infinite loop. The worst part is that it’s really difficult to
debug code in such a situation, eventually making the system fragile.

Well, Facebook faced a similar problem with this pattern and solved it
with a new pattern called Flux.

Flux

Flux abjures MVC in favor of a unidirectional data flow. Flux works
well because the single directional data flow makes it easy to under-

stand and modify an application as it grows and becomes more com-
plex. Earlier we found that two-way data bindings lead to cascading
updates, where change in one data model leads to an update in an-
other data model, making it very difficult to predict what would change
as the result of a single user interaction.

Flux applications have three major parts: the dispatcher, the store, and
the view (where we use React components). These should not be compared
with the model, view, and controller of the MVC pattern (Figure 3-3).

Figure 3-3 React App data flow

Although controllers do exist in a Flux application, these are controller
views, where views are found at the top of the hierarchy that retrieve
data from the stores and forward these data to their children.

If we look at the Flux architecture, the most important part is the
dispatcher, which is a singleton that directs the flow of data and ensures that
updates do not cascade (Figure 3-4).

Figure 3-4 Flux data flow

As an application grows, eventually the dispatcher becomes more vi-
tal, as it is responsible for managing dependencies between stores
by invoking the registered callbacks in a specific order.

When a user interacts with a React view, the view sends an action
(usually represented as a JavaScript object with some fields) through
the dispatcher, which notifies the various stores that hold the applica-
tion’s data and business logic. When the stores change state, they
notify the views that something has updated. This works especially
well with React’s declarative model, which allows the stores to send
updates without specifying how to transition views between states.

The following are some of the key benefits of using Flux:

It improves data consistency.

It is easier to pinpoint the bugs.

You can perform more meaningful unit tests. Because all the
states of a module are there in the same place, we can test a mod-
ule independently.

It includes predictable code.

With predictable code, great things follow, as shown in Figure 3-5.

Figure 3-5 Predictable code

Success of Flux

One of Facebook’s most popular features was its chat functionality.

However, it was extremely buggy and had a high rate of negative
user feedback. The new chat system that Facebook implemented is

using a Flux pattern that provides a seamless experience. You can
have look at example chat code in a Facebook React example at

https://github.com/facebook/flux/tree/master/exam-

ples
.

Flux Deep Dive

As we now know what Flux is, let’s look into and understand the con-
cepts like dispatcher, store, and action

The Dispatcher

The dispatcher
is the central hub that manages all data flow in a Flux
application. It is essentially a registry of callbacks into the stores and
has no real intelligence of its own; in essence, it is a simple mecha-
nism for distributing the actions to the stores. Each store registers it-
self and provides a callback. When an action creator provides the dis-
patcher with a new action, all stores in the application receive the ac-
tion via the callbacks in the registry. Dispatcher also acts like a traffic
controller. If it gets an action even when the data layer is still process-
ing, it makes sure to run the action. With the dispatcher, you know
where your action starts and what changes it makes to the data layer.
There are cascading effects that build up in between. You are indeed
in full control of your system.

https://github.com/facebook/flux/tree/master/examples

The Need for Dispatcher [dispatch() and
waitFor()]

As an application grows, dependencies across different stores also
increase. Imagine, for example, we have a situation where Store A
needs Store B to update itself first, so that it can itself know how to
update, too. We need the dispatcher to be able to invoke the callback
for Store B and finish that callback before moving forward with Store
A. To assert this dependence, a store needs to communicate with the
dispatcher to first complete the action to update Store B. The dis-

patcher provides this functionality through the waitFor() method.

The dispatch() method
provides a simple, synchronous iteration

through the callbacks, invoking each in turn. When waitFor() is en-
countered within one of the callbacks, execution of that callback

stops and waitFor() provides us with a new iteration cycle over the
dependencies. After the entire set of dependencies has been fulfilled,

the original callback then continues to execute.

Further, the waitFor() method
can be used in different ways for dif-
ferent actions, within the same store’s callback. In one case, Store A
might need to wait for Store B. In another case, though, it might need

to wait for Store C. Using waitFor() within the code block that is
specific to an action allows us to have fine-grained control of these
dependencies.

Problems arise, however, if we have circular dependencies; that is, if
Store A needs to wait for Store B, and Store B needs to wait for Store
A. This could wind up in an endless loop. The dispatcher now avail-
able in the Flux repo protects against this by throwing an informative
error to alert the developer that this problem has occurred. The devel-
oper can then create a third store and resolve the circular
dependency.

Stores

Stores contain the application state and logic. Their role is somewhat
similar to a model in a traditional MVC, but they manage the state of
many objects—they do not represent a single record of data like
ORM (Object Relational Mapping) models do. More than simply man-
aging a collection of ORM-style objects, stores manage the applica-
tion state for a particular domain within the application.

As mentioned earlier, a store registers itself with the dispatcher and
provides it with a callback. This callback receives the action as a pa-
rameter. Within the store’s registered callback, a switch statement
based on the action’s type is used to interpret the action and to pro-
vide the proper hooks into the store’s internal methods. This allows
an action to result in an update to the state of the store via the dis-
patcher. After the stores are updated, they broadcast an event declar-

ing that their state has changed, so the views can query the new state
and update themselves.

Actions

When new data enter the system, whether through a person interact-
ing with the application or through a web API call, those data are
packaged into an action—an object literal containing the new fields of
data and a specific action type. We often create a library of helper
methods called action creators that not only create the action object,
but also pass the action to the dispatcher.

Different actions are identified by a type attribute. When all of the
stores receive the action, they typically use this attribute to determine
if and how they should respond to it. In a Flux application, both stores
and views control themselves; external objects do not act on them.

Actions flow into the stores through the callbacks they define and reg-
ister, not through setter methods.

Letting the stores update themselves eliminates many entanglements
typically found in MVC applications, where ascading updates be-
tween models can lead to unstable state and make accurate testing
very difficult. The objects within a Flux application are highly decou-
pled, and adhere very strongly to the Law of Demeter, the principle
that each object within a system should know as little as possible

about the other objects in the system. This results in software that is
more maintainable, adaptable, testable, and easier for new engineer-
ing team members to understand.

Redux

Now that we have read about Flux, next we discuss another pattern
called Redux. Redux can be considered a predecessor to the Flux ar-
chitecture, and it is also inspired by the functional programming lan-
guage Elm. Redux was created by Dan Abramov in mid-2015. During
that time, the React world was going through major changes and new
things were coming every other day. No one, though, could imagine
that a small library of just 2 KB would create such a tectonic shift in
the way we interact with and create React applications.

Redux was built on top of functional programming concepts.

Functional programming by design allows us to write clean and mod-
ular code that is easier to test, debug, and maintain. With functional
programming, code is in the form of small functions that are isolated
in scope and logic, thus making the code reusable. Because small
pieces of code are isolated in nature, there is hardly any coupling and
these tiny functions can be used as modules in an app. In functional
JavaScript you will see pure functions, anonymous functions, and
higher order functions used very often. Redux uses pure functions a
lot, so a good understanding of this concept is important.

Pure functions return a value based on arguments passed to them.

They do not modify or mutate existing objects, but they return new
ones. These functions do not depend on the state from which they
are called, but they return only one and the same result for any pro-
vided argument. That’s why they are very predictable. Because pure
functions do not modify any value, they don’t have any observable
side effects. Redux uses something called reducers, which are pure
functions. We will learn in detail about reducers and other Redux
code concepts in the next section.

Redux Core Concepts

Redux has three core pillars: action, store, and reducers (Figure 3-6). These

words might sound complicated, but they are actually very simple.

Figure 3-6 Redux data flow

Action

Actions are events that send data from the application (user interac-
tions, API calls, form submissions, etc.) to the store. The store always
gets the information from actions. Internal actions are simple Java-
Script objects that have a type property (usually constant), describing
the type of action and payload of information being sent to the store.

To send them to the store we use store.dispatch().

Action creators, as the name suggests, are the functions that create
actions. It is easy to conflate the terms action and action creator, so
do your best to use the proper term. To call these action creator func-
tions anywhere in the app we use dispatch. As mentioned earlier, the

dispatch() function can be accessed directly from the store as

store.dispatch(), but more likely you’ll access it using a helper

like react-redux’s connect() method. You can use bindAction-

Creators() to automatically bind many action creators to a dis-

patch() function.

NoteAction creators can also be asynchronous and have side ef-

fects. This is an advanced topic, so we don’t need to go in-depth right

now.

Reducer

Reducers
specify how the application’s state changes in response to actions
sent to the store. Remember that actions only describe what has happened,
but do not tell anything about state change in the application.
Understanding how reducers work is important in an application using
Redux because they are responsible for most of the work. Let’s describe this
with a simple example.

function appAuth(state, action) {

 return Object .assign({}, state, {

 authType: action.payload

 });

}

This is a very simple reducer that takes the current state and an ac-
tion as arguments and then returns the next state. In the case of com-

plex applications, we will be using the combineReducers() utility
that is provided by Redux. It combines all the reducers of the app into
a single index reducer. Every reducer is responsible for its own part
of the app’s state, and the state parameter is different for every re-

ducer. The combineReducers() utility makes the file structure
much easier to maintain.

Store

Thus far we have learned that actions represent what happened and the
reducers update the state according to those actions. The store is the object
that brings them all together. The store holds the application state and
provides a few helper methods to access the state, dispatch actions, and
register listeners. The entire state is represented by a single store. Any
action returns a new state via reducers. The following are few helper
methods:

getState(): Allows access to state.

dispatch(action): Allows state to be updated.

subscribe(listener): Registers listeners.

replaceReducer(nextReducer): Replaces the reducer cur-
rently used by the store to calculate the state.

Redux with React Native

To understand how Redux works with React Native, let’s create a simple
Todo application in React Native including how Redux makes things simple
for us. To proceed, use the source code available for this chapter. Inside the
project directory, run yarn install to install two new packages.

redux

react-redux

The Redux module is required so that you can use Redux with your
application. React-redux is going to help you connect your React native app
to Redux once you have both of these installed. Figure 3-7 shows our

application folder structure.

Figure 3-7 List of project folder structure

You would have to create all these folders: components, containers,

reducers, store, and a TodoApp.js file. Within these folders we
would have more JavaScript files reside inside our action, stores, re-
ducers, and components. This way our code stays modularized and
the logic remains isolated. Here, the Redux part is managed under
the action, reducer, and the store folder, but we would need compo-
nents that will use them.

Hence, we have two folders here: components, which consists of
plain dumb components, which are the presentational components of
the app having no idea that Redux exists or not in the app. Second,

we have smart components that interact with Redux, and they reside

in the containers folder.

First, let’s create a store. Inside the store folder create an index.js
file and paste the following code:

import { createStore } from 'redux'

import rootReducer from '../reducers'

export default store = createStore(rootReducer

Here, we have imported something called createStore from re-

dux. Here we are combining all our reducers with rootReducer and
exporting the same. Soon you will see how we have created two re-

ducers that we plan to use with our store using rootReducer.

Next, this store is imported into the application by adding the following
code in our App.js.

import store from './src/store'

import { Provider } from 'react-redux'

export default class App extends React.Compone

 render() {

 return (

 <Provider store={store}>

 <TodoApp />

 </Provider>

);

 }

}

Here, we have imported our store and also used something called

Provider from react-redux. Once we pass our Provider and

store within that, it can be accessed anywhere in TodoApp no matter
how many levels deep it is. Great! With this our store is set up.

Although our store is setup, we require some UI components. If you

look at the containers folder, we have an addTodo component,

which is a simple TextInput that will be used to create a new todo.

Therefore, on this text input field there will be some action that will

trigger it to create a new todo.

Before we create our action and reducer, we must think about what
states we can have in this application. As per our design, there should be
two states: one Todo and one for visibility. Therefore, in the reducers
folder, you will find two files: one for the todo reducer and other for the
visibilityFilter reducer
.

const visibilityFilter = (state = "SHOW_ALL",

 return state

}

Here the visibility filter reducer takes the state SHOW_ALL and based
on the action, it gives the expected outcome and returns the state. In this
case, it is responsible to show all the todo records. Next, let’s look at the
todo reducer
:

const todos = (state = [], action) => {

 switch (action.type) {

 case 'ADD_TODO':

 return [

state {

 ...state, {

 id: action.id,

 text: action.text,

 completed: false

 }

]

 case 'TOGGLE_TODO':

 return state.map(todo =>

 (todo.id === action.id)

 ? { ...todo, completed: !t

 todo)

 default:

 return state

 }

}

export default todos

Here we have two actions—ADD_TODO and TOGGLE_TODO—that are
responsible for adding a new record in the list and marking a record
complete using their respective actions. We are able to determine the

type of actions using action.type.

At this point, both the reducers are independent, so we need a way to
combine them, which you can find in the third file in the reducers folder,
index.js. Let’s look at the code inside reducers/index.js.

import { combineReducers } from 'redux'

import todos from './todos'

import visibilityFilter from './visibilityFilt

export default combineReducers({

 todos,

 visibilityFilter

})

Here we are using something called CombineReducers
from

redux. This helps is keep the logical part separate but use it such in
a way that we have only one reducer.

Working with the Components

Now that we have seen our reducers, let’s see how all this so far works with
our components. Open the containers/AddTodo.js file.

import { connect } from 'react-redux '

import { addTodo } from '../actions'

class AddTodo extends Component {

 state = {

 text: ' '

 }

 addTodo = (text) => {

 // redux store

 this.props.dispatch(addTodo(text))

 this.setState({ text: '' })

 }

 render() {

 return (

 <View style={{ flexDirection: 'row',

 <TextInput

 onChangeText={(text) => this.

 value={this.state.text}

 placeholder="E.g. Create New

 style={{ borderWidth: 1, bord

 />

 <TouchableOpacity onPress={() =>

 <View style={{ height: 50, ba

 <Ionicons name="md-add" s

 </View>

 </TouchableOpacity>

 </View>

);

 }

}

export default connect()(AddTodo);

Here, we first have to set up the initial local state:

state = {

 text: ''

 }

This is just an empty string for the text input to stay empty. Next, we
have to update the text from text input when a user types. This is done using
onChangeText where the state is updated with the text entered by the
user.

onChangeText={(text) => this.setState({ text }

 value={this.state.text}

Once the user submits the todo it must be updated to our store. For
this, we use a helper method, connect, from react-redux.

import { connect } from 'react-redux'

In addition, the connect helper method should be passed with the
component that is going to get connected to the Redux store. In this case,
use AddTodo:

export default connect()(AddTodo);

We also have to import the action we plan to use; in this case, it is
addTodo:

import { addTodo } from '../actions'

Great! Now that we have connected our store to the component, let’s
trigger it onPress to add the todo in a list:

<TouchableOpacity onPress={() => this.addTodo(

Because this component is connected to the Redux store, we can
dispatch the action to the respective store:

addTodo = (text) => {

 this.props.dispatch(addTodo(text))

 this.setState({ text: '' })

 }

This will update the todo list and also the text input state with an
empty string so that new values can be added later.

To display the data, we use a dumb component whose only purpose
is to display the to-do list. This component has nothing to do with Re-
dux. You can find this dumb component inside

component/TodoList.js

Finally, when we run our application, we will find the result shown in
Figure 3-8 in the simulator.

Figure 3-8 Showing the to-do list on an iPhone

As you saw, there is some work involved in using Redux along with
your application, and as with any new piece of technology or new pat-
tern, developers should always ask this: Why should I use it in the
first place?”

It might be a little complicated to understand and implement something
with Redux, but once you understand the fundamentals, it provides many
advantages, including these:

Expected outcomes: With Redux there is no confusion about
where to locate our one source of truth; that will always be the
store.

Maintainability and organization of code: With a strict structure
in place and predictable outcomes, maintaining the code becomes
easier. Redux is also particular about how the code should be or-
ganized, and this becomes pivotal in maintaining the source code
as an application becomes large.

Tools: With developer tools, developers can track what’s hap-
pening in the application in real time.

Community: Redux is not something that has just appeared; it
has indeed passed the test of time. The community is flourishing,

and you can easily get support and regular updates for the library.

Ease of testing: Redux functions by design are small, pure, and
isolated, which makes them perfect candidates to for which to write
tests. Redux apps automatically make testing easy for the
application.

Summary

In this chapter you learned about the Flux pattern, how it differs, and
how it solves a fundamental problem differently from the traditional
MVC pattern. We also looked closer at Flux core concepts. Next, you
learned about the successor of Flux, Redux, its core concepts, bene-
fits, and how to use it with React Native applications, which will be
useful in real-world applications and in the upcoming chapters. Chap-
ter 4 covers how to create UIs and navigation in React Native apps.

Finally, you learn how to use animation in your views.

