

Table of Contents

React: Cross-Platform Application Development with React Native
Credits

Meet Your Expert
Preface

What's in It for Me?

What Will I Get from This Book ?

Prerequisites
1. Project 1 – Car Booking App

Overview
Setting up the Folder Structure

Files and Folders Created by React Native's CLI
__tests__/

android/ and ios/

node_modules/

Files in the Root Folder
react-native link

Running the App in the Simulator
The Developer Menu

Creating our App's Entry Point
Adding Images to Our App

LocationSearch
Aligning Elements

LocationPin
flexDirection

Dimensions
Shadows

ClassSelection
Adding Custom Fonts
Animations

ConfirmationModal
Summary
Assessments

2. Project 2 – Image Sharing App
Overview
Setting up the Folder Structure
Redux
ImagesList
Gallery
Header
ActivityIndicator
Camera
MyImages
ImageGrid
Actions
Reducers
API
Summary
Assessments

3. Project 3 – Messaging App
Overview
Firebase

Real-Time Database
Reading Data from Firebase's Database
Updating Data in Firebase's Database

Authentication
Setting up the Folder Structure
Users Store
Chats Store
Push Notifications Using Firebase
Login
Chats
ListItem
Chat
Search
Profile
Summary
Assessments

4. Project 4 – Game
Overview
Sprites

Numbers
Background
Ground
Rocks
Parrot
The Home Screen
Game Over Screen

Setting up the folder structure

GameContainer
Actions
Reducer
The Sprites Module

The Sprites Array
prepareNewRockSizes()

getRockProps()

moveSprites()

bounceParrot()
checkForCollision()

getUpdatedScore()

Constants
Parrot
RockUp and RockDown
Ground
Score
Start
GameOver
StartAgain
Summary
Assessments

5. Assessment Answers
Lesson 1: Project 1 – Car Booking App
Lesson 2: Project 2 – Image Sharing App
Lesson 3: Project 3 – Messaging App
Lesson 4: Project 4 – Game

React: Cross-Platform Application
Development with React Native

Emilio Rodriguez Martinez

React: Cross-Platform Application
Development with React Native

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, with-
out the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or im-
plied. Neither the author, nor Packt Publishing, and its dealers and
distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book by
the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

First published: March 2018

Production reference: 1070318

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK.

ISBN: 978-1-78913-608-1

www.packtpub.com

http://www.packtpub.com/

Credits

This book is a blend of text and quizzes, all packaged up keeping
your journey in mind. It includes content from the following Packt
product:

React Native Blueprints by Emilio Rodriguez Martinez

Meet Your Expert

We have the best work of the following esteemed author to ensure
that your learning journey is smooth:

Emilio Rodriguez Martinez is a senior software engineer who has
been working on highly demanding JavaScript projects since 2010.

He transitioned from web development positions into mobile develop-
ment, first with hybrid technologies such as Cordova and then with
native JavaScript solutions such as Titanium. In 2015, he focused on
the development and maintenance of several apps built in React Na-
tive, some of which were featured in Apple's App Store as the top
apps of the week. Nowadays, Emilio is part of the Red Hat mobile
team, which leverages Red Hat's open source mobile platform. He
serves as an advocate for mobile developers using RHMAP. He is
also an active contributor to React Native's codebase and Stack

Overflow, where he provides advice on React and React Native
questions.

Preface

React Native helps web and mobile developers to build cross-plat-
form apps that perform at the same level as any other natively devel-
oped app. The range of apps that can be built using this library is
huge. From e-commerce to games, React Native is a good fit for any
mobile project due to its flexibility and extendable nature. There's no
doubt React Native is not only a good alternative to native develop-
ment, but also a great way to introduce web developers to a mobile
project.

What's in It for Me?

Maps are vital for your journey, especially when you're holidaying in
another continent. When it comes to learning, a roadmap helps you in
giving a definitive path for progressing towards the goal. So, here
you're presented with a roadmap before you begin your journey.

This book is meticulously designed and developed in order to em-
power you with all the right and relevant information on React Native.

We've created this Learning Path for you that consists of four
lessons:

Lesson 1, Project 1 – Car Booking App, explains how some of the
most popular car-sharing apps can be developed using React Native.

Lesson 2, Project 2 – Image Sharing App, teaches you the fundamen-
tals of how a social network based on image sharing can be created
with React Native.

Lesson 3, Project 3 – Messaging App, shows you how to build a full-
featured messaging app including push notifications and cloud-based
storage.

Lesson 4, Project 4 – Game, shows you the fundamentals of how a
2D game can be developed using React Native.

What Will I Get from This Book ?

Structure React Native projects to ease maintenance and
extensibility
Optimize a project to speed up development
Use external modules to speed up the development and mainte-
nance of your projects
Explore the different UI and code patterns to be used for iOS and
Android
Know the best practices when building apps in React Native

Prerequisites

This book is for developers who want to build amazing cross-platform
apps with React Native. Some of the prerequisites that is required be-
fore you begin this book are:

Basic knowledge of HTML, CSS, and JavaScript is needed
Prior working knowledge of React is assumed

Chapter 1. Project 1 – Car Booking
App

Considering the success of the React framework, Facebook recently
introduced a new mobile development framework called React Na-
tive. With React Native's game-changing approach to hybrid mobile
development, you can build native mobile applications that are much
more powerful, interactive, and faster by using JavaScript.

In this lesson, we will set the focus on feature development rather
than in building a user interface by delegating the styling of our ap-
plications to UI libraries such as native-base as well as spend more
time in building custom UI components and screens.

The app we will build is a car booking app in which the user can se-
lect the location in which he/she wants to be picked up and the type
of car she wants to book for the ride. Since we want to focus on the
user interface, our app will only have two screens and a little state
management is needed. Instead, we will dive deeper into aspects
such as animations, component's layout, using custom fonts, or dis-
playing external images.

The app will be available for iOS and Android devices, and since all
the user interface will be custom made, 100% of the code will be

reused between both platforms. We will only use two external
libraries:

React-native-geocoder : This will translate coordinates into
human-readable locations
React-native-maps : This will easily display the maps and the
markers showing the locations for the bookable cars

Due to its nature, most of the car booking apps put their complexity in
the backend code to connect drivers with riders effectively. We will
skip this complexity and mock all that functionality in the app itself to
focus on building beautiful and usable interfaces.

Overview

When building mobile apps, we need to make sure we reduce the in-
terface complexity to the minimum, as it's often punishing to present
the user intrusive manuals or tooltips once the app is open. It is a
good practice to make our app self-explanatory, so the user can un-
derstand the usage just by going through the app screens. That's why
using standard components such as drawer menus or standard lists
is always a good idea, but is not always possible (as it happens in our
current app) due to the kind of data we want to present to the user.

In our case, we put all the functionality in the main screen plus in a
modal box. Let's take a look at what the app will look like on iOS
devices:

The background on our main screen is the maps component itself
where we will show all the available cars as markers in the map. On
the maps, we will display three components:

The pickup location box displaying the selected pickup location
The location pin, which can be dragged around the maps to select
a new location
The selector for the kind of car the user wants to book. We will dis-
play three options: ECONOMY , SPECIAL , and SUPERIOR

Since most of the components are custom built, this screen will look
very similar in any Android device:

The main difference between the iOS and the Android version will be
the map component. While iOS will use Apple maps by default, An-
droid uses Google Maps. We will leave this setup as each platform
has its own map component optimized, but it's good to know that we
can switch the iOS version to use Google Maps just by configuring
our component.

Once the user has selected a pickup location, we will display a modal
box to confirm the booking and contact the nearest driver for pickup:

As it happened with the main screen, this screen uses custom com-
ponents: we even decided to create our own animated activity indica-
tor. Because of this, the Android version will look very similar:

Since our app won't be connected to any external API, it should be
seen as a mere display of the visual capabilities of React Native, al-
though it could be easily extended by adding a state management li-
brary and a matching API.

Let's take a look at the topics of this lesson:

Using maps in our app
Style sheets in React Native
Flexbox in React Native
Using external images in a React Native app
Adding custom fonts
Animations in React Native
Using modals
Working with shadows and opacity

Setting up the Folder Structure

Let's initialize a React Native project using React Native's CLI. The
project will be named carBooking and will be available for iOS and
Android devices:

react-native init --version="0.49.3" carBooking

In this app, there is only one screen so that the folder structure for the
code should be very straightforward. Since we will be using external
images and fonts, we will organize these resources in two separate
folders: img and fonts , both under the root folder.

The images and fonts used to build this app can be downloaded
freely from some image and font sock websites. The name of the font
we will use is Blair ITC.

We also stored the following images inside the img folder:

car.png : A simple drawing of a car to represent the bookable
cars on the map.

class.png : The silhouette of a car to show inside the class se-
lection button

classBar.png : The bar in which the class selection button will
be slid to change the class.

loading.png : Our custom spinner. It will be stored as a static
image and animated through the code.

Finally, let's take a look at our package.json file:

{

 "name": "carBooking",

 "version": "0.0.1",

 "private": true,

 "scripts": {

 "start": "node node_modules/react-native/

 "test": "jest"

 },

 "dependencies": {

 "react": "16.0.0-beta.5",

 "react-native": "0.49.3",

"react-native-geocoder": " 0.4.8",

 "react-native-maps": " 0.15.2"

 },

 "devDependencies": {

 "babel-jest": "20.0.3",

 "babel-preset-react-native": "1.9.2",

 "jest": "20.0.4",

 "react-test-renderer": "16.0.0-alpha.6"

 },

 "jest": {

 "preset": "react-native"

 },

 "rnpm": {

 "assets": ["./fonts"]

 }

}

We only use two npm modules:

react-native-geocoder : This translates coordinates into hu-
man-readable locations
react-native-maps : This easily displays the maps and the
markers showing the locations for the bookable cars

In order to allow the app to use custom fonts, we need to make sure
they are accessible from the native side. For that, we need to add a
new key to package.json named rnpm . This key will store an ar-
ray of assets in which we will define our fonts folder. During
build time, React Native will copy the fonts to a location from where
they will be available natively and therefore usable within our code.

This is only required by fonts and some special resources, but not by
images.

Files and Folders Created by React Native's CLI

Let's take the chance of having a simple folder structure in this app to
show what other files and folders are created by React Native's CLI
when initializing a project through react-native init <pro-

jectName> .

__tests__/

React Native's CLI includes Jest as a developer dependency and, to
get testing started, it includes a folder named __tests__ , in which
all tests can be stored. By default, React Native's CLI adds one test
file: index.js , representing the initial set of tests. Developers can
add later tests for any components in the app. React Native also adds
a test script in our package.json , so we can run npm run

test from the very first moment.

Jest is ready to be used with every project initialized through the CLI
and it's definitely the easiest option when it comes to testing React
components, although it is also possible to use other libraries such as
Jasmine or Mocha.

android/ and ios/

These two folders hold the built app for both platforms natively. This
means that we can find our .xcodeproj and java files in here.

Every time we need to make changes to the native code of our app,

we will need to modify some files in these two directories.

The most common reasons to find and modify files in these folders
are:

Modify permissions (push notifications, access to location ser-
vices, access to compass, and many more) by changing
Info.plist (iOS) or AndroidManifest.xml (Android)

Change the build settings for any platform
Add API keys for native libraries
Add or modify native libraries to be used from our React Native
code

node_modules/

This folder should be familiar to most of the JavaScript developers
who worked with npm as it is where npm stores all the modules
marked as a dependency in our project. It is not common to have the
necessity to modify anything inside this folder, as everything should
be handled through npm's CLI and our package.json file.

Files in the Root Folder

React Native's CLI creates a number of files in the root directory of
our project; let's take a look at the most important ones:

.babelrc : Babel is the default library in React Native to compile
our JavaScript files containing JSX and ES6 (for example, syntax

into plain JavaScript capable to be understood by most of the
JavaScript engines). Here, we can modify the configuration for this
compiler so we can, for example, use the @ syntax for decorators
as it was done in the first versions of React.
.buckconfig : Buck is the build system used by Facebook. This
file is used to configure the building process when using Buck.

.watchmanconfig : Watchman is a service that watches the
files in our project to trigger a rebuild anytime something changes
in them. In this file, we can add some configuration options such as
directories, which should be ignored.

app.json : This file is used by the react-native eject

command to configure the native apps. It stores the name that
identifies the app in each platform and also the name that will be
displayed on the home screen of the device when the app is
installed.

yarn.lock : The package.json file describes the intended
versions desired by the original author, while yarn.lock de-
scribes the last-known-good configuration for a given application.

react-native link

Some apps depend on libraries with native capabilities which, before
React Native CLI, required developers to copy native library files into
the native projects. This was a cumbersome and repetitive project un-
til react-native link came to the rescue. In this lesson we will

use it to copy library files from react-native-maps and to link
custom fonts from our /fonts folder to the compiled app.

By running react-native link in our project's root folder we will
trigger the linking steps which will result in those native capabilities
and resources to be accessible from our React Native code.

Running the App in the Simulator

Having the dependencies in the package.json file and all the ini-
tial files in place, we can run the following command (in the root folder
of our project) to finish the installation:

npm install

Then, all the dependencies should be installed in our project. Once
npm finishes installing all dependencies, we can start our app in the
iOS simulator:

react-native run-ios

Or in the Android emulator using the following command:

react-native run-android

When React Native detects the app is running in a simulator, it en-
ables a developer toolset available through a hidden menu, which
can be accessed through the shortcuts command + D on iOS or com-

mand + M on Android (on Windows Ctrl should be used instead of
command). This is how the developer menu looks like in iOS:

And this is how it looks like in the Android simulator:

The Developer Menu

In the process of building an app in React Native, the developer will
have debugging needs. React Native fulfills these needs with the abil-
ity to remotely debug our apps in Chrome developer's tools or exter-
nal applications such as React Native Debugger. Errors, logs, and
even React components can be debugged easily as in a normal web
environment.

On top of that, React Native provides a way to automatically reload
our app each time a change is done saving the developers the task of
manually reloading the app (which can be achieved by pressing com-
mand + R or Ctrl + R). There are two options when we set our app for
automatic reloading:

Live reload detects any changes we make in the app's code and
resets the app to its initial state after reloading.

Hot reload also detects changes and reloads the app, but keeps
the current state of the app. This is really useful when we are im-
plementing user flows to save the developer to repeat each step in
the flow (for example, logging in or registering test users)

Finally, we can start the performance monitor to detect possible
performance issues when performing complex operations such as
animations or mathematical calculations.

Creating our App's Entry Point

Let's start our app's code by creating the entry point for our app:

index.js . We import src/main.js in this file to use a common
root component for our code base. Moreover, we will register the app
with the name carBooking :

/*** index.js ***/

import { AppRegistry } from 'react-native';

import App from './src/main';

AppRegistry.registerComponent('carBooking', () =>

Let's start building our src/main.js by adding a map component:

/*** src/main.js ** */

import React from 'react';

import { View, StyleSheet } from 'react-native';

import MapView from 'react-native-maps';

export default class Main extends React.Component

 constructor(props) {

 super(props);

 this.initialRegion = {

 latitude: 37.78825,

 longitude: -122.4324,

 latitudeDelta: 0.00922,

 longitudeDelta: 0.00421,

 };

 }

 render() {

 return (

 <View style={{ flex: 1 }}>

 <MapView

 style={styles.fullScreenMap}

 initialRegion={this.initialRegion}

 />

 </View>

);

 }

}

const styles = StyleSheet.create({

fullScreenMap: {

 position: 'absolute',

 top: 0,

 bottom: 0,

 left: 0,

 right: 0,

 },

});

Instead of using libraries for styling, we will create our own styles us-
ing StyleSheet , a React Native API, which serves as an abstrac-
tion similar to CSS style sheets. With StyleSheet , we can create a
style sheet from an object (through the create method), which can
be used in our components by referring to each style by its ID.

This way, we can reuse the style code and make the code more read-
able as we will be using meaningful names to refer to each style (for
example, <Text style={styles.title}>Title 1</Text>).

At this point, we will only create a style referred by the key full-

ScreenMap and make it as an absolute position by covering the
fullscreen size by adding top , bottom , left , and right coor-
dinates to zero. On top of this, we need to add some styling to our
container view to ensure it fills the whole screen: {flex: 1} . Set-
ting flex to 1 , we want our view to fill all the space its parent occu-
pies. Since this is the main view, {flex: 1} will take over the
whole screen.

For our map component, we will use react-native-maps , an
open module created by Airbnb using native maps capabilities for
Google and Apple maps. react-native-maps is a very flexible
module, really well maintained, and fully featured so that it has be-
come the de facto maps module for React Native. As we will see later

in this lesson, react-native-maps requires the developer to run
react-native link in order for it to work.

Apart from the style, the <MapView/> component will take ini-

tialRegion as a property to centre the map in a specific set of co-
ordinates, which should be the current location of the user. For con-
sistency reasons, we will locate the center of the map in San Francis-
co where we will also place some bookable cars:

/** * src/main.js ** */

import React from 'react';

import { View, Animated, Image, StyleSheet } from

import MapView from 'react-native-maps';

export default class Main extends React.Component

 constructor(props) {

 super(props);

 this.state = {

carLocations: [

 {

 rotation: 78,

 latitude: 37.78725,

 longitude: -122.4318,

 },

 {

 rotation: -10,

 latitude: 37.79015,

 longitude: -122.4318,

 },

 {

 rotation: 262,

 latitude: 37.78525,

 longitude: -122.4348,

 },

],

 };

 this.initialRegion = {

 latitude: 37.78825,

 longitude: -122.4324,

 latitudeDelta: 0.00922,

 longitudeDelta: 0.00421,

 };

 }

 render() {

 return (

 <View style={{ flex: 1 }}>

 <MapView

 style={styles.fullScreenMap}

 initialRegion={this.initialRegion}

 >

 {this.state.carLocations.map((carLocati

 <MapView.Marker key={i} coordinate={c

 <Animated.Image

 style={{

 transform: [{ rotate: `${carLoc

 }}

 source={require('../img/car.png')

 />

 </MapView.Marker>

))}

 </MapView>

 </View>

);

 }

}

...

We have added an array of carLocations to be shown on the
map as markers. Inside our render function, we will iterate over this
array and place the corresponding <MapView.Marker/> in the
provided coordinates. Inside each marker, we will add the image of
the car rotating it by a specific number of degrees, so they match the
streets directions. Rotating images must be done with the
Animated API, which will be better explained later in this lesson.

Let's add a new property in our state to store a human-readable posi-
tion for the location in which the map is centered:

/** * src/main.js ** */

import GeoCoder from 'react-native-geocoder';

export default class Main extends React.Component

 constructor(props) {

 super(props);

 this.state = {

 position: null,

 ...

 };

 ...

 }

_onRegionChange(region) {

 this.setState({ position: null });

 const self = this;

 if (this.timeoutId) clearTimeout(this.timeout

 this.timeoutId = setTimeout(async () => {

 try {

 const res = await GeoCoder.geocodePositio

 lat: region.latitude,

 lng: region.longitude,

 });

 self.setState({ position: res[0] });

 } catch (err) {

 console.log(err);

 }

 }, 2000);

 }

componentDidMount() {

 this._onRegionChange.call(this, this.initialR

 }

 render() {

 <View style={{ flex: 1 }}>

 <MapView

 style={styles.fullScreenMap}

 initialRegion={this.initialRegion}

onRegionChange={this._onRegionChange.bind(this)}

 >

 ...

 </MapView>

 </View>;

 }

}

...

To fill this state variable, we also created a function _onRegion-

Change , which uses the react-native-geocoder module. This
module uses Google Maps reverse geocoding services to translate
some coordinates into a human-readable location. Because it's a
Google Service, we might need to add an API key in order to authen-
ticate our app with the service. All the instructions to get this module
fully installed can be found at its repository URL
https://github.com/airbnb/react-native maps/blob/master/docs/instal-
lation.md.

We want this state variable to be available from the first mount of the
main component, so we will call _onRegionChange in compo-

nentDidMount so that the name of the initial location is also stored
in the state. Moreover, we will add the onRegionChange property
on our <MapView/> to ensure the name of the location is recalcu-
lated every time the map is moved to show a different region, so we
always have the name of the location in the center of the map in our
position state variable.

As a final step on this screen, we will add all the subviews and anoth-
er function to confirm the booking request:

/** * src/main.js ** */

...

https://github.com/airbnb/react-native%20maps/blob/master/docs/installation.md

import LocationPin from './components/LocationPin

import LocationSearch from './components/Location

import ClassSelection from './components/ClassSel

import ConfirmationModal from './components/Confi

export default class Main extends React.Component

 ...

_onBookingRequest() {

 this.setState({

 confirmationModalVisible: true,

 });

 }

 render() {

 return (

 <View style={{ flex: 1 }}>

 ...

<LocationSearch

 value={

 this.state.position &&

 (this.state.position.feature ||

 this.state.position.formattedAddres

 }

 />

 <LocationPin onPress={this._onBookingRequ

 <ClassSelection />

 <ConfirmationModal

 visible={this.state.confirmationModalVi

 onClose={() => {

 this.setState({ confirmationModalVisi

 }}

 />

 </View>

);

 }

}

...

We added four subviews:

LocationSearch : The component in which we will show the
user the location that is centered on the map so she can know the
name of the location she is exactly requesting the pickup.

LocationPin : A pinpointing to the center of the map, so the
user can see on the map where she will request the pickup. It will
also display a button to confirm the pickup.

ClassSelection : A bar where the user can select the type of
car for the pickup (economy, special, or superior).
ConfirmationModal : The modal displaying the confirmation of
the request.

The _onBookingRequest method will be responsible for bringing
the confirmation modal up when a booking is requested.

Adding Images to Our App

React Native deals with images in a similar way as websites do: im-
ages should be placed in a folder inside the projects folder structure,

and then they can be referenced from the <Image /> (or <Ani-
mated.Image />) by the source property. Let's see an example
from our app:

car.png : This is placed inside the img/ folder in the root of our
project
Then the image will be displayed by creating an <Image/> com-
ponent using the source property:

 <Image source={require('../img/car.png')

Notice how the source property doesn't accept a string, but a
require('../img/car.png') . This is a special case in React
Native and may change in future versions.

LocationSearch

This should be a simple textbox displaying the human-readable name
of the location in which the map is centered. Let's take a look at the
code:

/*** src/components/LocationSearch.js ** */

import React from 'react';

import {

 View,

 Text,

 TextInput,

 ActivityIndicator,

 StyleSheet,

} from 'react-native';

export default class LocationSearch extends React

 render() {

 return (

 <View style={styles.container}>

 <Text style={styles.title}>PICKUP LOCATIO

 {this.props.value && (

 <TextInput style={styles.location} valu

)}

 {!this.props.value && <ActivityIndicator

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 backgroundColor: 'white',

 margin: 20,

 marginTop: 40,

 height: 60,

 padding: 10,

 borderColor: '#ccc',

 borderWidth: 1,

 },

 title: {

 alignSelf: 'center',

 fontSize: 12,

 color: 'green',

 fontWeight: 'bold',

 },

 location: {

 height: 40,

 textAlign: 'center',

 fontSize: 13,

 },

 spinner: {

 margin: 10,

 },

});

It receives only one property: value (the name of the location to be
displayed). If it's not set, it will display a spinner to show activity.

Because there are many different styles to be applied in this compo-
nent, it's beneficial to use the StyleSheet API to organize the
styles in a key/value object and refer it from our render method.

This separation between logic and style helps in readability of the
code and also enables code reuse as the styles can be cascaded
down to child components.

Aligning Elements

React Native uses Flexbox for setting up the layout of the elements in
an app. This is mostly straightforward, but sometimes it can be con-
fusing when it comes to aligning elements as there are four proper-
ties that can be used for this purpose:

justifyContent: It defines the alignment of the child ele-
ments through the main axis
alignItems : It defines the alignment of the child elements
through the cross-axis

alignContent : It aligns a flex container's lines within when
there is extra space in the cross-axis
alignSelf : It allows the default alignment (or the one specified
by alignItems) to be overridden for individual flex items

The first three properties should be assigned to the container ele-
ment, while the fourth one will be applied to a child element in case
we want to override the default alignment.

In our case, we only want one element (the title) to be center aligned
so we can use alignSelf: 'center' . Later in this lesson, we
will see other uses for the different align properties.