(1)
(2)

© Akshat Paul and Abhishek Nalwaya 2019

Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development

https://doi.org/10.1007/978-1-4842-4454-8_4

4. Canvas, Brush, and Paint: Working
with the User Interface

Akshat Paul and Abhishek Nalwaya
Gurgaon, Haryana, India
Jaipur, Rajasthan, India

A user interface is the process of shifting from chaotic complexi-
ty to elegant simplicity.

—Akshat Paul

Chapter 3 introduced React Native state management using Flux and

Redux, and you created your first React Native application. Now that you
have a skeleton for your project, let’s fill it out with a stunning UI. This
chapter covers the following topics:

React Navigation
Flexbox

TouchableHighlight

ListView

ScrollView

1 2

https://doi.org/10.1007/978-1-4842-4454-8_4

Animations

Any experienced software professional will agree: The success of an
app depends on the fact that it not only works flawlessly, but also
looks great. Therefore, a great UI can make a huge difference in the
success of your app.

The layout system is a fundamental concept that needs to be mas-
tered to create great applications. Let’s begin by understanding how
to navigate within iOS and Android applications using React Native.

React Navigation

React Navigation is one of the popular JavaScript libraries for han-
dling routing in React Native applications. iOS and Android have dif-

ferent ways to handle navigation, and react-navigation takes
care of this for both platforms.

To start, we need to install the react-navigation npm module.
Let’s build on the HouseShare application we created in Chapter 2:

yarn add react-navigation

Let’s create a screen that we will use to render through react-
navigation. We will create a new folder with the name screens in

the root directory and create a HomeScreen.js file inside the same
folder. Add the following code in Homescreen.js:

import React from 'react';

import { StyleSheet, Text, View, Button } from

export default class HomeScreen extends React.

 render() {

 return (

 <View style={styles.home}>

 <Text>Home Screen</Text>

 </View>

);

 }

}

const styles = StyleSheet.create({

 home: {

 flex: 1,

 alignItems: 'center',

 justifyContent: 'center',

 },

});

We just created a HomeScreen React component, which shows text
that is center aligned. Because this component exported from App.js is
the entry point for your app and other components descend from it, we need

to update App.js to include Navigation. Let’s import the HomeScreen
component in App.js and update the following code:

import React from 'react';

import { StyleSheet, Text, View } from 'react-

import { createStackNavigator } from 'react-na

import HomeScreen from './screens/HomeScreen';

const AppNavigator = createStackNavigator({

 Home: {

 screen: HomeScreen

 },

});

export default class App extends React.Compone

 render() {

 return <AppNavigator />;

 }

}

Now run the app in a simulator:

$ yarn start

Figure 4-1 shows a HomeScreen rendered using react-

navigation. We have used createStackNavigator, which returns
a React component.

Figure 4-1 HomeScreen React component loaded

createStackNavigator takes a route configuration object and be-

cause it returns a React component, we can use this in the App com-
ponent. It provides a way for your app to transition between compo-
nents and manage navigation history, gestures, and animations,

which is natively provided in Android and iOS.

Right now, we have used just the HomeScreen component. Let’s add

one more screen and use react-navigation to route to this new
screen.

Let’s create the AboutScreen.js component inside the screens
folder and add the following code in it:

import React from 'react';

import { StyleSheet, Text, View } from 'react-

export default AboutScreen = () => {

 return (

 <View style={styles.about}>

 <Text>About Screen</Text>

 </View>

);

}

const styles = StyleSheet.create({

 about: {

 flex: 1,

 alignItems: 'center',

 justifyContent: 'center',

 },

});

Here we have created a stateless React component, which shows text
that is center aligned. Now we update StackNavigator to add this
screen to the stack. Open App.js and add this route:

const AppNavigator = createStackNavigator({

 Home: {

 screen: HomeScreen

 },

 About: {

 screen: AboutScreen

 }},

 {

 initialRouteName: 'Home',

 }

);

export default class App extends React.Compone

 render() {

 return <AppNavigator />;

 }

}

We have also defined an initalRouteName, which will be opened
as the first screen of the application. Now let’s add a button to
HomeScreen. The purpose of this button will be to traverse to
AboutScreen when clicked. We will do this by using react-navigation
prop this.props.navigation.navigate('TargetRoute'),
which is automatically injected into your component. Let’s update
HomeScreen.js with the following code:

import React from 'react';

import { StyleSheet, Text, View, Button } from

export default class HomeScreen extends React.

 static navigationOptions = {

 title: 'Welcome',

 };

 render() {

 const { navigate } = this.props.navigation

 return (

 <View style={styles.home}>

 <Text>Home Screen</Text>

 <Button

 title="Go About Page"

 onPress={() =>

 navigate('About')

 }

 />

 </View>

);

 }

}

const styles = StyleSheet.create({

 home: {

 flex: 1,

 alignItems: 'center',

 justifyContent: 'center',

 },

});

Let’s test our app in in the simulator:

$ yarn start

Figure 4-2 shows the two screens and how users can navigate between

them.

Figure 4-2 Navigating using React Navigation

We have used createStackNavigator
, which has created
screens as a stack that can be navigated with the back button at the
top. It manages a stack of screens to provide a drill-down interface for
hierarchical content.

Let’s customize the header next. You can do this on a global level as
well as at the screen level. We start with the global level. Update App.js

with

}

 }

}

);

Run the app. Figure 4-3 shows the updated header styling for all the

screens, but you can override this for a specific screen by adding this in a
component as a static variable.

Figure 4-3 Header styling updated

NavigatorIOS

If you are only targeting iOS you can also use NavigatorIOS. It wraps
UIKit navigation and allows you to add a backswipe feature to your
app. NavigatorIOS manages a stack of view controllers to provide a
drill-down interface for hierarchical content. Now that we know what
NavigatorIOS does, let’s implement it in our project.

NoteNavigatorIOS helps with the most basic iOS routing. A route is

an object that describes each view in the navigator.

<NavigatorIOS

 initialRoute={{

 component: HomeScreen,

 title: 'Title for screen',

 passProps: {myProp: 'foo'},

 }}

/>

We have done a little bit of styling in this section, which might be
something new for you if you come from a grid-layout background.

React Native uses Flexbox for styling, which is discussed in detail
next.

Flexbox

In creating the layout in the previous example, you must have seen

the flex property mentioned in the styles. This appears because Re-
act Native apps use the Flexbox layout model.

The React Native Flexbox layout model is inspired by the CSS Flex
Box Layout from CSS3. The React Native team has rewritten this feature
specifically for iOS. The main idea behind Flexbox is being able to create a
layout without worrying about different screen sizes or device orientation.
A flex container expands items to fill available free space or shrinks them to
prevent overflow. Let’s get some basic knowledge of Flexbox to expedite
our layout development. First, let’s update the view in HomeScreen.js:

Houseshare/screens/HomeScreen.js

export default class HomeScreen extends React.

 static navigationOptions = {

 title: 'House Share',

 };

 render() {

 const { navigate } = this.props.navigation

 return (

 <View style={styles.container}>

 <View style={styles.topBox} />

 <View style={styles.bottomBox} />

 </View>

);

 }

}

We have created one main view with a style container and two subviews
with the styles topBox and bottomBox. Now, let’s create the styles:

var styles = StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: 'column'

 },

 topBox: {

 flex: 2,

 backgroundColor: '#CCE5FF'

 },

 bottomBox: {

 flex: 1,

 backgroundColor: '#FFFFCC'

 }

});

Turn back to the simulator and refresh the view using Command + R.
Now, rotate the simulator, and you will see it automatically adjust the size
of these colored boxes. Figure 4-4 shows the simulator in portrait mode.

Figure 4-4 Screen in portrait mode

Let’s change the simulator to landscape mode (see Figure 4-5). This can

be done easily using Command + Right/Left arrow key (⌘ + Left Arrow).
You can see how the box has adjusted its size, and how the title adjusted its
width to use all the available space. Thanks to Flexbox, a pretty laborious
task is simplified.

Figure 4-5 Screen in landscape mode

Now, let’s review the flex properties Flex-direction and flex.

flexDirection

Flexbox is a single-direction layout concept. flexDirection
allows you
to define the direction in which the child elements are going to flow. It can
have two values, row and column. In the previous example we used
column. Let’s change it to row here:

container: {

 flex: 1,

 flexDirection: 'row'

}

Turn back to the simulator and refresh the view with Command + R (see
Figure 4-6).

Figure 4-6 Changing the orientation of the box

You can see how the orientation of the box has changed. Now change
the property flexDirection to column (see Figure 4-7).

Figure 4-7 Changing the property to column

Flex

You must have seen the flex value
in the stylesheet; it can be either
integers or decimals, indicating the relative size of the box:

container: {

 flex: 1,

 flexDirection: 'column'

 },

topBox: {

 flex: 2,

 backgroundColor: '#CCE5FF',

 },

 bottomBox: {

 flex: 1,

 backgroundColor: '#FFFFCC'

 }

Our view says:

 <View style={styles.container}>

 <View style={styles.topBox} />

 <View style={styles.bottomBox} />

 </View>

flex thus defines the size percentage for the box. We can see that the
container has two views inside, topBox and bottomBox, with flex
values of 2 and 1, respectively (see Figure 4-8).

Figure 4-8 Container in 2:1 ratio

Now, update the view and add one topBox view inside the
container view:

 <View style={styles.container}>

 <View style={styles.topBox} />

 <View style={styles.bottomBox} />

 <View style={styles.topBox} />

 </View>

Refresh the view. The container has three views now: topBox,
bottomBox, and then topBox again (see Figure 4-9).

Figure 4-9 Container with three views

This will divide the view into a 2:1:2 ratio, because their flex values
are in the ratio 2:1:2.

To get a better sense of how this works, let’s change the flex values
and see how that changes our screen. Let’s change the flex value of
topBox to 1. Update the CSS to:

 container: {

 flex: 1,

 flexDirection: 'column'

 },

topBox: {

 flex: 1,

 backgroundColor: '#CCE5FF',

 },

 bottomBox: {

 flex: 1,

 backgroundColor: '#FFFFCC'

 }

Refresh the view to see the changes, as shown in Figure 4-10.

Figure 4-10 View in 1:1:1 ratio

We can see that now the screen is divided in a ratio of 1:1:1, because

the flex values of the views are in a ratio of 1:1:1. With Flexbox, it is
easy to create layouts that can resize according to screen size and
orientation. This is just an introduction to Flexbox; we explain more
properties throughout the book as and when needed. You can also

find more options at https://facebook.github.io/react-

native/docs/flexbox.html
.

Images

React Native has a built-in component, Image, that will help us to dis-
play images, including network images, temporary local images, and
also images from a local disk, such as the Camera Roll. To start, we
display local images.

Copy a home image from the assets folder and update
HomeScreen.js:

import React from 'react';

import { StyleSheet, Text, View, Button, Image

export default class HomeScreen extends React.

 static navigationOptions = {

 title: 'House Share',

https://facebook.github.io/react-native/docs/flexbox.html

 };

 render() {

 const { navigate } = this.props.navigation

 return (

 <View style={styles.container}>

 <View style={styles.topBox} >

 <Image

 style={styles.homeBanner}

 source={require('../assets/house.

 />

 </View>

 <View style={styles.bottomBox} />

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: 'column'

 },

 topBox: {

 flex: 1,

 backgroundColor: '#C0C0C0'

 },

 bottomBox: {

 flex: 2,

 backgroundColor: '#fff'

 },

 homeBanner: {

 bottom:0,

 flex: 1,

 alignSelf: 'stretch',

 width: undefined,

 height: undefined,

 }

});

Now run the simulator. The results are shown in Figure 4-11.

Figure 4-11 Adding images

We can also give any server image URL as the source, and the

Image component will take care of loading it from the network. For a
different screen size you can also give images of a different density

by using the @2x and @3x suffixes in the same folder. We will load an
image from a server later in this chapter.

TouchableHighlight

Touch is one of the ways to interact with a view in an application.

TouchableHighlight
is a React Native component that helps us
create clickable views that give a proper response in the event of a

touch. To understand TouchableHighlight
with an example, let’s
continue building our app by adding one more view to list the housing
options. This will be done by clicking on the show house image, which
will redirect to another component.

Let’s add the TouchableHighlight component, making the image
we have added into a clickable view. Update the view, remove View, and
add TouchableHighlight in HomeScreen.js:

<View style={styles.container}>

 <TouchableHighlight style={styles.t

 navigate('HomeListScreen')}>

<Image

 <Image

 style={styles.homeBanner}

 source={require('../assets/house.

 />

 </TouchableHighlight>

 <View style={styles.bottomBox} />

 </View>

Let us review what we have done here; we have added an onPress

attribute to our TouchableHighlight component for the List

Properties section. Whenever someone presses the List Prop-

erties image, it calls navigate('HomeListScreen')
.

We have also created a HomeListScreen.js page in the screens
folder:

import React from 'react';

import { Text, View} from 'react-native';

export default HomeListScreen = () => {

 return (

 <View>

 <Text> Home List Screen </Text>

 </View>

);

}

Finally, update this page in App.js:

import HomeListScreen from './screens/HomeList

const AppNavigator = createStackNavigator({

 Home: {

 screen: HomeScreen

 },

 About: {

 screen: AboutScreen

 },

 HomeListScreen: {

 screen: HomeListScreen

 }

 },

 {

 initialRouteName: 'Home',

 navigationOptions: {

 headerStyle: {

 backgroundColor: '#48BBEC',

 },

 headerTintColor: '#fff',

 headerTitleStyle: {

 fontWeight: 'bold',

 }

 }

}

);

Refresh the app in the simulator and you’ll see the image. When you
click that image the new page shown in Figure 4-12 appears.

Figure 4-12 Clickable View with TouchableHighlight

Now we will load the image from a server and then create a nice-
looking property view. This will look something like Figure 4-13.

Figure 4-13 Property name and address

Create a components folder in the root folder and create
HouseItem.js inside the components folder:

import React from 'react';

import { StyleSheet, Text, View, Image } from

export default HomeItem = (props) => {

 return (<View style={styles.row} >

 <Image

 source={{uri: props.images}}

 style={styles.thumbnail}/>

 <View style={styles.rightBox}>

 <Text style={styles.name}>{props.n

 <Text style={styles.address}>{prop

 </View>

 </View>

);

}

const styles = StyleSheet.create({

 row: {

 flex: 1,

 flexDirection: 'row',

 alignItems: 'center',

 backgroundColor: '#F5FCFF',

 borderWidth: 1,

 borderColor: '#d6d7da',

 },

 thumbnail: {

 width: 53,

 height: 81,

 },

 rightBox: {

 flex: 1,

 },

 name: {

 fontSize: 20,

 marginBottom: 8,

 textAlign: 'center',

 },

 address: {

 textAlign: 'center',

 },

});

Now open HomeListScreen.js:

HouseShare/screens/HomeScreen.js

i t R t f ' t'

import React from 'react';

import { Text, View} from 'react-native';

import HouseItem from '../components/HouseItem

export default HomeListScreen = () => {

 return (

 <HouseItem name=" Mr. Johns Conch house"

);

}

Let’s refresh our application in the iOS simulator to see the changes (see
Figure 4-14).

Figure 4-14 Thumbnail image with property name and address

ListView

In the previous section, we populated one element. In this section, we

populate a list of data using ListView. Before we embark on that,

let’s learn a bit more about a different way to show the ListView

component in React Native. React Native has two components:

FlatList and SectionList.

FlatList is a component designed for populating vertically scrolling

lists of dynamic data. The minimal steps are to create a FlatList

data source and populate it with an array of data similar to the native

TableView data source.

ListView looks very similar to TableView, but the implementation

doesn’t actually use TableView. Rather, it uses ScrollView be-
hind the scenes. Features like swipe to delete, reordering, and so on,

cannot be used directly through ListView.

We will show the list of house address, as an example of the most
common representation of data in mobile devices. With our House-
Share app, we will create a table view showing a list of properties,

each of which has a thumbnail image to the left side. The rest of the
details should appear next to it.

To keep things simple for this chapter, we mock up data instead of
pulling them from some external service (later, you will learn how to pull
the same data from an external API). With these data, we will show the
name of the property, its address, and a thumbnail picture. Replace the
following code in HouseListScreen.js:

HouseShare/screens/HomeListScreen.js

import React from 'react';

import { Text, View, FlatList } from 'react-na

import HouseItem from '../components/HouseItem

const MOCK_DATA = [

 { name: 'Mr. Johns Conch house', address: '1

 {name: 'Mr. Pauls Mansion', address: '625, S

 {name: 'Mr. Nalwayas Villa', address: '11, H

 {name: 'Mr. Johns Conch house', address: '12

 {name: 'Mr. Pauls Mansion', address: '625, S

 {name: 'Mr. Nalwayas Villa', address: '11, H

 {name: 'Mr. Johns Conch house', address: '12

 {name: 'Mr. Pauls Mansion', address: '625, S

 {name: 'Mr. Nalwayas Villa', address: '11, H

];

export default HomeListScreen = () => {

 return (

 <FlatList

 data={MOCK_DATA}

 renderItem={({item}) => <HouseItem {.

 keyExtractor={(item, index) => index.