LocationPin

In this section, we will focus on building the pinpointing to the center
of the map to visually confirm the pickup location. This pin also con-
tains a button, which can be used to trigger a pickup request:

/** * src/components/LocationPin.js ** */

import React from 'react';

import {

 View,

 Text,

Dimensions,

 TouchableOpacity,

 StyleSheet,

} from 'react-native';

const { height, width } = Dimensions.get('window

export default class LocationPin extends React.Co

 render() {

 return (

 <View style={styles.container}>

 <View style={styles.banner}>

 <Text style={styles.bannerText}>SET PIC

<TouchableOpacity

 style={styles.bannerButton}

 onPress={this.props.onPress}

 >

 <Text style={styles.bannerButtonText}

 </TouchableOpacity>

 </View>

 <View style={styles.bannerPole} />

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 position: 'absolute',

top: height / 2 - 60,

 left: width / 2 - 120,

 },

 banner: {

flexDirection: 'row',

 alignSelf: 'center',

 justifyContent: 'center',

 borderRadius: 20,

 backgroundColor: '#333',

 padding: 10,

 paddingBottom: 10,

shadowColor: '#000000',

 shadowOffset: {

 width: 0,

 height: 3,

 },

 shadowRadius: 5,

 shadowOpacity: 1.0,

 },

 bannerText: {

 alignSelf: 'center',

 color: 'white',

 marginRight: 10,

 marginLeft: 10,

 fontSize: 18,

 },

 bannerButton: {

 borderWidth: 1,

 borderColor: '#ccc',

 width: 26,

 height: 26,

 borderRadius: 13,

 },

 bannerButtonText: {

 color: 'white',

 textAlign: 'center',

backgroundColor: 'transparent',

 fontSize: 18,

 },

 bannerPole: {

 backgroundColor: '#333',

 width: 3,

 height: 30,

 alignSelf: 'center',

 },

});

This component is again very light in terms of functionality, but has a
lot of custom style. Let's dive into some of the style details.

flexDirection

By default, React Native and Flexbox stack elements vertically:

For the banner in our pin, we want to stack every element horizontally
after each other as follows:

This can be achieved by adding the following styles to the containing
element flexDirection: 'row' . The other valid options for
flexDirection are:

row-reverse

column (default)
column-reverse

Dimensions

One of the first lines of code in this component extracts the height
and the width from the device into two variables:

const {height, width} = Dimensions.get('window');

Obtaining the height and width of the device enables us developers
to absolute position some elements being confident they will show
properly aligned. For example, we want the banner of our pin to be
aligned in the center of the screen, so it points to the center of the
map. We can do this by adding {top: (height/2), left:

(width/2)} to the banner style in our style sheet. Of book, that
would align the upper-left corner, so we need to subtract half the size
of the banner to each property to ensure it gets centered in the mid-
dle of the element. This trick can be used whenever we need to align
an element that is not relative to any other in the components tree al-
though it is recommended to use relative positioning when possible.

Shadows

Let's set focus on our banner's style, specifically on the shadows

properties:

banner: {

 ...

 shadowColor: '#000000',

 shadowOffset: {

 width: 0,

 height: 3

 },

 shadowRadius: 5,

 shadowOpacity: 1.0

}

In order to add a shadow to a component, we need to add four
properties:

shadowColor : This adds the hexadecimal or RGBA value of the
color we want for our component
shadowOffset : This shows how far we want our shadow to be
casted
shadowRadius : This shows the value of the radius in the corner
of our shadow
shadowOpacity : This shows how dark we want our shadow to
be

That's it for our LocationPin component.

ClassSelection

In this component, we will explore the Animated API in React Na-
tive to get started with animations. Moreover, we will use custom
fonts to improve the user experience and increase the feeling of cus-
tomization in our app:

/*** src/components/ClassSelection.js ** */

import React from 'react';

import {

 View,

 Image,

 Dimensions,

 Text,

 TouchableOpacity,

Animated,

 StyleSheet,

} from 'react-native';

const { height, width } = Dimensions.get('window

export default class ClassSelection extends React

 constructor(props) {

 super(props);

 this.state = {

classButtonPosition: new Animated.Value(15 + widt

 };

 }

 _onClassChange(className) {

 if (className === 'superior') {

Animated.timing(this.state.classButtonPosition, {

 toValue: width * 0.77,

 duration: 500,

 }).start();

 }

 if (className === 'special') {

Animated.timing(this.state.classButtonPosition, {

 toValue: width * 0.5 - 20,

 duration: 500,

 }).start();

 }

 if (className === 'economy') {

Animated.timing(this.state.classButtonPosition, {

 toValue: 15 + width * 0.1,

 duration: 500,

 }).start();

 }

 }

 render() {

 return (

 <View style={styles.container}>

 <Image

 style={styles.classBar}

 source={require('../../img/classBar.png

 />

<Animated.View

 style={[styles.classButton, { left: thi

 >

 <Image

 style={styles.classButtonImage}

 source={require('../../img/class.png

 />

 </Animated.View>

 <TouchableOpacity

 style={[

 styles.classButtonContainer,

 {

 width: width / 3 - 10,

 left: width * 0.11,

 },

]}

 onPress={this._onClassChange.bind(this,

 >

 <Text style={styles.classLabel}>economy

 </TouchableOpacity>

 <TouchableOpacity

 style={[

 styles.classButtonContainer,

 { width: width / 3, left: width / 3 }

]}

 onPress={this._onClassChange.bind(this,

 >

 <Text style={[styles.classLabel, { text

 Special

 </Text>

 </TouchableOpacity>

 <TouchableOpacity

 style={[

 styles.classButtonContainer,

 { width: width / 3, right: width * 0.

]}

 onPress={this._onClassChange.bind(this,

 >

 <Text style={[styles.classLabel, { text

 Superior

 </Text>

 </TouchableOpacity>

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 height: 80,

 backgroundColor: 'white',

 position: 'absolute',

 bottom: 0,

 left: 0,

 right: 0,

 paddingBottom: 10,

 },

 classBar: {

width: width * 0.7,

 left: width * 0.15,

 resizeMode: 'contain',

 height: 30,

 top: 35,

 },

 classButton: {

 top: 30,

 justifyContent: 'center',

 borderRadius: 20,

 borderColor: '#ccc',

 borderWidth: 1,

 position: 'absolute',

 backgroundColor: 'white',

 height: 40,

 width: 40,

 },

 classButtonImage: {

 alignSelf: 'center',

 resizeMode: 'contain',

 width: 30,

 },

 classButtonContainer: {

 backgroundColor: 'transparent',

 position: 'absolute',

 height: 70,

 top: 10,

 },

 classLabel: {

 paddingTop: 5,

 fontSize: 12,

 },

});

This simple component is made out of five sub components:

classBar : This is an image showing the bar and the stop points
for each class
classButton : This is the round button, which will be moved to
the selected class once the user presses a specific class
classButtonContainer : This is the touchable component de-
tecting what class the user wants to select
classLabel : These are titles for each class to be displayed on
top of the bar

Let's start by taking a look at the styles as we can find a new property
for image components: resizeMode , which determines how to re-
size the image when the frame doesn't match the raw image dimen-
sions. From the five possible values (cover , contain , stretch ,

repeat , and center), we chose contain as we want to scale the
image uniformly (maintain the image's aspect ratio) so that both di-
mensions of the image will be equal to or less than the corresponding
dimension of the view. We are using these properties both in
classBar and classButtonImage being the two images we will
need to resize in this view.

Adding Custom Fonts

React Native includes a long list of cross-platform fonts available by
default. The list of fonts can be checked on https://github.com/react-
native-training/react-native-fonts.

Nevertheless, adding custom fonts is a common need when develop-
ing apps, especially when designers are involved, so we will use our
car booking app as a playground to test this functionality.

Adding custom fonts to our app is a three steps task:

1. Add the font file (.ttf) into a folder inside our project. We used
fonts/ for this app.

2. Add the following lines to our package.json :

https://github.com/react-native-training/react-native-fonts

 "rnpm": {

 "assets": ["./fonts"]

 }

3. Run the following command in a terminal:

 react-native link

That's it, React Native's CLI will handle the insertion of the fonts

folder and its files inside the iOS and Android project at once. Our
fonts will be available by their font name (which may not be the same
as the filename). In our case, we have fontFamily: 'Blair

ITC' in our style sheet.

We can now modify our classLabel style in the
ClassSelection component to include the new font:

...

classLabel: {

 fontFamily: 'Blair ITC',

 paddingTop: 5,

 fontSize: 12,

},

...

Animations

React Native's Animated API is designed to make it very easy to
concisely express a wide variety of interesting animation and interac-
tion patterns in a very performant way. Animated focuses on declara-
tive relationships between inputs and outputs, with configurable
transforms in between, and simple start / stop methods to control
time-based animation execution.

What we want to do in our app is to move the classButton to a
specific location whenever the user presses the class she wants to
book. Let's take a closer look at how we are using this API in our app:

/** * src/components/ClassSelection ***/

...

export default class ClassSelection extends React

 constructor(props) {

 super(props);

 this.state = {

 classButtonPosition: new Animated.Value(15

 };

 }

 _onClassChange(className) {

 if (className === 'superior') {

 Animated.timing(this.state.classButtonPosit

 toValue: width * 0.77,

 duration: 500,

 }).start();

 }

 ...

 }

 render() {

 return (

 ...

 <Animated.View style={{ left: this.state.cl

 <Image

 style={styles.classButtonImage}

 source={require('../../img/class.png')}

 />

 </Animated.View>

 ...

 <TouchableOpacity

 onPress={this._onClassChange.bind(this,

 >

 <Text>Superior</Text>

 </TouchableOpacity>

 ...

);

 }

}

...

For this movement to happen correctly, we need to wrap the
classButtonImage in Animated.View and provide an initial
Animated.Value to it as a left coordinate. We will use this.s-

tate.classButtonPosition for this matter so that we can
change it when the user selects a specific class.

We are ready to start our animation. It will be triggered by the _on-

ClassChange method, as it is the one invoked when the user press-
es classButtonContainer (<TouchableOpacity/>). This
method is calling the Animated.timing function passing two
parameters:

The animated value to drive (this.state.classButtonPo-

sition)

An object containing the end value and the duration of the
animation

Invoking Animated.timing will result in an object containing the
start() method, which we call right away to start the animation.

React Native will then know that the left coordinate of the
Animated.View needs to be slowly changed according to the pro-
vided parameters.

As this may feel a bit overcomplicated for a simple move animation, it
allows a wide range of customization as chaining animations or modi-
fying the easing functions. We will see a rotation animation later in
this lesson.

ConfirmationModal

Our last component is a modal view, which will be opened once the
user has pressed on the SET PICKUP LOCATION button on the lo-
cation pin. We will display the modal and a custom activity indicator,
which will use a complex animation setup to continuously rotate in its
position:

/** * src/components/ConfirmationModal.js ***/

import React from 'react';

import {

Modal,

 View,

 Text,

 Animated,

 Easing,

 TouchableOpacity,

 StyleSheet,

} from 'react-native';

export default class ConfirmationModal extends Re

 componentWillMount() {

 this._animatedValue = new Animated.Value(0);

 }

cycleAnimation() {

 Animated.sequence([

 Animated.timing(this._animatedValue, {

 toValue: 100,

 duration: 1000,

 easing: Easing.linear,

 }),

 Animated.timing(this._animatedValue, {

 toValue: 0,

 duration: 0,

 }),

]).start(() => {

 this.cycleAnimation();

 });

 }

componentDidMount() {

 this.cycleAnimation();

 }

 render() {

const interpolatedRotateAnimation = this._animate

 inputRange: [0, 100],

 outputRange: ['0deg', '360deg'],

 });

 return (

<Modal

 animationType={'fade'}

 visible={this.props.visible}

 transparent={true}

 >

 <View style={styles.overlay}>

 <View style={styles.container}>

 <Text style={styles.title}>Contacting

<Animated.Image

 style={[

 styles.spinner,

 { transform: [{ rotate: interpola

]}

 source={require('../../img/loading.

 />

 <TouchableOpacity

 style={styles.closeButton}

 onPress={this.props.onClose}

 >

 <Text style={styles.closeButtonText

 </TouchableOpacity>

 </View>

 </View>

 </Modal>

);

 }

}

const styles = StyleSheet.create({

 overlay: {

 flex: 1,

 backgroundColor: '#0006',

 justifyContent: 'center',

 },

 container: {

 backgroundColor: 'white',

 alignSelf: 'center',

 padding: 20,

 borderColor: '#ccc',

 borderWidth: 1,

 },

 title: {

 textAlign: 'right',

 fontFamily: 'Blair ITC',

 paddingTop: 5,

 fontSize: 12,

 },

 spinner: {

 resizeMode: 'contain',

 height: 50,

 width: 50,

 margin: 50,

 alignSelf: 'center',

 },

 closeButton: {

 backgroundColor: '#333',

 width: 40,

 height: 40,

 borderRadius: 20,

 justifyContent: 'center',

 alignSelf: 'center',

 },

 closeButtonText: {

 color: 'white',

 alignSelf: 'center',

 fontSize: 20,

 },

});

For this component, we are using the <Modal /> component avail-
able in React Native to take advantage of its fade animation and visi-
bility capabilities. The property this.props.visible will drive
the visibility of this component as it is the parent who is aware of the
pickup request from the user.

Let's focus again on animations as we want to do a more complex
setup for the spinner showing activity. We want to display an endless
rotating animation, so we need to systematically call our start()
animation method. In order to achieve this, we created a cycleAn-

imation() method, which is called on the component mount (to get
the animation started) and from the Animated.timing returned
object as it is passed as a callback to be invoked every time the ani-
mation ends.

We are also using Animated.sequence to concatenate two
animations:

Moving from 0 degrees to 360 (in one second using a linear
easing)

Moving from 360 degrees to 0 (in 0 seconds)

This is required to repeat the first animation over at the end of each
cycle.

Finally, we defined a variable named interpolatedRotateAni-

mation to store the interpolation from 0 degrees to 360, so it can be
passed to the transform / rotate style defining what are going to
be the available rotation values when animating our
Animated.Image .

As an experiment, we can try and change loading.png with an alter-
native image and see how it gets animated. This can be easily
achieved by replacing the source property in our <Animat-
ed.Image /> component:

...

 <Animated.Image

 style={[

 styles.spinner,

 { transform: [{ rotate: interpola

]}

source={require('../../img/spinner.png')}

 />

...

Summary

Using UI libraries such as native-base or react-native-el-
ements saves a lot of time and maintenance hassle when we need
to build apps, but the results end up having a standard flavor, which is
not always desirable in terms of user experience. That's why learning
how to manipulate the style of our apps is always a good idea, espe-
cially on teams where the design is provided by UX specialists or app
designers.

In this lesson, we took a deep look into the folders and files created
by React Native's CLI when initializing a project. Moreover, we famil-
iarized ourselves with the developer menu and its debugging func-
tionalities. When building our app we set the focus on the layouts and
component styling, but also on how to add and manipulate anima-
tions to make our interface more appealing to the user. We took a
look at Flexbox layout system and how to stack and center elements
in our components. API's such as dimensions were used to retrieve
the device width and height to perform positioning tricks on some
components. You learned how to add fonts and images into our app
and how to show them to improve the user experience.

Now that we know how to build more custom interfaces, let's build in
the next lesson an image sharing app in which design plays a key

role.

Assessments

1. Why does the react-native-geocoder module uses Google
Maps reverse geocoding services?

1. To store a human-readable position for the location in which the
map is centred

2. To translate some coordinates into a human-readable location
3. To add an API key in order to authenticate our app with the
service

4. To ensure the name of the location is recalculated every time
the map is moved to show a different region

2. Which of the following properties is used for aligning elements?

1. justifyContent

2. alignLeft

3. alignRight

4. alignJustify

3. By default, React Native and Flexbox stack elements ________.

1. Diagonally
2. Reverse
3. Vertically
4. Horizontally

4. Which of the following lines of code extracts the height and the
width from a device into two variables?

1. const {height, width} =

Dimensions.get('height, width');

2. constant {height, width} =

Dimensions.get('window');

3. const {height, width} = get('window');

4. const {height, width} =

Dimensions.get('window');

5. Which are the four properties in order to add a shadow to a
component?

Chapter 2. Project 2 – Image Sharing
App

At this point, we know how to create a fully-featured app with a cus-
tom interface. You even learned how to add a state management li-
brary to control shared data in our app so that the code base remains
maintainable and scalable.

In this lesson, we will focus on building the app with a different state
management library (Redux), using the camera capabilities, writing
platform-specific code, and diving deeper into building a custom user
interface, which is both appealing and usable. An image sharing app
will serve as a good example for these features and also will set up
the basis for understanding how big apps should be built on React
Native.

We will reuse most of our code for the two platforms where this app
will be available: iOS and Android. Although most of our user inter-
face will be custom, we will use native-base to simplify UI ele-
ments as icons. For navigation, we will use react-navigation

again as it provides the most commonly used navigation for each
platform: tabbed navigation for iOS and drawer menu navigation for
Android. Finally, we will use react-native-camera to handle the
interaction with the device's camera. This will not only reduce imple-

mentation complexity but also will provide us with a large set of fea-
tures for free that we could use to extend our app in the future.

For this app, we will mock up a number of API calls so that we don't
need to build a backend. These calls should be easily replaced by
real API when the time to build a connected app comes.

Overview

One of the main requirements when building an image sharing app is
an appealing design. We will follow the design patterns for some of
the most popular image sharing apps, adapting those patterns for
each platform while trying to reuse as much code as possible taking
advantage of React Native's cross-platform capabilities.

Let's first take a look at the user interface in iOS:

The main screen shows a simple header and a list of images, includ-
ing the user picture, name, and a More icon to share the image. At
the bottom, the tabbed navigation displays three icons representing
the three main screens: All Images, My Images, and Camera.

NOTE

All images used for this sample app are free to be used
in any form.

When a user presses the More icon for a specific image, the Share
menu will be displayed:

This is a standard iOS component. It doesn't make much sense to
use it on a simulator, it can be better tested on an actual device.

Let's take a look at the second screen, My Images:

This is a grid representation of all the images uploaded by the current
user, which can be updated by the next screen, Camera:

The iOS simulator doesn't include support for any camera, so this
feature is again better tested on an actual device, although react-

native-camera is fully usable and will return fake data when ac-
cessed. We will use a static image for testing purposes.

That's all for iOS; let's move now to the Android version:

As Android encourages drawer-based navigation instead of tabs, we
will include a drawer menu icon in the header and will also make the
camera available through a different icon.

As with the iOS Share menu, Android has its own controller, so we
will take advantage of this feature and include it whenever a user taps
on the More icon on a specific image:

When a user taps on the drawer menu icon, the menu will be dis-
played, revealing the three available screens. From here, the user
can navigate to the My Images screen:

Finally, the camera screen will also be accessible through the drawer
menu:

The Android Simulator includes a camera simulation consisting of a
colored moving square, which can be used for testing. Instead, we
will stick with the fixed image we used in the iOS version for consis-
tency reasons.

We will be covering the following topics in this lesson:

Redux in React Native
Using the camera
Platform-specific code
Drawer and tabbed navigation
Sharing data with other apps

Setting up the Folder Structure

Let's initialize a React Native project using React Native's CLI. The
project will be named imageShare and will be available for iOS and
Android devices:

react-native init --version="0.44.0" imageShare

In order to use some packages in this app, we will be using a specific
version of React Native (0.44.0).

We will be using Redux for our app, so we will create a folder struc-
ture in which we can accommodate our reducers , actions ,

components , screens , and api calls:

Moreover, we have added logo.png in the img folder. For the
rest, we have a very standard React Native project. The entry point
will be index.ios.js for iOS and index.android.js for
Android:

/*** index.ios.js and index.android.js ***/

import { AppRegistry } from 'react-native';

import App from './src/main';

AppRegistry.registerComponent('imageShare', () =>

We have the same implementation for both files as we want to use
src/main.js as the common entry point for both platforms.

Let's jump into our package.json file to understand which depen-
dencies we will have in our app:

/*** package.json ***/

{

 "name": "imageShare",

 "version": "0.0.1",

 "private": true,

 "scripts": {

 "start": "node node_modules/react

 local-cli/cli.js start",

 "test": "jest"

 },

 "dependencies": {

 "native-base": "^2.1.5",

 "react": "16.0.0-alpha.6",

 "react-native": "0.44.0",

 "react-native-camera": "^0.8.0",

 "react-navigation": "^1.0.0-beta.

 "react-redux": "^5.0.5",

 "redux": "^3.6.0",

 "redux-thunk": "^2.2.0"

 },

 "devDependencies": {

 "babel-jest": "20.0.3",

 "babel-preset-react-native": "1.9

 "jest": "20.0.3",

 "react-test-renderer": "16.0.0-al

 },

 "jest": {

 "preset": "react-native"

 }

}

Some of the dependencies, such as react-navigation or na-
tive-base , are old acquaintances from previous lessons. Others,

such as react-native-camera , will be introduced in this lesson
for the first time. Some of them are closely related to the state man-
agement library we will be using for this app, Redux:

redux : This is the state management library itself
react-redux : These are the React handlers for Redux
redux-thunk : This is Redux middleware that handles asyn-
chronous action execution

To complete the installation, we will need to link react-native-

camera as it requires some changes in the native part of our app:

react-native link react-native-camera

On iOS 10 and higher, we also need to modify our ios/image-
Share/Info.plist to add a Camera Usage Description, which
should be displayed to request permission to enable the camera with-
in the app. We need to add these lines right before the last </dict>
</plist> :

<key>NSCameraUsageDescription</key>

<string>imageShare requires access to the camera

<key>NSPhotoLibraryUsageDescription</key>

<string>imageShare requires access to the image l

Redux

Redux is a predictable state container for JavaScript apps based on
simple principles:

The whole state of your app is stored in an object tree inside a sin-
gle store
The only way to change the state tree is to emit an action, an ob-
ject describing what happened
To specify how the actions transform the state tree, you write pure
reducers

Its popularity comes from the degree of consistency, testability, and
developer experience that can be derived from its use in any kind of
code base (frontend or backend). It's also simple to reason and mas-
ter due to its strict unidirectional data flow:

User triggers and Actions that are processed by Reducers, which
are just pure functions applying changes to the state based on that
Action. The resulting state is saved in a single Store, which is used
by the View in our app to display the current state of the application.

Redux is a complex topic that falls out of the scope of this book, but it
will be extensively used throughout some of the lessons in this book,

so it could be beneficial to take a look at their official documentation
(http://redux.js.org/) to get acquainted with the basic concepts of this
state management library.

Some of the basic concepts of Redux will be used in our
src/main.js file:

/*** src/main.js ***/

import React from 'react';

http://redux.js.org/

import { DrawerNavigator,TabNavigator } from 'rea

import { Platform } from 'react-native';

import { Provider } from 'react-redux';

import { createStore, combineReducers, applyMiddl

import thunk from 'redux-thunk';

import imagesReducer from './reducers/images';

import ImagesList from './screens/ImagesList.js';

import MyImages from './screens/MyImages.js';

import Camera from './screens/Camera.js';

let Navigator;

if(Platform.OS === 'ios'){

 Navigator = TabNavigator({

 ImagesList: { screen: ImagesList },

 MyImages: { screen: MyImages },

 Camera: { screen: Camera }

 }, {

 tabBarOptions: {

 inactiveTintColor: '#aaa',

 activeTintColor: '#000',

 showLabel: false

 }

 });

} else {

 Navigator = DrawerNavigator({

 ImagesList: { screen: ImagesList },

 MyImages: { screen: MyImages },

 Camera: { screen: Camera }

 });

}let store = createStore(combineReducers({ images

export default class App extends React.Component

 render() {

 return (

 <Provider store={store}>

 <Navigator/>

 </Provider>

)

 }

}

Let's focus first on the Redux ceremony. let store = create-

Store(combineReducers({ imagesReducer }), apply-

Middleware(thunk)); sets up the store by combining the import-
ed reducers (we only have one reducer for this app, so this is merely
informative) and applying the Thunk middleware, which will enable
our app to use asynchronous actions. We will simulate several API
calls that will return asynchronous promises, so this middleware is
needed to properly handle the resolutions of those promises.