 />

);

}

Refresh your application in the simulator to see the updated view, as
shown in Figure 4-15.

Figure 4-15 Scrollable addresses

Great! Now we have a list of properties that we can scroll through. Let’s
review the implementation now:

import { Text, View, FlatList } from 'react-na

import HouseItem from '../components/HouseItem

We have once again specified what all components will be using in

this section. There is a new component added, FlatList .

Next, we created MOCK_DATA, which is an array of hashes with
property details:

var MOCK_DATA =[

 {name: 'Mr. Johns Conch house', address: '12

 {name: 'Mr. Pauls Mansion', address: '625, S

 {name: 'Mr. Nalwayas Villa', address: '11, H

 {name: 'Mr. Johns Conch house', address: '12

 {name: 'Mr. Pauls Mansion', address: '625, S

 {name: 'Mr. Nalwayas Villa', address: '11, H

 {name: 'Mr. Johns Conch house', address: '12

 {name: 'Mr. Pauls Mansion', address: '625, S

 {name: 'Mr. Nalwayas Villa', address: '11, H

];

In this code we added more entries to create a FlatList view. Now,
let’s look at the changes we made in our component:

<FlatList

 data={MOCK_DATA}

 renderItem={({item}) => <HouseItem {.

 keyExtractor={(item, index) => index.

 />

We have passed three props in the FlatList component: data,
renderItem, and keyExtractor:

data is the source of information for the list.

renderItem takes one item from the source and returns a for-
matted component to render.

keyExtractor tells the list to use the IDs for the React keys
instead of the default key property.

ScrollView

Although we are not using ScrollView in our HouseShare applica-
tion, it can be used as an alternate way to populate a list just like we

used ListView. ScrollView is one of the most versatile and use-
ful controls, as it is a great way to list content that is greater in size
than the screen size.

We can add a basic ScrollView by using the following code:

 <ScrollView>

 <Text>Scroll me plz</Text>

 <Image source={{uri: "'http://hmp.me

 <Image source={{uri: "'htt

 <Image source={{uri: "'http://hmp.me

 <Image source={{uri: "'http://hmp.me

 <Image source={{uri: "'http://hmp.me

 <Image source={{uri: "'http://hmp.me

 <Image source={{uri: "'http://hmp.me

</ScrollView>

This is basic ScrollView; if we want to scroll horizontally and we
want to lock that direction, we can do so with the following:

 <ScrollView

 horizontal={true}

 directionalLockEnabled={true}

 >

There are many other options available with ScrollView; for docu-

mentation and examples, you can visit https://face-

book.github.io/react-native/docs/scrollview.html
.

https://facebook.github.io/react-native/docs/scrollview.html

<ScrollView> vs. <FlatList>

ScrollView is easy to use and it simply renders all its React child

components at once, whereas FlatList renders items lazily, just
when they are about to appear, and removes items that scroll far off
screen to save memory and processing time.

Animations

Animations
are crucial when it comes to creating a good user experi-
ence. If you think of any popular mobile app, you will likely find anima-
tion at the center of an immersive user experience. React Native pro-
vides an animation API to perform different types of animations with
ease.

There are many different Animated methods that you can use to create
animations, including these:

Animated.timing(): Animation based on time range.

Animated.decay(): Animation starts with an initial velocity
and gradually slows to a stop.

Animated.spring(): This is a simple single-spring physics

model that tracks velocity state to create fluid motions as the to-

Value updates, and can be chained together.

Animated.parallel(): This starts an array of animations all
at the same time.

Animated.sequence():  We can perform an array of anima-
tions in order, waiting for each to complete before starting the next.

Let’s add some animation in our HouseShare app. Create a file
FadeInView.js in the components folder and add the following
code:

HouseShare/components/FadeInView.js

import React from 'react';

import { Animated, Text, View } from 'react-na

export default class FadeInView extends React

 state = {

 fadeAnim: new Animated.Value(0),

 }

 componentDidMount() {

 Animated.timing(

 this.state.fadeAnim,

 {

 toValue: 1,

 duration: 4000,

 }

).start();

 }

 render() {

 let { fadeAnim } = this.state;

 return (

 <Animated.View

 style={{

 ...this.props.style,

 opacity: fadeAnim,

 }}

 >

 {this.props.children}

 </Animated.View>

);

 }

}

We have defined a state this.state.fadeAnim, which is the
opacity value. We have defined this value from 0 as initial state. The
opacity property on the View is then mapped to this animated value. We
have used Animated.timing to increase the opacity from 0 to 1 in
4,000 ms. Next we wrap FadeInView with any View and it can FadeIn
that View for 4,000 ms. Let’s open HomeItem.js and replace the root
View with FadeInView, as shown:

HouseShare/components/HomeItem.js

<FadeInView style={styles.row} >

 <Image

 source={{uri: props.images}}

 style={styles.thumbnail}/>

 <View style={styles.rightBox}>

 <Text style={styles.name}>{props.n

 <Text style={styles.address}>{prop

 </View>

 </FadeInView>

Run the app and you can see the FadeIn animation
on the Home
List page. There are several different configurations available, which

are documented at https://facebook.github.io/react-na-

tive/docs/animated#configuring-animations
.

Summary

In this chapter, we learned some of the fundamentals that are essential for
creating a stunning user experience. We covered the following:

React Navigation
NavigatorIOS for back-swipe functionality across apps
The Flexbox layout model

TouchableHighlight, a wrapper for making views respond
properly to touches

Using ListView for efficient scrolling of vertical lists

Using ScrollView for listing content larger than the screen size

Using the Animate API of React Native to animate a View.

https://facebook.github.io/react-native/docs/animated%2523configuring-animations

The next chapter covers different device capabilities like MapView,

AsyncStorage, Native Alert, WebView, and deep linking.

(1)
(2)

© Akshat Paul and Abhishek Nalwaya 2019

Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development

https://doi.org/10.1007/978-1-4842-4454-8_5

5. Exploring Device Capabilities

Akshat Paul and Abhishek Nalwaya
Gurgaon, Haryana, India
Jaipur, Rajasthan, India

Software will give you respect, but hardware will give you the
power.

—Akshat Paul

Mobile devices are not just limited to making phone calls; they are
some of the most advanced pieces of consumer technology ever invented.
Their real power lies in the various capabilities that reside in a smartphone.
The iOS and Android platforms allow us to use various device features to
make a more captivating application experience for our users. This chapter
explores the following device capabilities:

MapView and GeoLocation
AsyncStorage
Native Alert
WebView
Deep linking

1 2

https://doi.org/10.1007/978-1-4842-4454-8_5

MapView and GeoLocation

In this section, we will learn how to use iOS and Android location ser-
vices with a React Native application. Location services are used
very often in many popular apps, especially in travel, navigation, ride
sharing, and so on. This single feature significantly improves the user
experience and the bonus is that it’s very easy to implement.

Before we learn about GeoLocation, though, we need to learn about
MapView, which is essentially designed to show a location on a map. We
use the react-native-maps npm module
(
https://www.npmjs.com/package/react-native-maps
),

which is a component for iOS and Android to show maps. Access your
terminal to create an application to implement this capability:

$ expo init GeoLocationMaps

This creates a React Native app with Expo CLI. Next, add the react-
native-maps npm module, using yarn:

$ yarn add react-native-maps

react-native-maps
(
https://github.com/react-commu-

nity/react-native-maps
) is one of the best modules for map

https://www.npmjs.com/package/react-native-maps
https://github.com/react-community/react-native-maps)

views. It includes numerous customization options available to help
you design the best possible experience with maps.

Because App.js is the entry point in a React Native app, update the
following code in that file:

GeoLocationMaps/App.js

import React from 'react';

import { StyleSheet, Text, View } from 'react-

import MapView from 'react-native-maps';

export default class App extends React.Compone

 constructor(props) {

 super(props);

 this.state = {

 region: {

 latitude: 37.3230,

 longitude: -122.0322,

 latitudeDelta: 0.0922,

 longitudeDelta: 0.0922,

 }

 };

 }

 render() {

 return (

 <MapView

 style={styles.container}

 initialRegion={this.state.region}

 / >

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 },

});

Now build your application by executing following the command, and
open an iOS or Android simulator:

$ yarn start

You will see the map shown in Figure 5-1.

Figure 5-1. GeoLocation MapView

Reviewing the GeoLocationMap Code

Let’s now understand what we have done in this part of our program.

import React from 'react';

import { StyleSheet, Text, View } from 'react-nat

import MapView from 'react-native-maps';

We have imported the MapView component
from react-native-
maps. Next, we used the MapView component to plot a map:

export default class App extends React.Compone

 constructor(props) {

 super(props);

 this.state = {

 region: {

 latitude: 37.3230,

 longitude: -122.0322,

 latitudeDelta: 0.0922,

 longitudeDelta: 0.0922,

 }

 };

 }

 render() {

 return (

 <MapView

 style={styles.container}

 initialRegion={this.state.region}

 / >

);

 }

}

Here, we have set the initial state for the region with certain lati-

tude, longitude, latitudeDelta, and longitudeDelta

parameters, which will be later set when we render the function with

the MapView component. In the MapView component, we are using

the region state, which is supplied with latitude, longitude,

longitudeDelta, and latitudeDelta. These should always be
numbers (integer or float), as they help us plot a specific region on
the map. Finally, we have added some style with Flex and registered
our component.

iOS devices show Apple Maps by default. We can choose to use a
different provider like Google. Update provider to google with this
code:

 <MapView

 style={styles.container}

 provider="google"

 initialRegion={this.state.region}

 / >

Now run the application. You can see that instead of Apple Maps, it
loads Google Maps (Figure 5-2).

Figure 5-2. GeoLocation with Google Maps

There are numerous customization options available. You can check

https://github.com/react-community/react-native-

maps/blob/master/docs/mapview.md
for more details.

Adding Annotation on a Map

Annotations provide a way to highlight specific coordinates on a map. This
valuable information is commonly added for any mobile application using a
geolocation feature. Let’s add an annotation marker to our application and
update initial state with the new state annotations, with parameters
latitude and longitude for the marker.

 constructor(props) {

 super(props);

 this.state = {

 region: {

 latitude: 37.3230,

 longitude: -122.0322,

 latitudeDelta: 0.0922,

 longitudeDelta: 0.0922,

 },

 coordinate: {

 latitude: 37.3230,

 longitude: -122.0322,

https://github.com/react-community/react-native-maps/blob/master/docs/mapview.md

 },

 };

 }

Now update the MapView component with the new prop called
coordinate:

 <MapView

 style={styles.container}

 provider="google"

 initialRegion={this.state.region}

 >

 <Marker coordinate={this.state.coordinate}

 </MapView>

Refresh and observe the changes. You will see something like the screen
shown in Figure 5-3.

Figure 5-3. MapView with added parameters

Displaying the Latitude and Longitude of
the Current Location

In this final part of our geolocation application, we will display our
present latitude and longitude on the screen. In the previous exam-
ple, we had a constant location; in this part, we will move to our cur-
rent location in real time. That sounds like something exciting, so let’s
start building it. There are two ways to check for the current location

on our maps. One is to simply add showsUserLocation={true}

to the MapView component. Another way is to use

NSLocationWhenInUseUsageDescription geolocation. Let’s try
the first option. If you are using gelocation on an existing project, you

need to update NSLocationWhenInUseUsageDescription
in

info.plist for iOS and <uses-permission

android:name="android.permission.ACCESS_FINE_LOCA-

TION" /> in AndroidManifest.xml for Android. Because we

have created a project with Expo, which initially uses react-native

init, gelocation is enabled by default.

Update the App.js Marker component with the following code:

 <MapView

style={styles container}

 style={styles.container}

 provider="google"

 showsUserLocation={true}

 initialRegion={this.state.region}

 >

 <Marker coordinate={this.state.coordinate}

 </MapView>

Now refresh the application to load it on the iOS simulator and you will
see something similar to Figure 5-4.

Figure 5-4. Access location prompt

If we allow this request, the map will move to the location we specified
in our code; in this case it’s Apple’s headquarters in Cupertino, California
(Figure 5-5).

Figure 5-5. Moving to a specified map location in the code

Now let’s use the other method to get the user’s current location, using
the Geolocation API, which is extended from the Geolocation web spec (
https://developer.mozilla.org/en-

US/docs/Web/API/Geolocation
). Let’s first update the ref for

MapView to this.map, so that we can use it:

 <MapView

 ref={ref => { this.map = ref; }}

 style={styles.container}

 provider="google"

 showsUserLocation={true}

 followUserLocation={true}

 loadingEnabled={true}

 initialRegion={this.state.region}

 >

 <Marker coordinate={this.state.coordinate}

 </MapView>

Now add navigator.geolocation.watchPosition in the
same file:

 componentDidMount() {

 navigator.geolocation.watchPosition(

 (position) => {

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation

 console.log(position);

 this.map.animateToRegion({

 latitude: position.coords.latitude,

 longitude: position.coords.longitud

 latitudeDelta: 0.005,

 longitudeDelta: 0.005

 });

 },

 (error) => console.log(error.message),

 { enableHighAccuracy: false, timeout: 2

);

 }

Here, in componentDidMount, we get the current position from the
watchPosition function in navigator.geolocation, which
continuously checks for location because we’ll need to get the location
coordinates as the user moves. The Google Maps geolocation API has a
watchPosition method
that will help us get the location coordinates
whenever they change. There are also other functions available like
getCurrentPosition
, which checks the current location just once
when the app is refreshed (Figure 5-6).

Figure 5-6. Map showing the current location

Because we have a console log, we can see the position as it appears in
the console, as shown in Figure 5-7.

Figure 5-7. Current location displayed in the console log

We can now see the current location. Next, let’s try to change the
location. To change a location, from the Simulator menu bar, select Debug
➤ Location ➤ Freeway Drive (see Figure 5-8). Freeway Drive will

continuously change the simulator location.

Figure 5-8. Change location using Simulator

We can see that the location is changed dynamically in the app. Because
we chose to use Freeway Drive, we can see that the location and maps
continuously move along a freeway (Figure 5-9).

Figure 5-9. Location changed to freeway

AsyncStorage

AsyncStorage is a key/value-based storage system. It can be easily
implemented and is globally available to the app. This persistence system is
simple and asynchronous, and also a recommended way to store data. To
create an AsyncStorage example application, execute the following
command:

$expo init AsyncStorage

Add the following code in App.js:

import React from 'react';

import { StyleSheet, Text, View, TextInput, Bu

export default class App extends React.Compone

 constructor(props) {

 super(props);

 this.state = {storedText: '', inputBoxText

}

 async componentDidMount() {

 this.setState({storedText: await this.retr

 }

 onPressSave = async () => {

 try {

 await AsyncStorage.setItem('@AsyncStorag

 this.setState({storedText: this.state.in

 } catch (error) {

 console.log("Error in saving data");

 }

 }

 retrieveData = async () => {

 try {

 const value = await AsyncStorage.getItem

 return value;

 } catch (error) {

 console.log("Error in Fetching Data")

 }

 }

 render() {

 return (

 style={styles.textField}

 placeholder="Type here!"

 onChangeText={(text) => this.setStat

 />

 onPress={this.onPressSave}

 title="Save"

 color="blue"

 accessibilityLabel="Click will save

 />

 Text from local Storage:

 {this.state.storedText}

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 alignItems: 'center',

 justifyContent: 'center',

 },

 header: {

 fontFamily: 'Georgia',

 fontSize: 20,

 fontWeight: 'bold',

 paddingTop: 40,

 },

 text: {

 fontFamily: 'Georgia',

 fontSize: 18,

 fontStyle: 'italic',

 paddingTop: 10,

 },

 textField: {

 height: 40,

 width: 300,

 borderColor: '#C0C0C0',

 borderBottomWidth: 1,

 }

});

Let’s build our application to see the results. You can enter the text in a
text box as shown in Figure 5-10 and then click Save.

Figure 5-10. Storage is updated

Once that is done, refresh for the result shown in Figure 5-11.

Figure 5-11. Text from the AsyncStorage mechanism

This time the text below, “This text is from local storage,” is coming
from the AsyncStorage mechanism that we have put in place.

Reviewing the AsyncStorage Code

In this example, we have included the AsyncStorage default component in
our list of components to be used for the sample application. Let’s go
through how exactly the code for this example works.

import React from 'react';

import { StyleSheet, Text, View, TextInput, Butto

We use this AsyncStorage React component within our App compo-
nent. Previously, we also specified a key that we will use with
AsyncStorage.

Inside our App component we have set up constructor and
componentDidMount methods and also created onPressSave and
retrieveData methods. Let’s discuss them one by one.

 constructor(props) {

 super(props);

 this.state = {storedText: '', inputBoxText

}

 }

In constructor we have specified blank values for storedText
and inputBoxText, which we will keep updating as and when their state
changes.

 async componentDidMount() {

 this.setState({storedText: await this.retr

 }

componentDidMount
is invoked only at the .time of initial
rendering and is responsible for showing the text below “This text is from
local storage,” once we have updated the storage and refreshed the app
again. We have used async and await for calling retrieveData,
which means the execution will wait until the function is completely
executed.

 retrieveData = async () => {

 try {

 const value = await AsyncStorage.getItem

 return value;

 } catch (error) {

 console.log("Error in Fetching Data")

 }

 }

The method retrieveData
is used to retrieve the value stored in
local storage. Calling AsyncStorage.getItem retrieves the value
stored in local storage.

 onPressSave = async () => {

 try {

 await AsyncStorage.setItem('@AsyncStorag

 this.setState({storedText: this.state.in

 } catch (error) {

 console.log("Error in saving data");

 }

 }

Updating storage updates AsyncStorage values, which are persisted
permanently.

 render() {

 return (

 <View style={styles.container}>

 <TextInput

 style={styles.textField}

 placeholder="Type here!"

 onChangeText={(text) => this.setStat

 />

 <Button

 onPress={this.onPressSave}

 title="Save"

 color="blue"

 accessibilityLabel="Click will save

 />

 <Text style={styles.header}>Text from

 <Text style={styles.text}>{this.state.

 </View>

);

 }

}

The preceding code sets up various sections of our
AsyncStorageExample component. Here, we can change a text input
field to update the textInputMessage state. We also have an
onPress prop for the TouchableHighlight component, which calls
the updatedStorage method and persists the values permanently. In the
end, we display the saved message by accessing the present state of the
message.

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 alignItems: 'center',

 justifyContent: 'center',

 },

 header: {

 fontFamily: 'Georgia',

 fontSize: 20,

 fontWeight: 'bold',

 paddingTop: 40,

 },

 text: {

 fontFamily: 'Georgia',

 fontSize: 18,

 fontStyle: 'italic',

 paddingTop: 10,

 },

 textField: {

 height: 40,

 width: 300,

 borderColor: '#C0C0C0',

 borderBottomWidth: 1,

 }

});

Finally, we set up a UI style with some self-explanatory Flex settings

and register our AsyncStorageExample component.

Native Alert

Alerts are used to provide important information to application users.

Basic alerts consist of a dialog box with a specific title, message, and
buttons. Occasionally alert boxes appear in an application to display
a piece of important information. The buttons for an alert could either
be a simple OK to proceed with the app, or OK, Cancel, Ask Me Lat-
er, and so on, which require the user to make a decision. Tapping this

button could be linked to execute an inPress callback to execute a
piece of code. By default an alert dialog box will have one button.

Let’s create a project to understand more about Native Alert:

$ expo init NativeAlertApp

React Native provides the component Alert that works for both iOS
and Android. Let’s add a button that will open an alert box when clicked.
Update App.js with the following code:

import React from 'react';

import { StyleSheet, Text, View, Button, Alert

export default class App extends React.Compone

 onPressButton1() {

 Alert.alert(

 'Alert Title',

 'Alert Message',

)

 }

 render() {

 return (

 <View style={styles.container}>

 <Button

 onPress={this.onPressButton1}

 title="Button 1"

 color="#841584"

 accessibilityLabel="Learn more about

 />

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 alignItems: 'center',

 justifyContent: 'center',

 },

});

Let’s build this application and test it in the simulator. Figure 5-12

shows the result.

Figure 5-12. A button that will open an alert dialog box when clicked

Tap the Button 1 button to see an alert box, as shown in the example in
Figure 5-13.

Figure 5-13. An alert dialog box

Reviewing the NativeAlert Code

Now that you have created a new NativeAlert project, create a new
NativeAlert component
:

export default class App extends React.Component

 onPressButton1() {

 Alert.alert(

 'Alert Title',

 'Alert Message',

)

 }

 render() {

 return (

 <View style={styles.container}>

 <Button

 onPress={this.onPressButton1}

 title="Button 1"

 color="#841584"

 accessibilityLabel="Learn more about Bu

 />

 </View>

);

 }

}

In the component NativeAlert, we have used onPress callback.
The Alert method
passes the strings 'Alert Title' and 'Alert
Message', which produce an alert dialog box containing a title, a
message, and a button. Alert provides two methods, alert and prompt,
as shown next. Alert creates and displays an alert, whereas prompt
creates and displays a prompt to enter some text.

 static alert(title: string, m

 static prompt(title: string,

Extending the NativeAlert Example

Now, to add some more buttons to the application, replace the following
code for your NativeAlert component in App.js:

export default class App extends React.Component

 onPressButton1() {

 Alert.alert(

 'Alert Title',

 'Alert Message',

)

 }

 onPressButton2() {

 Alert.alert(

 'Alert Title',

 'Alert Message with Buttons',

 [

 {text: 'Button 1', onPress: () => console.l

 {text: 'Button 2', onPress: () => console.l

 {text: 'Cancel', onPress: () => console.log

],

)

 }

 render() {

 return (

 <View style={styles.container}>

 <Button

 onPress={this.onPressButton1}

 title="Button 1"

 color="#841584"

 accessibilityLabel="Learn more about Bu

 />

 <Button

 onPress={this.onPressButton2}

 title="Button 2"

 color="#841584"

 accessibilityLabel="Learn more about Bu

 />

 </View>

);

 }

}

Let’s refresh our view to see the changes made in Figure 5-14.

Figure 5-14. Two buttons added on the screen

Click Button 2 to view the result shown in Figure 5-15.

Figure 5-15. Select Button 1, Button 2, or Cancel

Tapping Button 2 fires an onPress callback that uses the alert

method of Alert to set title, message, and buttons for our alert box.

In this part of the NativeAlert component we have three buttons.

WebView

WebView
is responsible for rendering web content in a Native view. That
simply means WebView is an environment for loading a web URL inside
your React Native application. WebView allows you to display web
content as part of your app, but it lacks some of the features of fully
developed browsers. Let’s begin by generating an application for this:

$ react-native init WebViewApp

$yarn add react-native-webview

$react-native link react-native-webview

Now use one of the following commands to build the app. The first
command is for an iOS simulator and the second one is for an Android
simulator.

$react-native run-ios

$react-native run-android

Next, open App.js and replace its code with the following code:

import React, {Component} from 'react';

import {StyleSheet, SafeAreaView} from 'react-

import { WebView } from "react-native-webview"

export default class App extends Component<Pro

 render() {

 return (

 <WebView

 style={{marginTop: 20}}

 source={{ uri: "https://www.wikipe

 />);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#F5FCFF',

 },

});

Let’s build the application by running:

react-native run-ios

The result is shown in Figure 5-16.

Figure 5-16. WebView with a URL

Reviewing the WebView Code

In this example, we have created a component App that returns a
WebView. The following code creates a view with our desired URL loaded
in the WebView.

export default class App extends Component<Props>

 render() {

 return (

 <WebView

 style={{marginTop: 20}}

 source={{ uri: "https://www.wikipedia.o

 />

);

 }

}

Deep Linking

Deep linking is a technique that allows an app to be opened to a spe-
cific UI or resource, in response to some external event. The deep
refers to the depth of the page in an app’s hierarchical structure of
pages. This is a very important feature for user engagement, as it
also makes an app more responsive and capable of navigation to ar-
bitrary content in response to external events like push notifications,

e-mails, web links, and so on.

There are two ways of implementing deep linking: using a URL
scheme or universal links. Although URL schemes are a well-known
way of using deep linking, universal links are the new method Apple
has implemented to easily connect your web page and your app un-
der the same link. We implement URL schemes in our example that
will handle external URIs. Let’s suppose that we want a URI like

myapp://article/4 to open our app and link straight into an arti-
cle screen that shows article number 1.

We are using The React Native CLI instead of Expo CLI because we
want to use customization in iOS and Android code. We can create the
project using Expo and can then eject also.

$ react-native init DeepLinkApp

$ yarn add react-navigation

$ react-native link react-native-gesture-handl

After creating the project, we will add React Navigation and then use
the link command to link React Native gesture handling. Create an src
folder in the root folder and add the Article.js and Home.js files.
Next, add following code in Home.js:

import React from 'react';

import { Text } from 'react-native';

class Home extends React.Component {

 static navigationOptions = {

 title: 'Home',

 };

 render() {

 return <Text>Hello from Home!</Text>;

 }

}

export default Home;

We have created a simple React component
that rendered Text
Hello from Home!. We next create a file Article.js in the src
folder and add the following code:

import React from 'react';

import { Text } from 'react-native';

class Article extends React.Component {

 static navigationOptions = {

 title: 'Article',

 };

 render() {

 const { id } = this.props.navigation.state

 return <Text>Hello from Article {id}!</Tex

 }

}

export default Article;

We have now created two components, Home.js and Article.js,
and we can add this in React Navigation routes. Open App.js and update
the following code:

import React, {Component} from 'react';

import {Platform, StyleSheet, Text, View} from

import { createAppContainer, createStackNaviga

import Home from './src/Home';

import Article from './src/Article';

const AppNavigator = createStackNavigator({

 Home: { screen: Home },

 Article: { screen: Article, path: 'article/:

},

{

 initialRouteName: "Home"

 }

);

const prefix = Platform.OS == 'android' ? 'mya

const App = createAppContainer(AppNavigator)

const MainApp = () => <App uriPrefix={prefix}

export default MainApp;

We have thus far created React Navigation and created routes for

two pages. We have configured our navigation container
to extract
the path from the app’s incoming URI. On Android, the URI prefix typ-
ically contains a host in addition to the scheme, so we have used

myapp://myapp/.

Now we have to write custom code for iOS and Android. First, open the
iOS project in the iOS folder by clicking DeepLinkApp.xcodeproj.
Select the project title from the folder list and navigate to the Info tab as
shown in Figure 5-17. Scroll down to the URL Types section and add one.

For the new URL type, set the Identifier to mychat and the URL Scheme
to mychat.

Figure 5-17. Deep linking using Xcode

Open AppDelegate.m in the root folder and add the following code
before @end.

- (BOOL)application:(UIApplication ∗)applicati

 sourceApplication:(NSString ∗)sourceApplicat

{

 return [RCTLinkingManager application:applic

 sourceApplication:source

}

Now let’s update the code for Android. To configure the external linking
in Android, we need to create a new intent in the manifest. Open

/src/main/AndroidManifest.xml to add the new intent-
filter inside the MainActivity entry with a VIEW type action:

 <intent-filter>

 <action android:name="android.intent

 <category android:name="android.inte

 <category android:name="android.inte

 <data android:scheme="myapp" android

 </intent-filter>

Let’s start running the app, first with iOS:

$react-native run-ios

The result is shown in Figure 5-18.

Figure 5-18. Running the app with iOS

To test the DeepLink, open the Safari browser and type
myapp://article/4. That will automatically open the app and open
Article 4 (Figure 5-19).

Figure 5-19. Traversing to the DeepLink page

You can also open the DeepLink page by running this command on your
terminal (Figure 5-20):

xcrun simctl openurl booted myapp://article/3

Figure 5-20. Traversing to the DeepLink page

Summary

This chapter covered various capabilities of iOS and Android devices
using React Native. These capabilities helped us build features be-
yond just a UI. We learned how to use GeoLocation and loading
maps for your app, AsyncStorage to persist data, Native alerts to

share important info in your app, WebView to load HTML5 content,
and finally deep linking.

Chapter 6 discusses how to interact with a back-end server because
no real-world application is complete without connecting to a back
end and consuming APIs.

(1)
(2)

© Akshat Paul and Abhishek Nalwaya 2019

Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development

https://doi.org/10.1007/978-1-4842-4454-8_6

6. Communicating with Servers

Akshat Paul and Abhishek Nalwaya
Gurgaon, Haryana, India
Jaipur, Rajasthan, India

Communication
is everyone’s panacea for everything.

—Tom Peters

After learning about the powers of device capabilities with many
examples, it’s time to get back to our SmartHouse application. So far, you
have been populating your app locally with some dummy data, but no
application can survive without communicating with a server. This chapter
covers how to interact with network APIs. You will explore the following
topics:

XMLHttpRequest

WebSocket

Fetch

Getting data from a server
Posting data to a server

1 2

https://doi.org/10.1007/978-1-4842-4454-8_6

Earlier you were getting all the data from a dummy data object, which
was static within your application. It’s rare that any production appli-
cation will work entirely with static data. Fortunately, React Native
provides many ways to interact with network APIs. The following sec-
tions cover the ways the network stack is supported in React Native.

XMLHttpRequest

XMLHttpRequest
is an API that provides the ability to transfer data
between a client and a server. It provides an easy way to retrieve data from
a URL without having to do a full-page refresh. In React Native, the
XMLHttpRequest API is applied on top of the iOS networking APIs.
This is the code snippet to use XMLHttpRequest.

var request = new XMLHttpRequest();

request.onreadystatechange = (e) => {

 if (request.readyState !== 4) {

 return;

 }

 if (request.status === 200) {

 console.log('success', request.responseText);

 } else {

 console.warn('error');

 }

};

request.open('GET', 'https://backendwebsite.com/e

request.send();

Using XMLHttpRequest is quite tedious. However, because it is
compatible with the browser API, it lets you use third-party libraries

directly from npm (e.g., Parse). For more information on this API,

please refer to its documentation at https://developer.mozil-

la.org/en-US/docs/Web/API/XMLHttpRequest
.

WebSocket

WebSocket
is a protocol that provides full-duplex communication channels
over a single Transmission Control Protocol (TCP) connection. With the
WebSocket API it is possible to open two-way interactive
communication. With this API, you can send messages to a server and
receive event-driven responses without having to poll the server again and
again for a reply. This is how the code looks for a WebSocket:

var ws = new WebSocket('ws://example.com/path');

ws.on('open', function() {

 // connection opened

 ws.send('example data');

});

ws.on('message', function(e) {

 // a message received

 console.log(e.data);

});

ws.on('error', function(e) {

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

 // an error occurred

 console.log(e.message);

});

ws.on('close', function(e) {

 // connection closed

 console.log(e.code, e.reason);

});

Fetch

Fetch
is a popular networking API. It was created by a standard
committee and has well-defined requests, responses, and the process to bind
them. The following is an example of a post request with fetch:

fetch('https://example.com/endpoint/', {

 method: 'POST',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 },

 body: JSON.stringify({

 firstParam: 'yourValue',

 secondParam: 'otherValue',

 })

})

Fetch returns a promise because networking is an async operation,
which means it will not wait for execution, so we can resolve using a then
and catch block. We can get a response and error like this:

fetch('https:// example.com/endpoint')

 .then((response) => response.text())

 .then((responseText) => {

 console.log(responseText);

 })

 .catch((error) => {

 console.warn(error);

 });

Now that you know how to interact with network APIs, let’s use one of

the options, fetch, to get and post data to a server. To keep things
simple, we have hosted a simple back-end server with restful APIs
that you can consume for your application.

We will be using following the URLs to get and post data to a back-

end server. For a quick test, you can use curl
to see the response
you get from making a request to these URLs.

https://github.com/curl/curl

Use this code to get an initial seed list of properties:

$curl 'http://www.akshatpaul.com/list-all-prop

[

{

name: "Mr. Johns Conch house",

address: "12th Street, Neverland",

images: {

thumbnail: "http://hmp.me/ol5"

}

},

{

name: "Mr. Pauls Mansion",

address: "625, Sec-5, Ingsoc",

images: {

thumbnail: "http://hmp.me/ol6"

}

},

{

name: "Mr. Nalwayas Villa",

address: "11, Heights, Oceania",

images: {

thumbnail: "http://hmp.me/ol7"

}

}

]

To get the list of properties that the users have saved, run

$curl 'http://www.akshatpaul.com/list-properti

You might see few results here that are created by other readers of
this book.