Then, we have our render method:

<Provider store={store}>

 <Navigator/>

</Provider>

This is standard in most Redux apps using React. We wrap the root
component (<Navigator /> in our case) with a <Provider />

component to ensure that we will have the store available from the
root of our app. The Redux connect method will be available for us
to use in our containers or screens as we proceed in this lesson.

We will use a <Navigator /> component as the root of our app,

but it will have a different nature based on which platform is running:

let Navigator;

if(Platform.OS === 'ios'){

 Navigator = TabNavigator({

 ...

 });

} else {

 Navigator = DrawerNavigator({

 ...

 });

}

Platform is a React Native API used mainly to identify which plat-
form our app is running on. We can write iOS-specific code by enclos-
ing that code with if(Platform.OS === 'ios'){ ... } and
the same goes for Android: if(Platform.OS === 'android'){

... } .

In this case, we are using it to build a tabbed navigator on iOS and a
drawer navigator on Android, which are the de facto navigation pat-
terns for those platforms. On both navigators, we will set
ImagesList , MyImages , and Camera as the three main screens
in our app.

ImagesList

The main screen in our app is a list of images retrieved from the
backend. We will display this images together with their correspond-
ing uploader profile pictures and names. For each image, we will
show More , which can be used to share the image with other apps
on the user's device, such as messaging apps or social networks.

Most of the UI for this screen will be derived from the <Gallery />

component, so we will focus on connecting the screen with Redux
store, adding a custom header, and a scroll view to make the gallery
scrollable, and adding an activity indicator to warn the user about net-
work activity:

/*** src/components/ImagesList ***/

import React from 'react';

import { View, ScrollView } from 'react-native';

import { bindActionCreators } from 'redux';

import { connect } from 'react-redux';

import * as Actions from '../actions';

import { Icon } from 'native-base';

import Header from '../components/Header';

import Gallery from '../components/Gallery';

import ActivityIndicator from '../components/Acti

class ImagesList extends React.Component {

 static navigationOptions = {

 tabBarIcon: ({ tintColor }) => (

 <Icon name='list' style={{fontSize: 40, col

),

 drawerLabel: 'All Images'

 };

 componentWillMount() {

 this.props.fetchImages();

 }

 componentWillReceiveProps(nextProps) {

 if(!this.props.addingImage && nextProps.addin

 this.scrollable.scrollTo({y: 0});

 }

 }

 render() {

 return (

 <View style={{flex: 1}}>

 <Header onMenuButtonPress={() =>

 this.props.navigation.navigate('DrawerOpe

 onCameraButtonPress={() =>

 this.props.navigation.navigate('Camera')}

<ScrollView ref={(scrollable) => {

 this.scrollable = scrollable;

 }}>

 { this.props.addingImage && <ActivityIn

 message='Adding image' /> }

 <Gallery imageList={this.props.images}

 {this.props.fetchingImages}/>

 </ScrollView>

 </View>

);

 }

}

function mapStateToProps(state) { return { images

function mapStateActionsToProps(dispatch) { retur

export default connect(mapStateToProps, mapStateA

As most of the React apps use Redux, we need to connect our com-
ponent with the state and the actions. We will create two functions
(mapStateToProps and mapStateActionsToProps) to deco-
rate our <ImageList /> component with the mapped actions and
parts of the state the component is interested in:

images : This is the list of images we will use to render in our
<Gallery />

addingImage : This is a flag we will set to true when upload-
ing an image
fetchingImages : This is a flag that will be set to true when
the app requests the list of images to the backend in order to up-
date the store

The only action we will need on this screen is fetchImages , which
is accessible through the propscomponent because we connected
the list of actions in Actions to our <ImagesList /> compo-
nent. On a similar note, we have the three state variables (images ,

addingImage , and fetchingImages) available through
props , thanks to the same connect invocation:

function mapStateToProps(state) {

 return {

 images: state.imagesReducer.images,

 addingImage: state.imagesReducer.addingImage,

 fetchingImages: state.imagesReducer.fetchingI

 };

}

function mapStateActionsToProps(dispatch) {

 return bindActionCreators(Actions, dispatch);

}

export default connect(mapStateToProps, mapStateA

That's all we need from Redux. We will see this pattern in other
screens as well, as it's a common solution for connecting React com-
ponents with parts of the store and the list of actions.

The fetchImages action is called on componentWillMount as
the initial retrieval of the list of images to be rendered:

componentWillMount() {

 this.props.fetchImages();

}

We also added a way to detect the moment the addingImage flag
is set to true to display the activity indicator:

componentWillReceiveProps(nextProps) {

 if(!this.props.addingImage && nextProps.addingI

 this.scrollable.scrollTo({y: 0});

 }

}

This method will call scrollTo in the <Scrollview /> to make
sure it displays the top part, so the <ActivityIndicator /> is
visible to the user. We are using a custom <ActivityIndicator

/> this time (imported from src/components/ActivityIndi-

cator), as we want to display not only a spinner but also a
message.

Last, we will add two components:

<Header /> : This displays the logo and (in the Android version)

two icons to navigate to the drawer menu and the camera screen
<Gallery /> : This shows the formatted list of images and
uploaders

Before moving to another screen, let's take a look at the three custom
components we included in this one: <ActivityIndicator /> ,

<Header /> , and <Gallery /> .

Gallery

Gallery holds all the rendering logic for the list of images. It relies on
native-base and, more specifically, on two of its components,

<List /> and <ListItem /> :

/*** src/components/Gallery ***/

import React from 'react';

import { List, ListItem, Text, Icon, Button, Cont

 from 'native-base';

import { Image, Dimensions, View, Share, Activity

var {height, width} = Dimensions.get('window');

export default class Gallery extends React.Compon

 _share(image) {

 Share.share({message: image.src, title: 'Image

 image.user.name})

 }

 render() {

 return (

 <View>

 <List style={{margin: -15}}>

 {

 this.props.imageList && this.props.im

 {

 return (

 <ListItem

 key={image.id}

 style={{borderBottomWidth: 0,

 flexDirection: 'column', marg

 <View style={styles.user}>

 <Image source={{uri: image.us

 style={styles.userPic}/>

 <Text style={{fontWeight: 'bo

 {image.user.name}</Text>

 </View>

 <Image source={{uri: image.src}

 style={styles.image}/>

 <Button style={{position: 'abso

 top: 25}} transparent

 onPress={this._share.bind(this,

 <Icon name='ios-more' style={

 color: 'black'}}/>

 </Button>

 </ListItem>

);

 })

 }

 </List>

 {

 this.props.loading &&

 <View style={styles.spinnerContainer}>

 <ActivityIndicator/>

 </View>

 }

 </View>

);

 }

}

const styles = StyleSheet.create({

 user: {

 flexDirection: 'row',

 alignSelf: 'flex-start',

 padding: 10

 },

 userPic: {

 width: 50,

 height: 50,

 resizeMode: 'cover',

 marginRight: 10,

 borderRadius: 25

 },

 image: {

 width: width,

 height: 300,

 resizeMode: 'cover'

 },

 spinnerContainer: {

 justifyContent: 'center',

 height: (height - 50)

 }

});

This component takes two props from its parent: loading and
imageList .

loading is used to display a standard <ActivityIndicator

/> showing the user network activity. This time we are using the
standard one instead of a custom indicator as it should be clear
enough what the network activity is indicating.

imageList is the array storing the list of images, which will be ren-
dered in our <Gallery /> one <ListenItem /> at a time. Each
<ListItem /> holds a <Button /> with onPress=

{this._share.bind(this, image) to share the image with
other apps. Let's take a look at the _share function:

_share(image) {

 Share.share({message: image.src, title: 'Image

 + image.user.name})

}

Share is a React Native API for sharing text content. In our case,

we will share the URL (img.src) of the image together with a sim-

ple title. Sharing text is the easiest way of sharing content between
apps, as many apps would accept text as a shared format.

It's also worth noting the style we apply to the image to take over the
whole width and a fixed height (300), so we have a stable layout for
all images even when the display images have different sizes. For
this setup, we use resizeMode: 'cover' so the images are not
stretched in any dimension. This means we may end up cutting the
image, but it compensates on uniformity. Another option would be to
use resizeMode: contain if we don't want to cut anything, but
rather want to fit the image inside these bounds while possibly shrink-
ing them.

Header

We want to reuse a custom header between several screens. That's
why it's best to create a separate component for it and import it in
those screens:

/*** src/components/Header ***/

import React from 'react';

import { View, Image, StyleSheet } from 'react-na

import { Icon, Button } from 'native-base';

import { Platform } from 'react-native';

export default class Header extends React.Compone

 render() {

 return (

 <View style={styles.container}>

 {

 Platform.OS === 'android' &&

 <Button transparent onPress={this.props

 <Icon android='md-menu' style={styles

 </Button>

 }

 <Image source={require('../../img/logo.pn

 style={styles.logo} />

 {

 Platform.OS === 'android' &&

 <Button onPress={this.props.onCameraBut

 <Icon name='camera' style={styles.cam

 </Button>

 }

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 paddingTop: 20,

 flexDirection: 'row',

 alignItems: 'center',

 justifyContent: 'space-around',

 borderBottomWidth: 1,

 borderBottomColor: '#ccc'

 },

 menuIcon: {

 fontSize: 30,

 color: 'black'

 },

 logo: {

 height: 25,

 resizeMode: 'contain',

 margin: 10

 },

 cameraIcon: {

 fontSize: 30,

 color: 'black'

 }

});

We are using the Platform API again to detect Android devices
and show a drawer menu button and a camera button only on that
platform. We decided to do this to make those features, which are the
core of the app, more prominent to Android users by reducing the
number of buttons needed to be pressed to reach them. The actions
to be performed when pressing the buttons are passed by the parent
component through two props:

onMenuButtonPress

onCameraButtonPress

Those two props call two separate functions invoking the navigate

method of the navigator:

this.props.navigation.navigate('DrawerOpen')

this.props.navigation.navigate('Camera')

The last thing to note is how we set up the layout for the container in
this component. We use justifyContent: 'space-around' ,

which is the way we tell Flexbox to evenly distribute items in the line

with equal space around them. Note that, visually, the spaces aren't
equal since all the items have equal space on both sides. The first
item will have one unit of space against the container edge, but two
units of space between the next item because that next item has its
own spacing that applies:

ActivityIndicator

Our custom ActivityIndicator is a very simple component:

/*** src/components/ActivityIndicator ***/

import React from 'react';

import { ActivityIndicator, View, Text, StyleShee

from 'react-native';

export default class CustomActivityIndicator exte

 render() {

 return (

 <View style={styles.container}>

 <ActivityIndicator style={{marginRight: 1

 <Text>{this.props.message}</Text>

 </View>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flexDirection: 'row',

 justifyContent: 'center',

 padding: 10,

 backgroundColor: '#f0f0f0'

 }

});

It receives a message as a prop and displays it next to a standard
spinner. We also added a custom background color (#f0f0f0) to
make it more visible over the white backgrounds.

Let's move now to the camera screen to add our images to the list.

Camera

Most of the logic when taking photos can be abstracted when using
react-native-camera , so we will focus on using this module in
our component and making sure we connect it to our app's state
through Redux actions:

/*** src/screens/Camera ***/

import React, { Component } from 'react';

import {

 Dimensions,

 StyleSheet,

 Text,

 TouchableHighlight,

 View

} from 'react-native';

import { Button, Icon } from 'native-base';

import Camera from 'react-native-camera';

import { bindActionCreators } from 'redux';

import { connect } from 'react-redux';

import * as Actions from '../actions';

class CameraScreen extends Component {

 static navigationOptions = {

 tabBarIcon: ({ tintColor }) => (

 <Icon name='camera' style={{fontSize: 40, c

),

 };

 render() {

 return (

 <View style={styles.container}>

 <Camera

 ref={(cam) => {

 this.camera = cam;

 }}

 style={styles.preview}

 aspect={Camera.constants.Aspect.fill}>

 <Button onPress={this.takePicture.bind(

 style={styles.cameraButton} transparent

 <Icon name='camera' style={{fontSize:

 color: 'white'}}/>

 </Button>

 </Camera>

 <Button onPress={() =>

 this.props.navigation.navigate('ImagesLi

 style={styles.backButton} transparent>

 <Icon ios='ios-arrow-dropleft' android=

 style={{fontSize: 30, color: 'white'}}

 </Button>

 </View>

);

 }

 takePicture() {

 const options = {};

 this.camera.capture({metadata: options})

 .then((data) => {

 this.props.addImage(data);

 this.props.navigation.navigate('ImagesLis

 })

 .catch(err => console.error(err));

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 flexDirection: 'row',

 },

 preview: {

 flex: 1,

 justifyContent: 'flex-end',

 padding: 20

 },

 capture: {

 flex: 0,

 backgroundColor: '#fff',

 borderRadius: 5,

 color: '#000',

 padding: 10,

 margin: 40

 },

 cameraButton: {

 flex: 0,

 alignSelf: 'center'

 },

 backButton: {

 position: 'absolute',

 top:20

 }

});

function mapStateToProps(state) { return {} }

function mapStateActionsToProps(dispatch) { retur

export default connect(mapStateToProps, mapStateA

The way react-native-camera works is by providing a compo-
nent we can include in our screen and, through a reference, we can
call its capture method, which returns a promise we can use to call
addImage to upload our image to the app's backend.