To post data to the server to save a property we use the following API:

url: 'http://www.akshatpaul.com/properties'

Getting Data from a Server

First, let’s get get some data
from our back-end server that we use to
populate the list of properties we have already added in our back-end server.
So far this is getting populated from the JavaScript Object Notation (JSON)
we have stored on our client application itself. Insert the following code
into the HomeListScreen.js component:

import React from 'react';

import React from react ;

import { FlatList } from 'react-native';

import HouseItem from '../components/HouseItem';

export default class HomeListScreen extends React

 constructor(props) {

 super(props);

 this.state = {

 dataSource: null,

 }

 }

 componentDidMount() {

 return fetch("https://www.akshatpaul.com/list

 .then ((response) => response.json())

 .then ((responseJson) => {

 this.setState({

 dataSource: responseJson,

 })

 })

 .catch((error) => {

 console.log(error)

 });

 }

render(){

 return (

 <FlatList

 data={this.state.dataSource}

 renderItem={({item}) => <HouseItem {...i

 keyExtractor={(item, index) => index.toS

 />

);

 }

}

Now, build or refresh the application and navigate to the of list of all the
properties. Figure 6-1 shows it loaded on an iOS simulator
.

Figure 6-1. Populating the app with static data fetched from a server

All these data are coming from a back-end server. Let’s walk through
this code. Here, we first removed the MOCK_DATA
, which is no longer
required. We then modified the component type:

export default HomeListScreen = () => {

...

}

To

export default class HomeListScreen extends Re

...

}

Earlier we had created a stateless component, but because we would
like to use life cycle methods and maintain state, we have modified
our stateless component to a state component.

Next, we added the following code in our HomeListScreen
state
component:

 constructor(props) {

 super(props);

 this.state = {

 dataSource: null,

 }

 }

 componentDidMount() {

 return fetch("https://www.akshatpaul.com/l

 .then ((response) => response.json())

 .then ((responseJson) => {

 this.setState({

 dataSource: responseJson,

 })

 })

 .catch((error) => {

 console.log(error)

 });

 }

Here, we have created a constructor that sets the initial state for

the dataSource property as null. This is the property that will store
the data we will pull from a back-end server.

Next, we use a life cycle method componentDidMount()
. We are
making use of this life cycle method because we assume we would

only be required to make a get call to the back-end API to get the list
of properties once.

The structure of this request is straightforward: We use fetch to
make a call that returns a promise. This promise is then resolved and

we pass the response JSON to dataSource using the setState

object
.

Finally we have the placed catch() method to log any error. To load the
data received from the back-end server, we are not making any changes in
the earlier component except replacing MOCK_DATA
with
this.state.dataSource.

render(){

 return (

 <FlatList

 data={this.state.dataSource}

 renderItem={({item}) => <HouseItem {.

 keyExtractor={(item, index) => index.

 />

);

 }

Saving Data to a Server

In your housing application, so far you are able to get data from a back-end
server. This section shows you how to save data to a back-end API. For this
we will create a component to add new properties and make request to a
back-end API to save the data. For this purpose, we already have a back-
end API ready to be consumed:

URL : http://www.akshatpaul.com/properties

Let’s first add a button to HomeScreen
that will navigate us to the
Addproperty page
. Add the following code along with styling:

import React from 'react';

import { StyleSheet, Text, View, Image, Toucha

export default class HomeScreen extends React.

 static navigationOptions = {

 title: 'House Share',

 };

 render() {

 const { navigate } = this.props.navigation

 return (

 <View style={styles.container}>

 <TouchableHighlight style={styles.t

 navigate('HomeListScreen')}>

 <Image

 style={styles.homeBanner}

 source={require('../assets/house.

 />

 </TouchableHighlight>

 <TouchableHighlight style={styles.bu

 onPress={()=> navigate('AddNewProp

 underlayColor='#99d9f4'>

 <Text style={styles.buttonText}>Ad

 </TouchableHighlight>

 <View style={styles.bottomBox} />

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: 'column'

 },

 topBox: {

 flex: 1,

 backgroundColor: '#C0C0C0'

 },

 bottomBox: {

 flex: 2,

 backgroundColor: '#fff'

 },

 homeBanner: {

 bottom:0,

 flex: 1,

 alignSelf: 'stretch',

 width: undefined,

 height: undefined,

 },

 button: {

 flex: 1,

 backgroundColor: '#48BBEC',

 borderColor: '#48BBEC',

 borderWidth: 1,

 borderRadius: 8,

 alignSelf: 'stretch',

 justifyContent: 'center',

 margin: 10

 },

 buttonText: {

 fontSize: 18,

 color: 'white',

 alignSelf: 'center'

 }

});

Here, we have added a new button using the following code along with
its styling:

<TouchableHighlight style={styles.button}

 onPress={()=> navigate('AddNewProp

 underlayColor='#99d9f4'>

 <Text style={styles.buttonText}>Ad

 </TouchableHighlight>

 button: {

 flex: 1,

 backgroundColor: '#48BBEC',

 borderColor: '#48BBEC',

 borderWidth: 1,

 borderRadius: 8,

 alignSelf: 'stretch',

 justifyContent: 'center',

 margin: 10

 },

 buttonText: {

 fontSize: 18,

 color: 'white',

 alignSelf: 'center'

 }

We must also add a corresponding navigation route in App.js
createStackNavigator:

const AppNavigator = createStackNavigator({

.

.

.

AddNewProperty: {

 screen: AddNewProperty

 }

.

.

};

Let’s refresh to see the changes on the home screen (Figure 6-2).

Figure 6-2. Showing the Add New Property button on the home page

If we click Add New Property it will take us to a new screen that will be
empty. Let’s create a new file in the screens folder,
AddNewProperty.js, and add the following code in it:

import React from 'react';

import { StyleSheet, Text, View, TouchableHigh

import HouseItem from '../components/HouseItem

export default class AddNewProperty extends Re

 constructor(props) {

 super(props);

 this.state = {

 name: "",

 address: ""

 }

 }

 onPressButtonPOST() {

 fetch('https://www.akshatpaul.com/prop

 method: 'POST',

 headers: {

 Accept: 'application/json',

 'Content-Type': 'application/json'

 },

 body: JSON.stringify({

 property: {

 name: this.state.name,

 address: this.state.address,

 }

 }),

 })

 .then((responseData) => {

 AlertIOS.alert(

 "Created"

)

 })

 .done();

 }

render(){

 return (

 <View style={styles.container}>

 <TextInput style={styles.textBox} plac

 <TextInput style={styles.textBox} plac

 <TouchableHighlight style={styles.

 onPress= {this.onPressButtonPO

 underlayColor='#99d9f4'>

 <Text style={styles.buttonText

 </TouchableHighlight>

 </View>

);

 }

}

var styles = StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: 'column',

 justifyContent: 'center',

 alignItems: 'center',

 backgroundColor: '#F5FCFF',

 },

 textBox: {

 width:300,

 height:60,

 borderColor: 'gray',

 borderWidth: 1,

 alignSelf: 'center',

 marginTop: 10,

 },

 button: {

 height: 60,

 backgroundColor: '#48BBEC',

 borderColor: '#48BBEC',

 borderWidth: 1,

 borderRadius: 8,

 alignSelf: 'stretch',

 justifyContent: 'center',

 margin: 10

 },

 buttonText: {

 fontSize: 18,

 color: 'white',

 alignSelf: 'center'

 }

 });

Let’s step through this piece of code in detail. We created a new
component, AddNewProperty, and added a constructor with two
properties, name and address instantiated with an empty string:

constructor(props) {

 super(props);

 this.state = {

 name: "",

 address: ""

 }

 }

Next, we created the following component:

 <View style={styles.container}>

 <TextInput style={styles.textBox} plac

 <TextInput style={styles.textBox} plac

 <TouchableHighlight style={styles.

 onPress= {this._onPressButtonP

 underlayColor='#99d9f4'>

 <Text style={styles.buttonText

 </TouchableHighlight>

 </View>

This is a simple form having two input fields, name and address,

along with styling, which we added at the end. Just as in construc-

tor, the state for these two properties was set to an empty string.

We update the state with setState
once the user fills in the form

and pass it to the function onPressButtonPost.

You should notice we added a bind in render here. Because we are
using ES6 while declaring React components, React no longer auto-

binds. Therefore we must resolve this by explicitly calling bind in
render.

NoteThere are other binding patterns to handle this. Here are a few

popular ones in React:

1.  Binding in render (the one we have used in our application)

onChange={this.handleChange.bind(this)}

2.  Using an arrow function in render

onPress={e => this.handleChange(e)}

3.  Binding in constructor itself

constructor(props) {

 super(props);

 this.handleChange =

this.handleChange.bind(this);

}

4.  Using an arrow function in call property

handleChange = () => {

 // call this function from render

 // and this.whatever in here works fine.

};

Next, we created a method onPressButtonPost where the post
request
is made to a back-end post API.

 onPressButtonPOST() {

 fetch('https://www.akshatpaul.com/propert

 method: 'POST',

 headers: {

 Accept: 'application/json',

 'Content-Type': 'application/json',

 },

 body: JSON.stringify({

 property: {

 name: this.state.name,

 address: this.state.address,

 }

 }),

 })

 .then((responseData) => {

 AlertIOS.alert(

 "Created"

)

 })

 .done();

 }

Here, we are using the updated values of the name and address

properties and making a post request using fetch. Once our re-
quest is completed we get an alert box with a Created message.

This was simple. Now let’s try our code on a simulator. Once we
navigate from the home screen to the add new property screen, we get the
form shown in Figure 6-3.

Figure 6-3. Form to submit a record

Let’s fill in some values to submit to our back-end API (Figure 6-4).

Figure 6-4. Page to add new house

Once we submit the data to the back-end API we get the Created
message in an alert box (Figure 6-5).

Figure 6-5. Alert after successful submission

If you curl this URL, you will get something like this JSON of user-
added properties:

$curl 'http://www.akshatpaul.com/list-properti

[

{

name: "Mr. Paul's Mansion",

address: "11, Golden View, San Francisco",

images: {

thumbnail: "http://hmp.me/ol7"

}

}

]

NoteThis API shows data submitted by various readers of this

book. Your data set might differ.

Refresh the app and go to the List of Properties section (Figure 6-6).

Figure 6-6. Output showing Mr. Paul’s Mansion address

NoteBy default, iOS will block any request that’s not encrypted us-

ing Secure Sockets Layer (SSL). If you need to fetch from a clear

text URL (one that begins with http) you will first need to add an

App Transport Security (ATS) exception. If you know ahead of time

what domains you will need access to, it is more secure to add ex-

ceptions just for those domains; if the domains are not known until

runtime you can disable ATS completely. Note, however, that since

January 2017, Apple’s App Store review requires reasonable justifi-

cation for disabling ATS.

Summary

This chapter covered various network APIs that are reimplemented
from the ground up by the React Native team. You also learned about

various options like XMLHttpRequest, WebSocket, and Fetch. Be-
cause no application is complete without making server calls, you
added this capability into your housing application and learned how to
get data from a server, add new records, and save them to a server.

In Chapter 7 we explore Native Bridge for iOS and Android. By using
Native Bridge we can access Native iOS or Android APIs from
JavaScript.

(1)
(2)

© Akshat Paul and Abhishek Nalwaya 2019

Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development

https://doi.org/10.1007/978-1-4842-4454-8_7

7. Native Bridging in React Native

Akshat Paul and Abhishek Nalwaya
Gurgaon, Haryana, India
Jaipur, Rajasthan, India

Learn the rules like a pro, so you can break them like an artist.

—Pablo Picasso

So far, you have learned how to build applications using modules and
APIs available out of the box with React Native. There are times, however,
when an application has to access a native iOS or Android API and its
corresponding React Native module is not yet available. Perhaps you will
have to reuse some existing bespoke Swift, Kotlin, or Objective-C code
with your React Native application. In such scenarios we create something
called Native modules, which allow us to write code in the native language
of a platform. This chapter covers the following topics:

What is Native Bridge
Preprequisite for Native Bridge
Native Bridge for iOS
Native Bridge for Android

1 2

https://doi.org/10.1007/978-1-4842-4454-8_7

The concept of Native modules is a bit advanced, but in our experi-
ence every production-quality application at some point requires you
to delve into a little bit of native programming. Therefore, we consider
this an essential skill to know in your journey to becoming a master in
React Native.

Native Bridge

To better undersand Native modules, we will create a Counter ex-
ample in Swift for iOS and Java in Android, and this will be used in
our React app. This will be a cross-platform example, so the same
React code will work in both iOS and Android.

Because many readers of this book might not have worked in Swift or
Java, we have tried to keep the use of both these languages very ba-
sic, so it should be easily understandable.

Prerequisites for the Example

Because we are writing some code in Native, you should have the following
development setup installed on your computer.

Xcode for running the app for iOS
Android Studio for running the app for Android
React Native

We will first create a React Native app with the React Native CLI. We
could also use the Expo CLI, but then we would have to eject it to build a
Native bridge.

$ react-native init CounterNativeModuleApp

$ cd CounterNativeModuleApp

This will create the basic structure of the React Native app. It also

contains two folders, iOS and android, which have native code in
Objective-C and Java, respectively. We first learn about bridging in
iOS, and then use same repo to build for Android.

iOS Native Bridge

We will create a Counter class in Swift, which will have a static class
variable count and two methods: one for incrementing the count and
the other for getting the count value. We will then access this Swift
class from JavaScript. Let’s start by opening the

CounterNativeModuleApp.xcodeproj file in the ios folder. It
should open Xcode with your iOS code.

Create a new file by going to File ➤ New ➤ File and selecting Swift, as
shown in Figure 7-1.

Figure 7-1 Creating a new file in Swift

Now give the file the name Counter and remember to select
CounterNativeModuleApp for the Group setting, as shown in Figure
7-2.

Figure 7-2 Selecting proper group in Xcode

As we are writing code in Swift and the repo, which is generated in
Objective-C, we need a bridge to communicate between them. Click Create
Bridging Header (Figure 7-3).

Figure 7-3 Creating a bridging header

We can see that two files, Counter.swift and

CounterNativeModuleApp-Bridging-Header.h, are created

by Xcode.

Counter.swift
is where we will write our Counter class and
CounterNativeModuleApp-Bridging-Header.h will have
header details. Remember that in a project we have only one bridging
header file, so if we add new files, we can reuse this file. Update the
following code in the CounterNativeModuleApp-Bridging-
Header.h file:

#import "React/RCTBridgeModule.h"

Now let’s add a Swift class:

import Foundation

@objc(Counter)

class Counter: NSObject {

 @objc

 static var count = 0

 @objc

 func increment() {

 Counter.count += 1

 print("count is \(Counter.count)")

 }

}

In the preceding code we have created class Counter, which is in-

herited from NSObject. The root class of most Objective-C class hi-

erarchies is NSObject, from which subclasses inherit a basic inter-
face to the runtime system and the ability to behave as Objective-C
objects.

You can see that we have used @objc before a function and class.

This will make that class, function, or object available to Objective-C

NoteThe @objc attribute makes your Swift API available in Objec-

tive-C and the Objective-C runtime.

Now create a new file from File ➤ New ➤ File and select Objective-C File.
Name the file Counter (Figure 7-4).

Figure 7-4 Creating an Objective-C file

This will create a file Counter.m, which will expose the Swift class to
React Native:

#import "React/RCTBridgeModule.h"

@interface RCT_EXTERN_MODULE(Counter, NSObject

RCT_EXTERN_METHOD(increment)

@end

React Native will not expose any function of Counter to React
JavaScript unless explicitly done. To do so we can use the
RCT_EXPORT_METHOD()
macro. We therefore have to expose the
Counter class and increment the method to our JavaScript code.
Because the Swift object is converted to JSON, there is a type conversion.
RCT_EXPORT_METHOD supports
all standard JSON object types:

string (NSString)

number (NSInteger, float, double, CGFloat,

NSNumber)

boolean (BOOL, NSNumber)

array (NSArray) of any types from this list

object (NSDictionary) with string keys and values of any
type from this list

function (RCTResponseSenderBlock)

Now let’s update the JavaScript code and access this Counter class
from our React component. To do so, open App.js and update it with the
following code:

import React, {Component} from 'react';

import {StyleSheet, Text, View, NativeModules,

export default class App extends Component {

 increment = () => {

 NativeModules.Counter.increment();

 }

 render() {

 return (

 <View style={styles.container}>

 <Button

 onPress={this.increment}

 title="Increment"

 color="#841584"

 />

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 justifyContent: 'center',

 alignItems: 'center',

 backgroundColor: '#F5FCFF',

 }

});

We need to import NativeModule from react-native. The

Counter method increment can be accessed using

NativeModules.Counter.increment()
. We have created a

Button and clicking on that button calls the increment method.

Now let’s run the app from Xcode by pressing Command + R. Make

sure React Native code is running. If it is not, then run npm start.

We can see an Increment button and a warning message at the bottom as
shown in Figure 7-5. For now, ignore the warning message. We will talk

about that later in the chapter.

Figure 7-5 App running in a simulator

Now open the Xcode and check the console log. Try clicking the
Increment button three times and you will see the output shown in the logs,
as displayed in Figure 7-6.