Let's take a closer look at the <Camera /> component:

<Camera

 ref={(cam) => {

 this.camera = cam;

 }}

 style={styles.preview}

 aspect={Camera.constants.Aspect.fill}>

...

</Camera>

The <Camera /> component takes three props:

ref : This sets a reference to the <Camera /> component in
the parent component for it to call the capture method.

style : This allows the developer to specify the look of the com-
ponent in the app.

aspect : This allows you to define how the view renderer will be-
have when displaying camera's view. There are three options:

fill , fit , and stretch .

The takePicture function will be invoked when the user presses
the camera button:

takePicture() {

 const options = {};

 this.camera.capture({metadata: options})

 .then((data) => {

 this.props.addImage(data);

 this.props.navigation.navigate('ImagesList

 })

 .catch(err => console.error(err));

}

We will use the saved reference to the camera to call its capture

method to which we can pass some metadata (for example, the loca-
tion in which the photo was taken). This method returns a promise,

which will be resolved with the image data so we will use this data to
call the addImage action to send this data to the backend, so the
picture can be added to the imagesList . Right after sending the
image to the backend, we will make the app navigate back to the
ImagesList screen. The addImage method will set the
addingImages flag, so the ImageList screen can display the
activity indicator with the corresponding message.

Let's move on to the last screen in our app: MyImages .

MyImages

This screen shows all the images the logged user has uploaded. We
are using fake images for this screen to pre-fill this screen, but more
images can be added through the camera screen.

Most of the rendering logic will be moved to a separate component
named <ImagesGrid /> :

/*** src/screens/MyImages ***/

import React from 'react';

import {

 Image,

 TouchableOpacity,

 Text,

 View,

 ActivityIndicator,

 Dimensions

} from 'react-native';

import { bindActionCreators } from 'redux';

import { connect } from 'react-redux';

import * as Actions from '../actions';

import { Icon } from 'native-base';

import Header from '../components/Header';

import ImagesGrid from '../components/ImagesGrid

var {height, width} = Dimensions.get('window');

class MyImages extends React.Component {

 static navigationOptions = {

 drawerLabel: 'My Images',

 tabBarIcon: ({ tintColor }) => (

 <Icon name='person' style={{fontSize: 40, c

)

 };

 componentWillMount() {

 this.props.fetchImages(this.props.user.name);

 }

 render() {

 return (

 <View>

 <Header onMenuButtonPress={() =>

 this.props.navigation.navigate('DrawerOpe

 onCameraButtonPress={() =>

 this.props.navigation.navigate('Camera')}

 {

 this.props.fetchingImages &&

 <View style={{justifyContent: 'center',

 height: (height - 50)}}>

 <ActivityIndicator/>

 </View>

 }

 <ImagesGrid images={this.props.images}/>

 </View>

);

 }

}

function mapStateToProps(state) { return { images

function mapStateActionsToProps(dispatch) { retur

export default connect(mapStateToProps, mapStateA

The first thing this component does is make a call to the fetchIm-

ages action but, unlike the <ImagesList /> component, it pass-
es the username to only retrieve the pictures for the logged in user.
When we create this action, we need to take this into account and re-
ceive an optional userName parameter to filter out the list of images
we will retrieve.

Other than that, this component delegates most of its behavior to
<ImageGrid /> so that we can reuse the render capabilities for
other users. Let's move on to <ImageGrid /> .

ImageGrid

A simple scroll view and a list of images. This component is as simple
as that, but it's configured in a way that allows the images to flow like
a grid in an easy way:

/*** src/components/ImageGrid ***/

import React from 'react';

import {

 Image,

 TouchableOpacity,

 ScrollView,

 Dimensions,

 View,

 StyleSheet

} from 'react-native';

var {height, width} = Dimensions.get('window');

export default class ImagesGrid extends React.Com

 render() {

 return (

 <ScrollView>

 <View style={styles.imageContainer}>

 {

 this.props.images &&

 this.props.images.map(img => {

 return (<Image style={styles.image}

 key={img.id} source={{uri: img.src}

 })

 }

 </View>

 </ScrollView>

);

 }

}

const styles = StyleSheet.create({

 imageContainer: {

 flexDirection: 'row',

 alignItems: 'flex-start',

 flexWrap: 'wrap'

 },

 image: {

 width: (width/3 - 2),

 margin: 1,

 height: (width/3 - 2),

 resizeMode: 'cover'

 }

});

When styling the container, we use flexWrap : 'wrap' to ensure the
images flow not only in the row direction but also spread to new

lines when the device width is covered for a line of images. By setting
width and height for each image to width/3 - 2 , we ensure
the container can fit three images per row, including two pixels for a
small margin between them.

There are also several grid modules available through npm , but we
have decided to build our own component for this matter, as we don't
need extra functionality in the grid and we gain the flexibility to do it
this way.

Those were all the screens and visual components we need in our
image share app. Let's take a look now at the glue that makes them
work together, the actions and the reducers.

Actions

As we see on our screens, there are only two actions needed for this
app, fetchImages (for all users or for a specific user) and add-

Image :

/*** src/actions/index ***/

import api from '../api';

export function fetchImages(userId = null) {

 let actionName, actionNameSuccess, actionNameEr

 if(userId) {

 actionName = 'FETCH_USER_IMAGES';

 actionNameSuccess = 'FETCH_USER_IMAGES_SUCCES

 actionNameError = 'FETCH_USER_IMAGES_ERROR';

 } else {

 actionName = 'FETCH_IMAGES';

 actionNameSuccess = 'FETCH_IMAGES_SUCCESS';

 actionNameError = 'ADD_IMAGE_ERROR';

 }

 return dispatch => {

 dispatch({ type: actionName });

 api

 .fetchImages(userId)

 .then(images => {

 dispatch({

 type: actionNameSuccess,

 images

 })

 })

 .catch(error => {

 dispatch({

 type: actionNameError,

 error

 });

 });

 };

}

export function addImage(data = null) {

 return dispatch => {

 dispatch({ type: 'ADD_IMAGE' });

 api

 .addImage()

 .then(imageSrc => {

 dispatch({

 type: 'ADD_IMAGE_SUCCESS',

 imageSrc

 });

 })

 .catch(error => {

 dispatch({

 type: 'ADD_IMAGE_ERROR',

 error

 });

 });

 };

}

Redux actions are just simple objects describing an event, including
its payload. Since we are using redux-thunk , our action creators
will return a function in which the Redux dispatch function will be
called, passing the action. Let's take a closer look at our addImage
action:

export function addImage(data = null) {

 return dispatch => {

 dispatch({ type: 'ADD_IMAGE' });

 api

 .addImage()

 .then(imageSrc => {

 dispatch({

 type: 'ADD_IMAGE_SUCCESS',

 imageSrc

 });

 })

 .catch(error => {

 dispatch({

 type: 'ADD_IMAGE_ERROR',

 error

 });

 });

 };

}

The function we return starts by dispatching an action named
ADD_IMAGE with no payload, as we just want to let Redux know that
we are ready to make a network request to upload the image to our
backend. Then, we make that request using our api (we will mock
this call later). This request will return a promise, so we can attach
.then and .catch callbacks to handle the response. If the re-
sponse is positive (the image was properly uploaded), we will dis-
patch an ADD_IMAGE_SUCCESS action passing the URL for the up-
loaded image. If there is an error, we will dispatch an
ADD_IMAGE_ERROR action covering all the possible states.

Most of the action creators work in a similar way when making net-
work requests in Redux and Thunk. In fact, our action fetchIm-

ages is very similar to addImage , with one exception: it needs to
check if userId was passed and issued a different set of actions
instead, so the reducers can modify the state accordingly. Let's then
take a look at the reducers, which will be handling all these actions.

Reducers

In Redux, reducers are functions in charge of updating the state as
new actions happen. They receive the current state and the action
(including any payload) and return a new state object. We won't go
deep into how reducers work, we just need to understand their basic
structure:

/*** src/reducers/index ***/

const initialState = {

 images: null,

 userImages: null,

 error: null,

 user: {

 id: 78261,

 name: 'Sharer1',

 pic: 'https://cdn.pixabay.com/photo/2015/07/2

 man-852762_960_720.jpg'

 }

}

export default function (state = initialState, ac

 switch(action.type){

 case 'FETCH_IMAGES':

 return Object.assign({}, state, {

 images: [],

 fetchingImages: true,

 error: null

 });

 case 'FETCH_IMAGES_SUCCESS':

 return Object.assign({}, state, {

 fetchingImages: false,

 images: action.images,

 error: null

 });

 case 'FETCH_IMAGES_ERROR':

 return Object.assign({}, state, {

 fetchingImages: false,

 images: null,

 error: action.error

 });

 case 'FETCH_USER_IMAGES':

 return Object.assign({}, state, {

 userImages: [],

 fetchingUserImages: true,

 error: null

 });

 case 'FETCH_USER_IMAGES_SUCCESS':

 return Object.assign({}, state, {

 fetchingUserImages: false,

 userImages: action.images,

 error: null

 });

 case 'FETCH_USER_IMAGES_ERROR':

 return Object.assign({}, state, {

 fetchingUserImages: false,

 userImages: null,

 error: action.error

 });

 case 'ADD_IMAGE':

 return Object.assign({}, state, {

 addingImage: true,

 error: null

 });

 case 'ADD_IMAGE_SUCCESS':

 let image = {

 id: Math.floor(Math.random() * 99999999),

 src: action.imageSrc,

 user: state.user

 }

 return Object.assign({}, state, {

 addingImage: false,

 images: [image].concat(state.images),

 userImages: [image].concat(state.images),

 error: null

 });

 case 'ADD_IMAGE_ERROR':

 return Object.assign({}, state, {

 addingImage: false,

 error: action.error

 });

 default:

 return state;

 }

}

Let's break this down:

const initialState = {

 images: null,

 userImages: null,

 error: null,

 user: {

 id: 78261,

 name: 'Sharer1',

 pic: 'https://cdn.pixabay.com/photo/2015/07/2

 man-852762_960_720.jpg'

 }

}

We start with an initial state where all properties will be set to null

except for user , which will contain mocked user data. This initial
state is injected by default in the reducer on startup:

export default function (state = initialState, ac

 ...

}

In the subsequent calls, Redux will inject the actual state after apply-
ing any actions. Inside this function, we have switch evaluating the
type of each triggered action to modify the state according to that ac-
tion and its payload. Let's take, for example, the
FETCH_IMAGES_SUCCESS action:

case 'FETCH_IMAGES_SUCCESS':

 return Object.assign({}, state, {

 fetchingImages: false,

 images: action.images,

 error: null

 });

One of the rules in Redux is that reducers shouldn't mutate state, but
return a new object after an action is triggered. Using
Object.assign , we return a new object containing the current
state plus the desired changes based on the action which just hap-
pened. In this case, we are setting the fetchingImages flag to
false to let our components know that they can hide any activity
indicator related to the action of fetching images. We also set the re-
ceived list of images (from actions.images) in the key images

of our state, so they can be injected into the components requiring
them. Finally, we set the error flag to null to hide any errors we
may have displayed because of a previous state.

As we mentioned before, every asynchronous action should be split
into three separate actions to represent the three different states:

asynchronous request pending, succeeded, and errored. This way,

we will have three groups of actions for our app:

FETCH_IMAGES , FETCH_IMAGES_SUCCESS , and
FETCH_IMAGES_ERROR

FETCH_USER_IMAGES , FETCH_USER_IMAGES_SUCCESS , and
FETCH_USER_IMAGES_ERROR

ADD_IMAGE , ADD_IMAGE_SUCCESS , and ADD_IMAGE_ERROR

It's important to note that we have separate cases for
FETCH_IMAGES and FETCH_USER_IMAGES , as we want to keep
two separate lists of images at the same time:

A general one containing the images of all the people the user is
following
The list of the pictures the user has uploaded

The last missing piece is the API calls invoked from the action
creators.

API

In a real-world app, we would place all the calls to our backend in a
separate api folder. For educational purposes, we just mocked the
two API calls that are core to our app, addImage and fetchIm-

ages :

/*** src/api/index ***/

export default {

 addImage: function(image) {

 return new Promise((resolve, reject) => {

 setTimeout(()=>{

 resolve('<imgUrl>');

 }, 3000)

 })

 },

 fetchImages: function(user = null){

 const images = [

 {id: 1, src: '<imgUrl>', user: {pic: '<imgU

 {id: 2, src: '<imgUrl>', user: {pic: '<imgU

 name: 'Mike_1982'}},

 {id: 5, src: '<imgUrl>', user: {pic: '<imgU

 name: 'Sharer1'}},

 {id: 3, src: '<imgUrl>', user: {pic: '<imgU

 {id: 6, src: '<imgUrl>', user: {pic: '<imgU

 name: 'Sharer1'}},

 {id: 4, src: '<imgUrl>', user: {pic: '<imgU

 name: 'Sharer1'}},

 {id: 7, src: '<imgUrl>', user: {pic: '<imgU

 name: 'Sharer1'}}

]

 return new Promise((resolve, reject) => {

 setTimeout(()=>{

 resolve(images.filter(img => !user || us

);

 }, 1500);

 })

 }

}

To simulate the network delay, we added some setTimeouts that
will help in testing the activity indicators we set up to show the user
network activity. We also used promises instead of plain callbacks to
make our code easier to read. We also skipped the image URLs in
these examples to make it more succinct.

Summary

We used Redux in this app, and that shaped the folder structure we
use. Although using Redux requires some boilerplate code, it helps
break up our codebase in a reasonable way and removes direct de-
pendencies between containers or screens. Redux is definitely a
great addition when we need to maintain a shared state between
screens, so we will be using it further throughout the rest of this book.

In more complex apps, we would need to build more reducers and
possibly separate them by domain and use Redux combineRe-

ducers . Moreover, we would need to add more actions and create
separate files for each group of actions. For example, we would need
actions for login, logout, and register, which we could put together in
a folder named src/actions/user.js . Then, we should move
our image-related actions (currently in index.js) to src/ac-

tions/images.js , so we can modify src/actions/index.js

to use it as a combinator for the user and images actions in case we
want to have the ability to import all the actions in one go.

Redux also helps with testing as it isolates the app's business logic
into the reducers, so we can focus on testing them thoroughly.

Mocking the API calls enables us to build a quick prototype for our
app. When a backend is available, we can reuse those mockups for

test purposes and replace src/api/index.js with real HTTP
calls. In any case, it's a good idea to have a separate folder for all our
API calls, so we can replace them easily if there are any backend
changes.

You also learned how to build platform-specific code (Android-specific
in our case), which is a very useful feature for most apps. Some com-
panies prefer to write separate apps for each platform and only reuse
their business logic code, which should be very easy in any Redux-
based app as it resides in the reducers.

There is no specific API in React Native to control the device's cam-
era, but we can use the react-native-camera module for it. This
is an example of a library accessing iOS- and Android-native APIs to
expose them in the React Native JavaScript world.

In our next lesson, we will explore and cross that bridge between the
native and the JavaScript world in React Native apps by building a
messaging application.

Assessments

1. Actions that are processed by ______ are just pure functions that
apply changes to the state based on that action.

1. Viewer
2. Reducers
3. Navigator
4. Middleware

2. Gallery holds all the rendering logic for the list of images. It relies
on _____and, more specifically, on two of its components, <List

/> and <ListItem /> .

1. native-base

2. base-native

3. resizeMode

4. header

3. State whether the following statement is True or False: Every time
a new message is stored in Firebase, this.selectedChat-

Messages will be synced to reflect it.
4. Which among the following is a <TextInput/> property that will
be invoked when a user presses the Return or Next button on the
keyboard?

1. this.refs.loginPassword.focus()

2. React.Component

3. onSubmitEditing

4. onChangeText

5. While splitting the login screen in two forms: <LoginForm />

and <RegistrationForm /> which three property compo-
nents need to be passed?

Chapter 3. Project 3 – Messaging App

One-to-one communication is the main use for mobile phones al-
though, text messaging has been quickly replaced by direct messag-
ing apps. In this lesson, we will build a messaging app in React Na-
tive with the support of Firebase, a mobile backend as a service that
will free us from having to build a whole backend for our app. Instead,

we will focus on handling the state of our app fully from the frontend.

Of book, this may have security implications that need to be eventual-
ly tackled, but to keep the focus of this book on React Native's capa-
bilities, we will stick with the approach of keeping all the logic inside
our app.

Firebase is a real-time database built on self-synching collections of
data, it plays very well with MobX, so we will use it again for control-
ling the state of our app. But in this lesson, we will dive deeper as we
will build larger data stores, which will be injected in our component
tree through the mobx-react connectors.

We will build the app to be used both with iOS and Android having
some platform-specific code for navigation (we will use tabbed navi-
gation for iOS and drawer navigation for Android).

To reduce the size of the code, in this lesson, we will set the focus on
functionality rather than design. Most of the user interface will be

plain and simple, but trying to keep usability in mind. Moreover, we
will use a react-native-gifted chat for our chat screen--a pre-
built React Native component to render chat rooms based on a list of
messages.

Overview

A messaging app requires more work than the apps we reviewed in
previous lessons, as it needs a user management system comprising
of logging in, registering, and logging out. We will reduce the com-
plexity of building this system using Firebase as a backend. Together
with its user management system, we will use their push notifications
system to notify users when new messages are sent to them. Fire-
base also gives an analytics platform, a lambda functions service,

and a storage system for free, but the feature we will take the most
profit from is their real-time database. We will store our user's profile,

messages, and chats data there.

Let's take a look at what our app will look like to have a mental image
of the screens we will be building:

First screen will be a login/registration screen because we need our
users to provide a name and some credentials to attach their device
to a specific account, so they can receive push notifications for each
message they need to receive. Both authentication methods are vali-
dated using Firebase's API and would result in the chats screen when
they are successful:

When pressing a contact in the contacts list, the app will display the
conversation with the selected contact in the chat screen:

The chats screen will show up all the chats that were started for the
logged in user. Initially, this screen will be empty as the user won't
have initiated any chats. To start a conversation, the user should go
to the search screen in order to find some contacts:

This is a simple screen where the user can enter the contact name to
search for it in the database. If there is a match on the name of the
contact; the user will be able to tap on it to get the conversation start-
ed. From that point on, the conversation will show in the chat screen.

The last screen is the profile screen:

This screen is just a mean to log the current user out. When extend-
ing the app, we could add more features such as changing the avatar
or the username.

While the app will look very similar on Android, navigation will be re-
placed by a drawer from which all the screens will be available. Let's
take a look at the Android version:

The login/registration screen has standard text input and button com-
ponents for Android:

Once the user logs in, he/she can navigate through all the screens by
opening the drawer through the sliding finger gesture. The screen
that opens by default after login is the chats screens where we will list
the list of open conversations the user has:

From this screen, the user can press a specific conversation to list
the messages on it:

The next screen is the search screen, which will be used to search for
other users and start conversations with them:

The last screen is the profile screen where the LOGOUT button can
be found:

The app will work on both platforms in portrait and landscape mode
out of the box:

As we can imagine, this app will require of a powerful backend envi-
ronment to store our users, messages, and statuses. Moreover, we
will require a Push Notifications platform to notify users when they re-
ceive any messages. Since we are focusing in React Native in this
book, we will delegate all this backend work to one of the most popu-

lar Mobile Backend as a Services (MBaaS) in the mobile world:

Firebase

Before start coding, we will spend some time setting up our Fire-
base's push notifications service and real-time database to better un-
derstand what kind of data we will be dealing with in our app.

In summary, we will go through the following topics in this lesson:

Complex Redux in React Native
Firebase real-time database
Firebase push notifications
Firebase user management
Forms

Let's start by reviewing the data models we will be using and how our
app will connect with Firebase for syncing its data.

Firebase

Firebase is a Mobile Backend as a Service (MBaaS), which means
that it provides mobile developers with all the backend necessities,

such as user management, no SQL database, and a push notification
server. It integrates easily with React Native through an official node
package, which brings the database connection for free. Unfortunate-
ly, Firebase doesn't offer a JavaScript SDK for their push notifications
service, but there are several React Native libraries filling that gap by
bridging Firebase's iOS and Java SDKs with a JavaScript interface.

We will be using react-native-fcm as it is the most mature in its
field.

Before building an app on top of a Firebase MBaaS, you need to cre-
ate a project for it. This is a free process that is explained in Fire-
base's website https://firebase.google.com/. Although this process is
not directly related to React Native, it's a good starting point to under-
stand how to set up and use a MBaaS for our apps. Most of the con-
figuring can be finished in a matter of minutes just by following the tu-
torials available on Firebase's documentation site. The benefits of
setting up this MBaaS make those minutes worth the time and initial
hassle.

https://firebase.google.com/

To set up Firebase and connect our app to the correct project, we
need to use the configuration for the web snippet we can
find in the Settings screen inside our Firebase project's dashboard.

We added this initialization snippet on src/firebase.js :

import firebase from 'firebase';

var firebaseConfig = {

 apiKey: “<Your Firebase API key>",

 authDomain: “<Your Firebase Auth domain>",

 databaseURL: “<Your Firebase database URL>",

 projectId: “<Your Firebase projectId>",

 storageBucket: “<Your Firebase storageBucket>",

 messagingSenderId: “<Your messaging SenderId>"

};

export const firebaseApp = firebase.initializeApp

Once the project is set up, we can start taking a look at how our data-
base is going to be structured.

Real-Time Database

Firebase allows mobile developers to store and sync data between
users and devices in real time using a cloud-hosted, NoSQL data-
base. Updated data syncs across connected devices in milliseconds

and data remains available if your app goes offline, providing a great
user experience regardless of network connectivity.

Three data models come into the picture when thinking about the ba-
sic data a one-to-one communication app should handle:

users : This will store avatars, names, and push notification to-
kens. There is no need to store authentication data here as it is
handled through a different Firebase API (authentication API).
messages : We will save each message on each chat room sepa-
rately for easy retrieval using the chat room ID as a key.

chats : All the information about the opened chats will be stored
here.

To understand how we will request and use the data in our app, let's
see a gist of the example data we can actually use for testing:

{

 “chats" : {

 “--userId1--" : {

 “--userId2----userId1--" : {

 “contactId" : “--userId2--",

 “image" : “https://images.com/person2.jpg

 “name" : “Jason"

 }

 },

 “--userId2--" : {

 “--userId2----userId1--" : {

 “contactId" : “--userId1--",

 “image" : “https://images.com/person1.jpg

 “name" : “John"

 }

 }

 },

 “messages" : {

 “--userId2----userId1--" : {

 “-KpEwU8sr01vHSy3qvRY" : {

 “_id" : “2367ad00-301d-46b5-a7b5-97cb8878

 “createdAt" : 1500284842672,

 “text" : “Hey man!",

 “user" : {

 “_id" : “--userId2--",

 “name" : “Jason"

 }

 }

 }

 },

 “users" : {

 “--userId1--" : {

 “name" : “John",

 “notificationsToken" : “"

 },

 “--userId2--" : {

 “name" : “Jason",

 “notificationsToken" : “--notificationsId1-

 }

 }

}

We organized our data in a way it will be easy for the messaging app
to retrieve and synchronize. Instead of normalizing the data structure,

we introduced some data duplication to increase speed during data
retrieval and simplify the frontend code to the maximum.