Figure 7-6 Increment displayed in console log

We can see that we have called a Swift class method from a Java-
Script React component.

NoteRemember, if you change any code in iOS Swift or Objective-

C or Android Java, you need to rebuild the project. Only then will

changes be reflected.

Now let’s fix the warning shown at the bottom of the simulator and in the
browser console:

Module Counter requires main queue setup since it overrides
‘init’ but doesn’t implement ‘requiresMainQueueSetup’ . In a fu-
ture release React Native will default to initializing all native
modules on a background thread unless explicitly opted-out of.

To understand that better, let’s understand the thread React Native runs
on:

Main thread: Where UIKit works.

Shadow queue: Where the layout happens.

JavaScript thread: Where your JavaScript code is actually
running.

Every native module has its own GCD (Grand Central Dis-
patch) Queue unless it specifies otherwise.

Now because this Native module will run on a different thread and our
main thread is dependent on it, it is showing this warning. To make this
code to run on MainQueue, open Counter.swift and add the
following function:

 @objc

t ti f i M i Q S t () B l

 static func requiresMainQueueSetup() -> Bool

 return true

 }

Now run the app again. Remember that because we have changed the
Swift class, we need to rebuild the code. You will see the app running
without the warning now, as shown in Figure 7-7.

Figure 7-7 Application running without warning

Now let’s add the count value to our React screen. To do so we will

add the getCount function to counter.swift and call that method
from JavaScript code. We will create this method as a callback.

NoteReact Native Bridge is asynchronous, so the only way to pass

a result to JavaScript is by using callbacks or emitting events.

Open counter.swift and add the getCount method
:

import Foundation

@objc(Counter)

class Counter: NSObject {

 @objc

 static var count = 0

 @objc

 func increment() {

 Counter.count += 1

 print("count is \(Counter.count)")

 }

 @objc

 func getCount(_ callback: RCTResponseSenderBloc

 callback([NSNull(), Counter.count])

 }

 @objc

 static func requiresMainQueueSetup() -> Bool {

 return true

 }

The getCount() method
receives a callback parameter that we will

pass from your JavaScript code. We have called callback with an
array of values, which will be exposed in JavaScript. We have passed

NSNull() as the first element, which we consider an error in
callback.

We need to expose this method to counter.m:

#import "React/RCTBridgeModule.h"

@interface RCT_EXTERN_MODULE(Counter, NSObject

RCT_EXTERN_METHOD(increment)

 RCT_EXTERN_METHOD(getCount:

@end

Let’s update the React code to take the count from the getCount
method
that we just created. Update App.js with following code:

import React, {Component} from 'react';

import {StyleSheet, Text, View, NativeModules,

export default class App extends Component {

 constructor(props) {

 super(props);

 this.state = { count: 0 };

 this.updateCount();

 }

 increment = () => {

 NativeModules.Counter.increment();

 this.updateCount();

 }

 updateCount = () => {

 NativeModules.Counter.getCount((error, co

 this.setState({ count: count});

 })

 }

 render() {

 return (

 <View style={styles.container}>

 <Text>Counter from Native Code:</Text>

 <Text>{this.state.count}</Text>

 <Button

 onPress={this.increment}

 title="Increment"

 color="#841584"

 />

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 justifyContent: 'center',

 alignItems: 'center',

 backgroundColor: '#F5FCFF',

 }

});

Rebuild the source code and run the app. You can then see the counter
value and when you click Increment, it will increase the count as show, in
Figure 7-8.

Figure 7-8 Application demo in simulator

Try to refresh the page by pressing Command + R. The count value
will be the same and does not reset to 0. If you rebuild the code, how-
ever, then the value will be reset to 0.

Native Bridge for Android

In this section we will make the same JavaScript code work with An-

droid. This time we will create a Counter class in java and expose

the same functions, increment and getCount, to Javascript.

Open Android Studio (Figure 7-9) and select Open an existing Android

Studio project, and then select the android folder inside our
CounterNativeModuleApp.

Figure 7-9 Open the React Native app in Android Studio

Once the project is opened and it has downloaded all gradle dependency
(gradle is the dependency manager of Java), we will create a class
Counter. Click Menu ➤ File ➤ New ➤ Java Class. Name the file
Counter and then click OK (Figure 7-10).

Figure 7-10 Creating a Counter class

Add the following code in Counter.java file:

package com.counternativemoduleapp;

import com.facebook.react.bridge.NativeModule;

import com.facebook.react.bridge.ReactApplicat

import com.facebook.react.bridge.ReactContext;

import com.facebook.react.bridge.ReactContextB

import com.facebook.react.bridge.ReactMethod;

import com.facebook.react.bridge.Callback;

public class Counter extends ReactContextBaseJ

 private static Integer count = 0;

 public Counter(ReactApplicationContext rea

 super(reactContext);

 }

 @ReactMethod

 public void increment() {

 count++;

 System.out.println(count);

 }

 @ReactMethod

 public void getCount(

 Callback successCallback) {

 successCallback.invoke(null, count);

 }

 @Override

 public String getName() {

 return "Counter";

 }

}

We have created the Native module Counter
, which is a Java class

that is inherited from ReactContextBaseJavaModule.

ReactContextBaseJavaModule requires that the function get-

Name is called; this is always implemented. The purpose of this
method is to return the string name of the Native module, which rep-

resents this class in JavaScript. Here we will call this Counter so

that we can access it through React.NativeModules.Counter in

JavaScript. Instead of Counter, you could also use a different name.

Not all functions are exposed to JavaScript. To expose a function to
JavaScript, a Java method must be annotated using @ReactMethod. The
return type of bridge methods is always void, so we create a function
increment with @ReactMethod where we have to increase the value
of the static variable count and then print the value in the console:

 @ReactMethod

 public void increment() {

 count++;

 System.out.println(count);

 }

We have also created a getCount function that has callback as a
parameter. It returns a callback and passes the value of count.

 @ReactMethod

 public void getCount(

 Callback successCallback) {

 successCallback.invoke(null, count);

 }

The next step is to register the module, because if a module is not
registered it will not be available from JavaScript. To create a file, click
Menu ➤ File ➤ New ➤ Java Class. Name the file
CustomCounterPackage and then click OK (Figure 7-11).

Figure 7-11 Creating a new Java class

Now add the following code in CustomCounterPackage:

package com.counternativemoduleapp;

import com.facebook.react.ReactPackage;

import com.facebook.react.bridge.NativeModule;

import com.facebook.react.bridge.ReactApplicat

import com.facebook.react.uimanager.ViewManage

import java.util.ArrayList;

import java.util.Collections;

import java.util.List;

public class CustomCounterPackage implements R

 @Override

 public List<ViewManager> createViewManager

 return Collections.emptyList();

 }

 @Override

 public List<NativeModule> createNativeModu

 ReactApplicationContext reactConte

 List<NativeModule> modules = new Array

 modules.add(new Counter(reactContext))

 return modules;

 }

}

We need to override the createNativeModules function and add

the Counter object to the modules array. If this is not added there, it
will not be available in JavaScript.

A CustomCounterPackage
package needs to be provided in the
getPackages method of the MainApplication.java file. This file
exists in the android folder in your react-native application
directory. Update the following code in
android/app/src/main/java/com/CounterNativeModuleA

pp /MainApplication.java:

 package com.counternativemodu

import android.app.Application;

import android.app.Application;

import com.facebook.react.ReactApplication;

import com.facebook.react.ReactNativeHost;

import com.facebook.react.ReactPackage;

import com.facebook.react.shell.MainReactPacka

import com.facebook.soloader.SoLoader;

import java.util.Arrays;

import java.util.List;

import com.counternativemoduleapp.CustomCounte

public class MainApplication extends Applicati

 private final ReactNativeHost mReactNativeHo

 @Override

 public boolean getUseDeveloperSupport() {

 return BuildConfig.DEBUG;

 }

 @Override

 protected List<ReactPackage> getPackages()

 return Arrays.<ReactPackage>asList(

 new MainReactPackage(),

 new CustomCounterPackage()

);

 }

 @Override

 protected String getJSMainModuleName() {

 return "index";

}

 }

 };

 @Override

 public ReactNativeHost getReactNativeHost()

 return mReactNativeHost;

 }

 @Override

 public void onCreate() {

 super.onCreate();

 SoLoader.init(this, /* native exopackage *

 }

}

We don’t need to change any JavaScript code written in iOS, as we
have exposed the same class name and function. If you skipped the
iOS section earlier, you need to copy the React JavaScript code from

App.js.

Now run the app through Android Studio or from react-native
run-android (Figure 7-12).

Figure 7-12 Run the application from Android Studio

This will launch the Android emulator with the app (Figure 7-13). If

you don’t find an emulator in the list, you need to download a few by
clicking Create New Virtual Device.

Figure 7-13 Application running in Android emulator

We can see the counter change when we click Increment and the
JavaScript code is calling the Java code.

Summary

This chapter covered Native Bridge for both iOS and Android. You
created a class in Swift and Java and through NativeBridge you were
able to access these classes in JavaScript code.

In Chapter 8 you learn about testing in React Native, including type
checking using Flow, using Jest with React Native, and understand-
ing how to use snapshot testing.

(1)
(2)

© Akshat Paul and Abhishek Nalwaya 2019

Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development

https://doi.org/10.1007/978-1-4842-4454-8_8

8. Testing

Akshat Paul and Abhishek Nalwaya
Gurgaon, Haryana, India
Jaipur, Rajasthan, India

Testing is not the point. The point is about responsibility.

—Kent Beck

We do agree with Kent Beck here that testing your code is your
responsibility. However, React Native makes it really simple to write tests
for your application in comparison to traditional native code for iOS and
Android. This chapter covers the following topics:

Static type checking with Flow
Jest with React Native
Snapshot testing

Flow

Flow is a static type checker for JavaScript. It’s not essential to use
Flow, but it really enhances your development efficiency. Type check-

1 2

https://doi.org/10.1007/978-1-4842-4454-8_8

ing allows you to detect possible issues early by running tests on your
project code base. In short, we would say Flow is a productivity mod-
ule for developers.

To set up Flow for React Native applications, first open your terminal
and simply install the following npm module:

$ npm install -g flow-bin

This will install the flow module globally. Navigate to your React
Native application folder and from the root directory, execute the following
command:

$ flow init

This will create a .flowconfig file where all your Flow configura-
tions will reside.

Now, check your application for any errors with the following
command:

$ flow check

Found 0 errors

Typically, at the beginning of any project, you will find no errors. As
you proceed with day-to-day development, however, you can find is-
sues right away and resolve them.

Benefits of Using Flow

Although Flow is a great addition to any React Native application, it’s not
mandatory. However, we recommend that you include it in your React
Native project to experience the following benefits:

You can code faster without the hassle of running the source code
every time to find any issues or bugs.

It is especially helpful for extensive projects with multiple team
members working in parallel. Refactoring can become a night-
mare, and Flow helps you focus only on your changes and elimi-
nates worry about breaking other parts of the source code.

Flow helps developers to understand idiomatic JavaScript. It un-
derstands and provides feedback on common JavaScript patterns,

which helps developers to create elegent solutions.

Flow provides real-time feedback, hence saving a great deal of
time and improving code quality.

Flow provides easy integration. As seen earlier, it takes only a few
minutes to set up Flow with your project.

Jest

Jest is a unit test framework that is built on top of Jasmine. React Na-
tive supports testing of components using Jest (it’s also the recom-
mended framework used at Facebook for React Native). Besides Re-
act Native, you can also use Jest for other JavaScript projects built
using TypeScript, Node, Angular, React for Web, Vue, and many
more.

Key featues of the Jest testing framework include the following:

Snapshot testing: Jest allows you to create tests that keep
track of large objects. This helps you to write better test cases of
UI elements.

Zero configuration: Jest works out of the box and is configura-
tion free.

Fast and isolated: Tests are parallelized by running them in
their own processes, which helps maximize performance. Jest
runs previous failed tests first and reorganizes the runs based on
how long it took to execute the tests.

Simple APIs: Jest makes use of simple conventions that devel-
opers are used to. Jest covers the entire toolkit, with updated doc-
umentation that is well maintained.

Code coverage: No additional setup is required to pull a built-in
code coverage report.

Jest with React Native

Jest is included out of the box with the React Native framework for versions
0.38 and later. You are not required to use Jest, though. Instead, you can
also use a Mocha testing framework. When you set up the project initially,
create a new project with the following command:

$ react-native init jestBasics

You will get Jest preloaded, and the following package.json code
will already be present:

 "scripts": {

 ...

 "test": "jest"

 ...

 },

 "devDependencies": {

 ...

 "jest": "24.1.0",

"react-test-renderer": "16.6.3"

 ...

 },

 "jest": {

 ...

 "preset": "react-native"

 ...

 }

There will be a folder created, __tests__, which includes only one
file for now, App.js:

/∗∗

 ∗ @format

 ∗ @lint-ignore-every XPLATJSCOPYRIGHT1

 ∗/

import 'react-native';

import React from 'react';

import App from '../App';

// Note: test renderer must be required after

import renderer from 'react-test-renderer';

it('renders correctly', () => {

 renderer.create(<App />);

});

If you run yarn test or npm test, your tests will run. Because is
there nothing much there yet, you should get the following result:

$ yarn test

yarn run v1.9.4

$ jest

 PASS __tests__/App.js

 ✓ renders correctly (2650ms)
Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

Snapshots: 0 total

Time: 5.756s

Ran all test suites.

This was the case if you generated your project using the React Na-
tive CLI, but what about Expo? In previous chapters we used Expo to
speed up our development process. With Expo the setup process is
slightly different because the Expo CLI does not come with Jest out of
the box.

For this you would have to set up Jest manually with an include

jest-expo, which is not very complicated. You could try this in an
existing Expo application you created in a previous chapter or set up
a new one.

Navigate to your project folder and add jest-expo to your project
using the following command:

$ yarn add jest-expo --dev or $ npm i jest-exp

Open package.json and add the following code:

"scripts": {

 "test": "node_modules/.bin/jest"

},

"jest": {

 "preset": "jest-expo"

}

Also, create a __test__ folder and add at least one test file with the
following sample test:

it('works', () => {

 expect(1).toBe(1);

});

Open the terminal and run the following code:

$ yarn test OR npm test

yarn test

yarn run v1.9.4

$ node_modules/.bin/jest

 PASS __tests__/Example-test.js

 ✓ works (3ms)
Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

Snapshots: 0 total

Time: 2.288s

Ran all test suites.

 Done in 3.75s.

Snapshot Testing with Jest

Snapshotting
is a really useful technique in UI development that
helps ensure that there are no unexpected changes in the UI during
development. With Jest we can capture snapshots of React trees,

which help us to compare if there was a breaking change in subse-
quent changes.

A snapshot test case for a mobile app will render a UI component,
take a snapshot, and then compare it to a reference point in the past
by storing a snapshot alongside the test case. If the test fails, that
means two snapshots did not match due to an unexpected change in
the UI. Snapshots should be updated to a new version when a satis-
factory UI component is ready.

Let’s add our first snapshot test and check the report. Add the following
test in the same App.js file. For ease of understanding we are using a
project created with the React Native CLI named jestBasics.

test("component renders correctly", () => {

 const tree = renderer.create(<App />).toJSON

 expect(tree).toMatchSnapshot();

});

Run the Jest report again with the following command:

npm test

> jestBasics@0.0.1 test /Users/akshatpaul/myap

> jest

 PASS __tests__/App.js

 ✓ renders correctly (132ms)
 ✓ component renders correctly (5ms)
 › 1 snapshot written.

Snapshot Summary

 › 1 snapshot written from 1 test suite.

Test Suites: 1 passed, 1 total

Tests: 2 passed, 2 total

 Snapshots: 1 written, 1 total

Time: 1.114s, estimated 2s

Ran all test suites.

Great! Our test passed and created a snapshot of the render output of our
component. This snapshot is saved in a new folder, __snapshots__,

which resides inside the __test__ folder. You will find a snapshot file
App.js.snap. Open that file if you want to see what’s inside a snapshot.

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports['component renders correctly 1'] = '

<View

 style={

 Object {

 "alignItems": "center",

 "backgroundColor": "#F5FCFF",

 "flex": 1,

 "justifyContent": "center",

 }

 }

>

 <Text

 style={

 Object {

 "fontSize": 10,

 "margin": 10,

 "textAlign": "center",

 }

 }

 >

 Welcome to React Native!

 </Text>

 <Text

 style={

 Object {

 "color": "#333333",

 "marginBottom": 5,

 "textAlign": "center",

 }

 }

 >

 To get started, edit App.js

 </Text>

 <Text

 style={

 Object {

 "color": "#333333",

 "marginBottom": 5,

 "textAlign": "center",

 }

 }

 >

 Press Cmd+R to reload,

Cmd+D or shake for dev menu

 </Text>

</View>

`;

Do not modify this snapshot. Instead, make some change in your
App.js component and see how the snapshot changes and the report fails.
Let’s make the following change in our styling:

const styles = StyleSheet.create({

 container: {

 flex: 1,

 justifyContent: 'center',

 alignItems: 'flex-start',

 backgroundColor: '#F5FCFF',

 },

 welcome: {

 fontSize: 10,

 textAlign: 'center',

 margin: 10,

 },

 instructions: {

 textAlign: 'center',

 color: '#333333',

 marginBottom: 5,

 },

});

Here we have only made one small change in alignItems
,
changing the setting from center to flex-start. Run the report again
and see if the test fails:

npm test

> jestBasics@0.0.1 test /Users/akshatpaul/myap

> jest

 FAIL __tests__/App.js

 ✓ renders correctly (135ms)
 × component renders correctly (9ms)

 ● component renders correctly
 expect(value).toMatchSnapshot()

 Received value does not match stored snaps

 # - Snapshot

 + Received

 @@ -1,9 +1,9 @@

 <View

 style={

 Object {

 - "alignItems": "center",

 + "alignItems": "flex-start",

 "backgroundColor": "#F5FCFF",

 "flex": 1,

 "justifyContent": "center",

 }

 }

 18 | const tree = renderer.create(<App

 19 |

 > 20 | expect(tree).toMatchSnapshot();

 | ^

 21 | });

 22 |

 at Object.toMatchSnapshot (__tests__/App

 › 1 snapshot failed.

Snapshot Summary

 › 1 snapshot failed from 1 test suite. Inspec

Test Suites: 1 failed, 1 total

Tests: 1 failed, 1 passed, 2 total

Snapshots: 1 failed, 1 total

Time: 0.886s, estimated 1s

Ran all test suites.

npm ERR! Test failed. See above for more deta

Perfect! Our test failed, and this shows how snapshot testing with
Jest really helps during development of a substantial React Native
application if one developer makes a change, for example, that might
hinder the UI build by someone else.

Summary

Testing is a crucial component in any mobile app development. In this
chapter you learned about using Flow to keep your code type
checked to assist in detecting issues with your code early and resolv-
ing them before they become bugs. Next, you learned about testing
with Jest and how to set it up for both React Native CLI apps and
those generated using the ExpoCLI. In the end, we introduced the
powerful technique of snapshot testing with Jest, which makes build-
ing UIs and maintaining them much easier.

Chapter 9 covers iOS and Android app submission to the Apple App
Store and Google Play Store, respectively.

(1)
(2)

© Akshat Paul and Abhishek Nalwaya 2019

Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development

https://doi.org/10.1007/978-1-4842-4454-8_9

9. Getting Ready for the World

Akshat Paul and Abhishek Nalwaya
Gurgaon, Haryana, India
Jaipur, Rajasthan, India

The last 10 percent to launch something takes as much energy
as the first 90 percent.

—Rob Kalin

That’s a strong quote, but it usually proves quite right. However, when
it comes to launching our application with React Native, it is a piece of
cake. This chapter covers how you can create a build to distribute your
React Native application for both iOS and Android. We also introduce some
third-party platforms that are available to make distribution totally stress
free. Here are the topics covered in this chapter:

The Apple and Google Play distribution systems
Creating a build for iOS or Android
Beta testing

Apple Developer Account

1 2

https://doi.org/10.1007/978-1-4842-4454-8_9

To create builds for iOS devices for testing or to distribute applications to
actual users on the Apple App Store, you must first create and pay for an
Apple Developer Account. An individual developer account costs around
US$99 and works perfectly for independent developers, or even for
developers who are part of a small organization. However, if your company
policy requires you to be a member of a team, then your company can go
open Enterprise account. Table 9-1 lists the differences so you can

determine what works best for your organization.
Table 9-1. Selecting Your Options

Only
Apple
ID

Apple De-
veloper
Program

Enterprise
Program

Xcode developer tools ✓ ✓ ✓

Xcode beta releases ✓ ✓ ✓

Test on device ✓ ✓ ✓

Developer forums ✓ ✓ ✓

OS beta releases × ✓ ✓

Advanced app
capabilities

× ✓ ✓

Only
Apple
ID

Apple De-
veloper
Program

Enterprise
Program

Code-level support × ✓ ✓

Distribution outside
Apple App Store

× ✓ ✓

App Store distribution × ✓ ×

App Store connect × ✓ ×

Safari extensions × ✓ ×

Offering custom apps × ✓ ×

Distribution of custom
apps to your employees

× ✓ ×

Distribution of your pro-
prietary apps to your
employees

× × ✓

Only
Apple
ID

Apple De-
veloper
Program

Enterprise
Program

Cost Free
US$99

(annually)

US$299

(annually)

To create your Apple Developer Account, visit https://develop-

er.apple.com/
.

Google Play Console

In the case of Android, you explicitly do not need to have a paid ac-
count from Google Play at the time of development or testing. Howev-
er, eventually when you have to distribute your application (i.e., pub-
lish it to the Google Play Store) you would have to pay a one-time
registration fee of US$25. However, this will only be required toward
the end of the chapter if you wish to publish your app to the Play
Store.To learn more about the Google Play Console visit

https://play.google.com/apps/publish/
.

iOS Build Process

https://developer.apple.com/
https://play.google.com/apps/publish/

To get ready, we must set up our Apple Developer Profile. Apple has a
specific way of setting up certificates, IDs, and profiles. Not to worry; we’ll
learn about them all by setting them up for our React Native app. Once you
have your paid Developer account, log in into
https://developer.apple.com/
. You’ll have two options, as

shown in Figure 9-1.

Figure 9-1. Apple Developer console

The first option is Certificates, Identifiers & Profiles and the second
one is App Store Connect. The App Store is the place where we will
upload our application build to be submitted to Apple for publishing
our app to the App Store and also for beta testing our application us-
ing TestFlight.

Open the Certificates, Identifiers & Profiles page, select Development
on the left, and then click the plus (+) button on the right to begin the

https://developer.apple.com/

development and distribution certificate process (Figure 9-2).

Figure 9-2. Beginning the development and distribution process

You will then have the option to create either a development or
distribution certificate (Figure 9-3).

Figure 9-3. Selecting development and distribution certificates

We will require both because we plan to publish our application to the
App Store and the process is the same for both. Select iOS App
Development and continue to the next step. There you will see in-
structions how to generate the certificate on your Mac machine,

which will be then uploaded. For this you will make use of the Key-
chain utility.

Create a CSR File

In the Applications folder on your Mac, open the Utilities folder
and launch Keychain Access. From the Keychain Access drop-down menu,
select Keychain Access ➤ Certificate Assistant ➤ Request a Certificate
from a Certificate Authority. In the Certificate Information window, enter
the following information:

1.
In the User Email Address field, enter your e-mail address.

2.
In the Common Name field, create a name for your private key
(e.g., John Doe Dev Key).

3.
The CA Email Address field should be left empty.

4.
In the Request is group, select Saved to disk.

Click Continue within Keychain Access to complete the CSR
generating process. Once this is complete, click Continue and you see an
option to upload the CSR file in your developer portal (Figure 9-4).

Figure 9-4. Certificate upload page on Apple Developer portal

Once the CSR file is uploaded, click Continue. At the last step you will
have the option to download the certificate. Double-click it and it will
get loaded in your Keychain.

Next, follow the same steps and set up distribution certification. On
successful completion you can check both your installed certificates
in Keychain ➤ My Certifications.

We next create an App ID that will be unique for every application.
Under Identifiers, select App IDs and then click the plus (+) button (Figure
9-5).

Figure 9-5. List of App ID page on Developer portal

That will open the screen shown in Figure 9-6.

Figure 9-6. Registering an App ID in the Apple Developer portal

Make a note of the Bundle ID, as it’s the same ID that we have to use in
our App ID. We will use this once we open our code to create the build for

our application. In our example we have named it com.sampleRN.app,
but you can use any nomenclature you desire. Click Continue, and your
App ID will be listed within the App IDs section (Figure 9-7).

Figure 9-7. App ID shown in the Apple Developer portal

Next, we create a Development and Distribution profile for the
sampleReactNative application. Scroll down to the Provisioning
Profiles section and select Development, then click the plus (+) button
(Figure 9-8).

Figure 9-8. iOS Provisioning Profiles list page in the Apple Developer portal

Select the appropriate App ID from the drop-down list. In our case it
will be the App ID we created in the previous section for our
sampleReactNative app (Figure 9-9).

Figure 9-9. Add iOS Provisioning Profiles page on the Apple Developer portal

Click Continue. Your Development Provisioning profile will be gener-
ated. Double-click it and it will be loaded in your Xcode automatically.

Before proceeding to the next section, create a Distribution Provision-

ing profile for our sampleReactNative app using the same
process.

Now that all our basic setup is completed, in the next section you
learn how we create a build for our application and distribute it among
our team members using TestFlight.

Generating iOS .ipa(iPhone Application Archive)

Before we create our build and host it on TestFlight for testing, we should
load our source code in Xcode. From the root of your React Native source

code, navigate to the appropriate folder and click the Xcode project file
(Figure 9-10).

Figure 9-10. Folder structure of iOS project

Double-click this to load your application in Xcode. Click the General
tab for the application to add the settings shown in Figure 9-11.

Figure 9-11. Xcode General tab settings for the project

Use the App ID you had created in previous section as the Bundle
Identifier. This has to be same, as mentioned in the Developer con-
sole, and unique for every application you create. It is essentially a
unique identifier for your app in Apple’s system.

Next, let’s add some app icons and a launch screen for our sample
application. It’s fine to keep your launch screen simple, with just text
that comes out of the box when you initialize a React Native applica-

tion. However, we must add all types of icons for our build to be suc-
cessful and submitted to Apple for both App Store release and testing
with TestFlight.

To add icons to your application, select Images.xcassets ➤ AppIcon
folder from the project directory from Xcode (Figure 9-12).

Figure 9-12. Icon image set screen in Xcode

The icons shown here represent the same icon for your application to be
used at different places; in short, they represent your application icon in
various sizes. We won’t get into a tutorial here about how to create these
icons, because that’s a designer’s area of expertise. For our work, we can
use some application—we suggest downloading Icon Set Creator for your

Macintosh—to generate all sizes of icons for iOS devices (Figure 9-13).

There are many online sites that can help you perform the same task.

Figure 9-13. An app for creating an icon set on Mac

Next drag and drop your icons into the AppIcon pane, as shown in
Figure 9-14.

Figure 9-14. Icon image set screen in Xcode

Once this is done, you will see all your icons automatically set up and
you’re ready for the next step, which is setting up your launch screen.

Select LaunchScreen.xib to add or modify the launch screen for your
application. In our sample application, we will keep the same default
launch screen because it won’t break our build or stop us from up-

loading it. However, for a real-world application that is supposed to be
published to the App Store, it is better to have a proper launch
screen.

Next, let’s create our build, which is actually done using the Archive
command. Before we create the build, please select Generic iOS Device as
the target, as shown in Figure 9-15. The reason for changing this from a

simulator to Generic iOS Device is that your Archive command will be
disabled if you don’t make this change. On the XCode menu bar, select
Product ➤ Archive and the build process will begin.

Figure 9-15.
Xcode archive generation

When successfully built, you’ll get the window shown in Figure 9-16

with a list of all your Archives. If this window does not appear for some
reason, even after a successful build or by mistake you close it, you can
reopen it. This is Xcode Organizer.

Figure 9-16.
Xcode Organizer

Click Distribute App and you will be presented with a few options.
Select iOS App Store and after few steps your ipa will be ready to be
uploaded to App Store Connect (Figure 9-17).

Figure 9-17. Xcode Organizer detail screen

Before clicking Upload, you need to first create the application on the
App Store Connect. Go to
https://developer.apple.com/account
and select the App

Store Connect icon or visit
https://appstoreconnect.apple.com/
. There you’ll find

several options. Select My Apps, as shown in Figure 9-18.

https://developer.apple.com/account
https://appstoreconnect.apple.com/

Figure 9-18. App Store Connect home page

Inside My Apps you will see all your iOS applications. Click the plus
(+) button and select New App to create new App Store app for our React
Native application (Figure 9-19).

Figure 9-19. App Store Connect create new app

Once selected, the form displayed in Figure 9-20 will appear.

Figure 9-20. App Store Connect form to create a new app

Fill it out with the proper details for your application. You can select
the appropriate Bundle ID from the drop-down list. A SKU has to be

added, which can be different from the Bundle ID. This SKU is not vis-
ible to App Store users. For user access, if you have created any spe-
cific user group already you can select it. If not, select Full Access,

especially if this is your first application.

Click Create and your empty app will be created on App Store Connect.
Go back to Xcode and continue where we left off. Click Upload and shortly
your application build will be uploaded on App Store Connect (Figure 9-
21).

Figure 9-21. Organizer success screen

You can check your application build on App Store Connect in a few.

From App Store Connect, you can submit your application to Apple

for review. After a successful review of your application without is-
sues and errors, your app will be live on the Apple App Store for
users in two to five days.

Before you publish your application for end users, it must be thor-
oughly tested. This process is called beta testing and can be
achieved using TestFlight.

Generating Android .apk(Android application
package)

Just like Apple, Google expects all Android apps to be signed with a
certificate before they get installed on a device either for testing or
publishing in the Google Play Store.

To begin this process, first navigate to the folder where your Java
Development Kit (JDK)
is installed. In the case of Macintosh, if you are not
sure where your JDK is installed, type the following command in your
terminal:

$ /usr/libexec/java_home

This will print the path to the jdk folder. Navigate to that directory and
type the following command:

$ sudo keytool -genkey -v -keystore my-release

$ sudo keytool genkey v keystore my release

When you execute this command, it will ask few questions and re-
quire a password to be set for your keys. Please remember the pass-
word because it will be used later when applying these settings for
your React Native application.

Copy the my-release-key.keystore file in the android/app
directory in your React Native application folder (Figure 9-22).

Figure 9-22 Android folder structure of app

NoteAlways make sure to keep your keys private and never commit

in the project directory.

Next, we need to add some configurations in two files. First open
android/gradle.properties and add the following settings:

MYAPP_RELEASE_STORE_FILE=my-release-key.keystore

MYAPP_RELEASE_KEY_ALIAS=my-key-alias

MYAPP_RELEASE_STORE_PASSWORD=∗∗∗∗∗

MYAPP_RELEASE_KEY_PASSWORD=∗∗∗∗∗

As mentioned earlier, provide the password you set when you were
generating your keys.

Next, open android/app/build.gradle. In
signingConfigs ➤ release section, add the following config:

signingConfigs {

 release {

 if (project.hasProperty('MYAPP_REL

 storeFile file(MYAPP_RELEASE_S

 storePassword MYAPP_RELEASE_ST

 keyAlias MYAPP_RELEASE_KEY_ALI

 keyPassword MYAPP_RELEASE_KEY_

 }

 }

 }

In the same file inside the buildTypes ➤ release section, add
the following config:

buildTypes {

 release {

 ...

 signingConfig signingConfigs.relea

 }

 }

Finally, to generate an apk, go to the android folder
in your React
Native application and execute the following command:

$ gradlew assembleRelease

This will generate the apk build that can you can find at

android/app/build/outputs/apk/release/app-re-

lease.apk. This apk can be distributed to users and submitted to
the Google Play Store.

Beta Testing with TestFlight

TestFlight
is a utility that is included when you set up your Apple De-
veloper Account. It allows you to invite users to test your application,

provide you with feedback, and provide you with valuable test infor-
mation like crashes, and so on.

Each build is active for 90 days and you can invite up to 25 internal
testers (which does not require App Store review) and up to 10,000

external testers, which is only applicable after App Store review.

Let’s also set up our sample React Native application for TestFlight. The
process is pretty simple. Inside App Store Connect, select your application
and click the TestFlight tab (Figure 9-23).

Figure 9-23 App Store Connect TestFlight tab

You will see the recently uploaded build available. It will mention
missing compliance. Under App Information, select Test Information
from the menu pane. Click the Missing Compliance message again
and click Start Internal Testing.

You can invite up to 25 users to participate in internal testing. To add
users, return to the App Store Connect home screen and select
Users and Access. From there, you can add your testing users and
segregate them into groups if required.

Your testers would have to install the TestFlight application from the
Apple App Store to access the build, which will be installed separately
on your iOS device.

TestFlight is a good option, but it is limited to only iOS device testing.

Besides TestFlight we would recommend TestFairy and HockeyApp
as alternatives that can be used for both iOS and Android. Whereas
TestFairy is a paid utility, HockeyApp is completely free (at the time of
this writing).

Summary

In this chapter we finally reached the end of the development cycle
for a mobile application, creating a build that can be tested by users
and submitted to the Apple App Store or the Google Play Store. You
learned about the signing process for both systems: Whereas Apple
has specific steps in its signing process, the Google Android process
is fairly quick. Both, though, are designed to keep the rights and de-
vices of users from being misused. You also learned about beta test-
ing with TestFlight and some other popular options.

(1)
(2)

© Akshat Paul and Abhishek Nalwaya 2019

Akshat Paul and Abhishek Nalwaya, React Native for Mobile Development

https://doi.org/10.1007/978-1-4842-4454-8_10

10. The Ecosystem: Extending React
Native

Akshat Paul and Abhishek Nalwaya
Gurgaon, Haryana, India
Jaipur, Rajasthan, India

Civilization advances by extending the number of operations
which we can perform without thinking about them.

—Alfred North Whitehead

If you have come this far, you can proudly say you have become a React
Native developer. In this final chapter you learn how expedite your React
Native development by using some very useful, stable, and popular
libraries. These are designed to make your life a bit easier and help you
create your apps faster. This chapter covers the following topics:

Popular React Native libraries
Community, Help, and where to go from here

Popular React Native Libraries

1 2

https://doi.org/10.1007/978-1-4842-4454-8_10

From the time of its inception the React Native ecosystem has grown
by leaps and bounds. The React Native community is vibrant and ex-
ceptionally productive: With every passing week, something new is
always coming up to untangle the complications of development. By
the time you have reached this chapter and we have completed this
book, a lot more must have happened (later in this chapter we share
ways to stay updated with the community). However, this chapter pro-
vides a curated list of libraries organized based on categories to help
you increase the velocity of your React Native development.

UI

Styled-components

Styled-components allows you to write actual CSS code to style your
components. It removes the mapping between components and
styles: Using components as a low-level styling construct makes it

easy. See https://github.com/styled-

components/styled-components
.

Lottie-react-native

Lottie is a mobile library for Android and iOS that parses Adobe After
Effects animations exported as JSON with bodymovin (an After Ef-
fects extension to export anmations for the Web) and renders them

natively on mobile platforms. Access the Lottie mobile library here:

https://github.com/styled-components/styled-components

https://github.com/react-native-community/lottie-

react-native
.

React-native-vector-icons

This library is perfect for buttons, logos, and navigation and tab bars.

It is easy to extend, style, and integrate into your project. It provides
customizable icons for React Native with support for
NavBar/TabBar/Toolbar, image source, and full styling. See

https://github.com/oblador/react-native-vector-

icons
.

Forms

Formik

Formik is a simple library that helps you with the three parts that
make forms in React complicated: getting values in and out of form
state, validation and error messages, and handling form submission.

See https://github.com/jaredpalmer/formik
.

Redux-form

Redux-form is the most convenient way to manage a form state in
Redux. To make use of this module you must have some idea about

https://github.com/react-native-community/lottie-react-native
https://github.com/oblador/react-native-vector-icons
https://github.com/jaredpalmer/formik

the Redux state container and higher order components. See

https://github.com/erikras/redux-form/
.

Type Checking and Linting

ESLint

ESLint is an open source project that has as its ultimate goal to pro-
vide a pluggable linting utility for JavaScript. There are many popular
ESLint configurations available from popular projects that can import
for your application while also creating new custom linting rules

based on your requirement. See https://eslint.org/
.

Prop-types

Prop-types is a library that helps in runtime type checking for React

props and similar objects. See https://www.npmjs.com/pack-

age/prop-types
.

Flow

Flow is a static type checker for JavaScript that helps identify prob-

lems with your code early instead of guessing and checking. Flow

provides real-time feedback as you code and make your changes.

See https://flow.org/
.

https://github.com/erikras/redux-form/
https://eslint.org/
https://www.npmjs.com/package/prop-types
https://flow.org/

Testing

Jest

Jest is a testing framework that is simple to use and integrate with
your React Native application. It comes out of the box with React Na-
tive versions 0.38 and above. Jest also allows for snapshot testing,

which is a brilliant way to manage changes in the UI. See url:

https://jestjs.io/
.

Enzyme

Enzyme is a testing tool that was created and open sourced by
Airbnb. It supports tons of features like shallow rendering, full DOM
rendering, and static rendered markup. It is a great add-on, along with
Jest. Enzyme APIs are intuitive and flexible as they imitate Jquery
APIs for DOM manipulations. See

https://github.com/airbnb/enzyme
.

Chai

Chai is an assertion testing library based on test-driven and behavior-
driven development. Just like Enzyme, Chai also enahances other

testing frameworks. See https://www.chaijs.com/
.

Mocha

https://jestjs.io/
https://github.com/airbnb/enzyme
https://www.chaijs.com/

Mocha is a JavaScript testing framework that helps make asyn-
chronous testing simple. Mocha runs test serially and provides accu-
rate reporting, while mapping uncaught exceptions to the correct test

cases. See https://mochajs.org/
.

Interacting with APIs and Back End

Axios

Axios is an HTTP client for JavaScript that helps make HTTP re-
quests to REST endpoints and perform CRUD operations. Axois sup-
ports Promise API, intercept request and response, helps transform
request and response data, and has many more features. See

https://github.com/axios/axios
.

Apollo

If you plan to use GraphQL you will end up using Apollo, which is an
implementation of GraphQL that helps manage data in the cloud.

Apollo includes two open source libraries for the client and server, in
addition to developer tools that provide everything you need to run a

graph API in production with confidence. See https://www.apol-

lographql.com/docs/react/recipes/react-native.html
.

React-native-firebase

https://mochajs.org/
https://github.com/axios/axios
https://www.apollographql.com/docs/react/recipes/react-native.html

React-native-firebase is a collection of official React Native modules
connecting you to Firebase services; each module is a lightweight
JavaScript layer connecting you to the native Firebase SDKs for both

iOS and Android. See https://github.com/invertase/re-

act-native-firebase
.

Routing

React Router

React Router is a collection of navigational components that com-
pose declaratively with your application. Whether you want to have
URLs that can be bookmarked for your web app or a composable
way to navigate in React Native, React Router works perfectly. See

https://reacttraining.com/react-router
.

React Navigation

React Navigation was born from the React Native community’s need
for an extensible yet easy-to-use navigation solution written entirely
in JavaScript (so you can read and understand all of the source), on

top of powerful native primitives. See https://reactnaviga-

tion.org/
.

Utilities

https://github.com/invertase/react-native-firebase
https://reacttraining.com/react-router
https://reactnavigation.org/

Lodash

Lodash is a JavaScript library that provides utility functions for com-
mon programming tasks using the functional programming paradigm.

Lodash is the most commonly used library in any application and it is
very popular in the JavaScript world. See

https://lodash.com/docs/4.17.11
.

Ramda

Ramda is a library designed specifically for a functional programming
style, one that makes it easy to create functional pipelines and never

mutates user data. See https://ramdajs.com/
.

Moment

Moment.js is brilliant for managing dates in JavaScript, which is
something you will always stumble on when developing an applica-

tion. See https://momentjs.com/
.

Reselect

Reselect is a simple “selector” library with Redux. Having key fea-
tures like selectors can compute derived data, allowing Redux to
store the minimal possible state. Selectors are efficient; a selector is
not recomputed unless one of its arguments changes. They are also

https://lodash.com/docs/4.17.11
https://ramdajs.com/
https://momentjs.com/

composable, and they can be used as input to other selectors. See

https://github.com/reduxjs/reselect
.

Validate.js

Validation is part of any application. Validate.js serves this pur-
pose by providing a declarative way of validating JavaScript objects.

With Validate.js, validation constraints can be declared in JSON

and shared between clients and the server. See https://vali-

datejs.org/
.

React-native-device-info

This is a simple library, and as its name suggests, it provides device
information for React Native for iOS and Android. It has a long list of
APIs to provide in-depth information about the device on which an

application is running. See https://github.com/rebeccahugh-

es/react-native-device-info
.

Where to Get Help

This section provides some suggestions on where to get help in the
React Native community.

React Native Repository

https://github.com/reduxjs/reselect
https://validatejs.org/
https://github.com/rebeccahughes/react-native-device-info

The React Native repository is maintained by a full-time Facebook
React Native core team, but there is huge community that is always
contributing to keeping this framework stable. You can always raise
an issue if you find one with the framework in the GitHub repository,

and there you can also find solutions to past issues. See

https://github.com/facebook/react-native/issues
. To
report a bug in the framework you can use the bug report format

available at https://github.com/facebook/react-

native/issues/new?template=bug_report.md
.

Stack Overflow

Stack Overflow
is a place where people across the React Native
community help each other. You can post questions and get answers
pretty quickly. You can also help fellow developers as you proceed in
your journey toward becoming an expert in React Native (or any oth-
er technology). By giving answers to various questions, your score on
Stack Overflow increases, which is a kind of motivation for helping
others. Many developers actually boast about their Stack Overflow
stats. See

https://stackoverflow.com/questions/tagged/react-

native?sort=frequent
for a list of exisiting questions on React
Native. To ask a question with a React Native tag, go to

https://github.com/facebook/react-native/issues
https://github.com/facebook/react-native/issues/new%253Ftemplate%253Dbug_report.md
https://stackoverflow.com/questions/tagged/react-native%253Fsort%253Dfrequent

https://stackoverflow.com/questions/ask?tags=re-

act-native
.

Stay Updated with React Native

You should also stay in tune with the latest happenings in React Na-

tive with the official documentation available at https://github.-

com/facebook/react-native-website
. The official blog of

React Native maintained at https://facebook.github.io/re-

act-native/blog/
will keep you updated on what is new. You can
also connect with the official React Native Twitter account, which
keeps updated with both React Native and Reactjs. See

https://twitter.com/reactjs
.

React Native Communities

Sometimes if you don’t get an answer quickly on GitHub issues or
Stack Overflow, it’s a good idea to get in touch with the larger com-
munity instantly. For that you can join the React Discord channel and
connect with fellow developers. Incidentally, it’s not necessary for you
have questions; you can always share your discovery or maybe your
next open source React Native project. This is a good way to get

some visibility. See https://discordapp.com/invite/0ZcbP-

KXt5bZjGY5n
.

https://stackoverflow.com/questions/ask%253Ftags%253Dreact-native
https://github.com/facebook/react-native-website
https://facebook.github.io/react-native/blog/
https://twitter.com/reactjs
https://discordapp.com/invite/0ZcbPKXt5bZjGY5n

Another way to interact with the React Native developer community is
to be part of various online groups and forums. Here are a few
recommended ones you can join:

React Native Spectrum:
https://spectrum.chat/react-

native

React Native Facebook group:
https://www.facebook.-

com/groups/react.native.community

Expo forum:
https://forums.expo.io/

Knowledge

Besides the official React Native blog, there are some amazing posts written
on other blogs by community members that can further enhance your
knowledge. Here are two recommended ones:

DevTo community:
https://dev.to/t/reactnative

React Native on Medium:
https://medium.com/tag/react-

native

Discussions and Proposals

React Native, although very powerful, is still a young framework and
its core team is always looking for great proposals, improvements,

and discussions. Be part of this problem-solving effort and contribute
to this thriving community. You can do this by following the formal

https://spectrum.chat/react-native
https://www.facebook.com/groups/react.native.community
https://forums.expo.io/
https://dev.to/t/reactnative
https://medium.com/tag/react-native

channel at https://github.com/react-native-

community/discussions-and-proposals
.

Summary

Now we have reached the end of our book and our last summary. In
this chapter we provided information about various React Native li-
braries that can expedite our development time and give access to
the enormous treasure trove of features built over time by the React
Native community. You also learned about how to stay updated on
this fast-moving framework by getting information from the right
sources.

Although you have learned a lot during the course of this book, to tru-
ly master this topic you have to keep practicing and creating apps.

There is no better way to become an expert at a technology than
learning on your own in a real-world scenario. You can contribute to
the developer community by creating a module that still does not ex-
ist or by contributing to existing open source React Native repos. We
are very excited about React Native, just like you, and look forward to
seeing your work making a mark in the mobile development and Re-
act Native world.

https://github.com/react-native-community/discussions-and-proposals

Index

A

Alert method
Android Virtual Devices (AVDs)
Animations
Apple Developer Account
Beta testing with test flight
generating android apk
generating iOS ipa
App Store connect
icons
settings
Xcode archive generation
Xcode Organizer
Xcode project file
iOS build process
add provisioning profiles
App ID
certificate uploaded on Apple Developer portal
create development and distribution process
Keychain Access
Select development
populated list with options
AsyncStorage
B

Beta testing
C

catch() method
Communication
fetch
server
get data
saving data (
see
Data saving, server)
WebSocket
XMLHttpRequest
componentDidMount() method
D, E

Data saving, server
AddNewProperty
Addproperty page
alert box message
back-end API
list of properties
navigation route
post request
setState
simulator
Debugging, React Native
in Chrome
FPS Monitor
inspect element

reload option
in Safari
Deep linking
Android
defined
iOS
navigation container
React component
Safari browser
universal links
URL schemes
Device capabilities
AsyncStorage
addMessage method
getInitialState
retrieveData
updatedStorage method
Update Storage
GeoLocation
annotations
Google Maps
latitude and longitude
MapView component
NativeAlert
add buttons
alert and prompt method
Button
new component

WebView
code review
with URL
Dispatcher
F

Fetch
list of properties
network APIs
Flexbox
flexDirection
flex values
landscape mode screen
NavigatorIOS
portrait mode screen
styles
Flux
actions
benefits
data flow
definition
dispatcher
dispatch() method
predictable code
stores
waitFor() method
Freeway Drive
G

GeoLocation
getCount() method
getCurrentPosition function
H, I

_handleListProperty function
J, K

Java Development Kit (JDK)
JavaScript Object Notation (JSON)
Jest
definition
features
React Native framework
Snapshot testing
L

ListView
Lodash
M

MapView component
Mocha
Model-view-controller (MVC) framework
MVC pattern
N, O, P, Q

NativeAlert component

Native Bridge
for Android
creating Counter class
creating Java class
CustomCounterPackage
open app
run application
development setup
iOS
Counter class
Counter.swift
creating bridging header
creating file in Swift
creating Objective-C file
getCount method
NativeModules.Counter.increment()
open Xcode
RCT_EXPORT_METHOD()
selecting proper group
thread
NSLocationWhenInUseUsageDescription
R

Ramda
RCT_EXPORT_METHOD()
React
advantages
components

HTML properties
property types
state
creating Hello World project
installation
MVC
one-way data flow
problems
spaghetti relationship
two-way data binding
VDOM
components
working principle
React Native
communities
create basic structure project
CLI tool
Expo app
terminal output
debugging
in Chrome
FPS Monitor
inspect element
reload option
in Safari
Hello World application
destructuring
iOS simulator

render function
Xcode editor
HouseShare project
Android
AppDelegate.m
index.ios.js
iOS folder
node_modules
package.json
RCTRootView
installation
cli module
Node and npm
JavaScriptCore framework
live reload
prerequisites
RCTText
repository
running app on simulator
Stack Overflow
TouchableHighlight
web technologies
WebView-based
React Native application
React Native CLI
React-native-firebase
React Native libraries
forms

routing
testing
type checking, linting
UI
utilities
react-native-maps
react-native-maps npm module
React Navigation
createStackNavigator
creating HomeScreen React component
creating screen
definition
Reducers
Redux
actions
advantages
data flow
definition
functional programming
with React Native
components
folder structure
reducer code
todo reducer
visibilityFilter reducer
reducers
store
Reflux

populated list with options
S

ScrollView
animations
code
Separation of concerns (SoC)
Server
get data
HomeListScreen
iOS simulator
MOCK_DATA
setState object
iOS simulator
saving data, (
see
Data saving, server)
Snapshot testing
Stack Overflow
Static type checking
flow
flow, benefits
Swift class method
T

TestFlight
TouchableHighlight
U

User interface

add images
Flexbox (
see
Flexbox)
ListView component
ScrollView
TouchableHighlight
V

Virtual DOM (VDOM)
components
working principle
W

watchPosition method
WebSocket
WebView
X, Y, Z

XMLHttpRequest

	Front Matter
	1. Learning the Basics: A Whistle-Stop Tour of React
	2. The Simplest Program: Hello World with React Native
	3. Solving Problems Differently with Flux and Redux
	4. Canvas, Brush, and Paint: Working with the User Interface
	5. Exploring Device Capabilities
	6. Communicating with Servers
	7. Native Bridging in React Native
	8. Testing
	9. Getting Ready for the World
	10. The Ecosystem: Extending React Native
	Back Matter