The users collection holds the users' data using the user ID as a
key (--user1-- , and --user2--). These user IDs are retrieved
automatically by Firebase during registration/login. Each user has a
notification token, which is an identifier for the device the user is
logged in with the push notifications service. When the user logs out,
the notifications token is removed, so messages sent to this user will
be stored, but not notified to any device.

The chats collection stores each user's chat list by user ID. Each
chat has its own ID (a concatenation of both user IDs) and will be du-
plicated as every user on that chat should have a copy of the chat
data. In each copy, there is enough information for the other user to
build up their chat screen.

The messages collection is stored in a separate collection, which
can be referenced by that ID. Each chat ID points to a list of mes-
sages (only one in this example) where all the data needed by the
chat screen is stored. There is also some duplication in this collection
as some user data is stored together with each message to reduce
the number of requests needed when building a chat screen.

A full tutorial on how to read and write data in Firebase's real-time
database can be found on their website
(https://firebase.google.com/docs/database/), but we will take a quick
look at the methods we will be using in this lesson.

Reading Data from Firebase's Database

There are two ways for retrieving data from Firebase's database. The
first one sets a listener that will be called every time the data
changes, so we only need to set it up once for the entire lifetime of
our app:

firebaseApp.database().ref('/users/' + userId).on

 const userObj = snapshot.val();

 this.name = userObj.name;

 this.avatar = userObj.avatar;

});

https://firebase.google.com/docs/database/

As we can see, in order to retrieve a snapshot of data, we need to call
the database() method in our firebaseApp object (the one we
created in our src/firebase.js file). Then, we will have a
database object where we can call the ref('<uri>') on it
passing the URI, where the data is stored. That will return a reference
to the piece of data pointed by that URI. We can go for the
on('value', callback) method, which will attach a callback
passing the snapshot of data. Firebase always returns objects as
snapshots, so we need to transform them into plain data ourselves. In
this example, we want to retrieve an object with two keys (name and
avatar), so we only need to call the val() method on the snap-
shot to retrieve a plain object containing the data.

If we don't need the retrieved data to be automatically synched every
time it is updated, we could have used the once() method instead
of on() :

import firebase from 'firebase';

import { firebaseApp } from '../firebase';

firebaseApp.database().ref('/users/' + userId).on

.then((snapshot) => {

 const userObj = snapshot.val();

 this.name = userObj.name;

 this.avatar = userObj.avatar;

});

The callback receiving snapshot will only be called once.

Updating Data in Firebase's Database

Writing data in a Firebase database can also be done in two different
ways:

firebaseApp.database().ref('/users/' + userId).up

 name: userName

});

The update() method changes the object referenced by the sup-
plied URI according to the keys and values passed as a parameter.
The rest of the object is left intact.

On the other hand, set() will replace the object in the database
with the one we provide as a parameter:

firebaseApp.database().ref('/users/' + userId).se

 name: userName,

 avatar: avatarURL

});

Finally, if we want to add a new snapshot of data but we want Fire-
base to generate an ID for it, we can use the push method:

firebaseApp.database().ref('/messages/' + chatId)

Authentication

We will use Firebase authentication services, so we don't need to
worry about storing login credentials, handling forgotten passwords,

or verifying emails on our side. These and other related tasks come
for free with Firebase authentication services.

In order to activate login and registration through email and pass-
word, we need to enable this method as a session sign-in method in
our Firebase dashboard. More information about how to do this can
be found on Firebase's website at
https://firebase.google.com/docs/auth/web/password-auth.

In our app, we only need to use the provided Firebase SDK for login:

firebase.auth().signInWithEmailAndPassword(userna

 .then(() => {

 //user is logged in

 })

 .catch(() => {

https://firebase.google.com/docs/auth/web/password-auth

 //error logging in

 })

})

For registration, we can use the following code:

firebase.auth().createUserWithEmailAndPassword(em

.then((user) => {

 //user is registered

})

.catch((error) => {

 //error registering

})

All the token handling will be taken care of by Firebase, and we only
need to add a listener to make sure our app is updated when the au-
thentication status changes:

firebase.auth().onAuthStateChanged((user) => {

 //user has logged in or out

}

Setting up the Folder Structure

Let's initialize a React Native project using React Native's CLI. The
project will be named messagingApp and will be available for iOS
and Android devices:

react-native init --version="0.45.1" messagingApp

We will be using MobX to manage state in our app, so we will need a
folder for our stores. The rest of the folder structure is standard to
most React apps.

We need five screens (Chats , Chat , Login , Profile , and
Search), a component (ListItem) and two stores (chats and
users), which will be available through the stores/index.js

file. There are also two helpers that we will be using to support our
app:

notifications.js : All the logic related to push notifications
will be stored in this file
firebase.js : This includes the configuration and initialization
of Firebase SDK

Since we will be using MobX and several other dependencies, let's
take a look at our package.json file to understand what packages
we will be using:

/*** package.json ***/

{

 “name": “messagingApp",

 “version": “0.0.1",

 “private": true,

 “scripts": {

 “start": “node node_modules/react

 /cli.js start",

 “test": “jest"

 },

 “dependencies": {

 “firebase": “^4.1.3",

 “mobx": “^3.2.0",

 “mobx-react": “^4.2.2",

 “react": “16.0.0-alpha.12",

 “react-native": “0.45.1",

 “react-native-fcm": “^7.1.0",

 “react-native-gifted-chat": “^0.2

 “react-native-keyboard-aware-scro

 “react-native-vector-icons": “^4.

 “react-navigation": “^1.0.0-beta.

 },

 “devDependencies": {

 “babel-jest": “20.0.3",

 “babel-plugin-transform-decorator

 “babel-preset-react-native": “2.1

 “jest": “20.0.4",

 “react-test-renderer": “16.0.0-al

 },

 “jest": {

 “preset": “react-native"

 }

}

Some of the npm packages we will be using are:

firebase : Firebase's SDK for authentication and database
connection
mobx : MobX will handle our app state
react-native-fcm : Firebase's SDK for push messaging
react-native-gifted-chat : A library for rendering chat
rooms including date separation, avatars, and many other features
react-native-keyboard-aware-scroll-view : A library
that ensures the on-screen keyboard doesn't hide any focused text
input when working with forms
react-native-vector-icons : We will use Font Awesome
icons for this app

react-navigation : We will have a drawer, a tabbed, and a
stack navigator handling the screens in our app
babel-plugin-transform-decorators-legacy : This li-
brary allows us to use decorators (with the legacy @ syntax) which
is quite useful when working with MobX

After running npm install , we will have our app ready to start
coding. As it happened in previous apps, the entry point for our mes-
saging app will be the same code both in index.ios.js for iOS
and in index.android.js for Android:

/*** index.ios.js and index.android.js ***/

import React from 'react'

import { AppRegistry } from 'react-native';

import App from './src/main';

import { Provider } from 'mobx-react/native';

import { chats, users } from './src/stores';

class MessagingApp extends React.Component {

 render() {

 return (

 <Provider users={users} chats={chats}>

 <App/>

 </Provider>

)

 }

}

AppRegistry.registerComponent('messagingApp', ()

This is a standard way to start up a React Native app working with
MobX--a <Provider /> is supplied as the root element to inject
the two stores (users and chats) into the screens in our app. All
the initializing and navigation logic has been deferred to the
src/main.js file:

/*** src/main.js ***/

import React from 'react'

import { DrawerNavigator,TabNavigator } from 'rea

import { Platform, View } from 'react-native'

import { observer, inject } from 'mobx-react/nati

import Login from './screens/Login'

import Chats from './screens/Chats'

import Profile from './screens/Profile'

import Search from './screens/Search'

import { users, chats } from './stores'

let Navigator;

if(Platform.OS === 'ios'){

 Navigator = TabNavigator({

 Chats: { screen: Chats },

 Search: { screen: Search },

 Profile: { screen: Profile }

 }, {

 tabBarOptions: {

 inactiveTintColor: '#aaa',

 activeTintColor: '#000',

 showLabel: true

 }

 });

} else {

 Navigator = DrawerNavigator({

 Chats: { screen: Chats },

 Search: { screen: Search },

 Profile: { screen: Profile }

 });

}

@inject('users') @observer

export default class App extends React.Component

 constructor() {

 super();

 }

 render() {

 if(this.props.users.isLoggedIn){

 return <Navigator/>

 } else {

 return <Login/>

 }

 }

}

The first thing we can see on the src/main.js file is that we will
use different navigators, depending on which platform we are running
the app: iOS will open a tabbed navigator, while Android will open a
drawer-based navigator.

Then, we see a line we will be repeating in many components in our
app:

@inject('users') @observer

This is the way to tell MobX this component needs to receive the
users store. MobX will then pass it as a prop to this component and
therefore we can use all the methods and attributes it holds. In this
case, we are interested in the isLoggedIn attribute to present the
user with the <Login /> screen if they are still not logged in. Since
MobX will inject this attribute as a property in our component, the
right way to access it will be this.props.users.isLoggedIn .

Before continuing building components, let's take a look at the stores
we will be using throughout this lesson to better understand what
data and actions are available.

Users Store

This store is responsible for holding all the data and logic surrounding
users, but also helps the chats store initializing when a user is logged
in:

/*** src/stores/users.js ***/

import {observable, computed, map, toJS, action}

import chats from './chats'

import firebase from 'firebase';

import { firebaseApp } from '../firebase';

import notifications from '../notifications'

class Users {

 @observable id = null;

 @observable isLoggedIn = false;

 @observable name = null;

 @observable avatar = null;

 @observable notificationsToken = null;

 @observable loggingIn = false;

 @observable registering = false;

 @observable loggingError = null;

 @observable registeringError = null;

 @action login = function(username, passwo

 //login with Firebase email/passw

 }

 @action logout = function() {

 //logout from Firebase authentica

 }

 @action register = function(email, passwo

 //register through firebase authe

 }

 @action setNotificationsToken(token) {

 //store the notifications token f

 }

 searchUsers(name) {

 //helper for searching users by n

 }

 constructor() {

 this.bindToFirebase();

 }

 bindToFirebase() {

 //Initialise connection to Fireba

 //authentication status and data

 }

}

const users = new Users();

export default users;

These are all the attributes and methods we need for this store.

There are several flags (those attributes containing a verb in its -ing
form) to note network activity. Let's implement each method now:

@action login = function(username, password) {

 this.loggingIn = true;

 this.loggingError = null;

 firebase.auth().signInWithEmailAndPasswor

 .then(() => {

 this.loggingIn = false;

 notifications.init((notifications

 this.setNotificationsToke

 });

 })

 .catch((error) => {

 this.loggingIn = false;

 this.loggingError = error.message

 });

}

Logging in with Firebase is as simple as calling signInWithEmai-

lAndPassword on their authentication SDK. If the login is success-

ful, we will initialize the notifications module to enable the device to
receive push notifications. We will follow the opposite path on logout:

@action logout = function() {

 notifications.unbind();

 this.setNotificationsToken('');

 firebase.auth().signOut();

}

In the registration action, besides setting the appropriate flags for net-
work activity, we need to validate the user entered a name, initialize
the notifications, and store the name in the database:

@action register = function(email, password, name

 if(!name || name == '') {

 this.registering = false;

 this.registeringError = 'Name was

 return;

 }

 this.registering = true;

 this.registeringError = null;

 firebase.auth().createUserWithEmailAndPas

 .then((user) => {

 this.registering = false;

 notifications.init((notifications

 this.setNotificationsToke

 });

 firebaseApp.database().ref('/user

 name: name

 });

 })

 .catch((error) => {

 this.registering = false;

 this.registeringError = error.mes

 })

}

Setting the notification token is just a simple update in the database:

@action setNotificationsToken(token) {

 if(!this.id) return;

 this.notificationsToken = token;

 firebaseApp.database().ref('/users/' + th

 notificationsToken: token

 });

}

The searchUsers() method is not marked as @action , as it
won't modify the state of our app, but only search and return a list of
users with the provided name in the database:

searchUsers(name) {

 return new Promise(function(resolve) {

 firebaseApp.database().ref('/user

 .then(function(snapshot) {

 let foundUsers = [];

 const users = snapshot.va

 for(var id in users) {

 if(users[id].name

 foundUser

 n

 a

 u

 n

 u

 n

 i

 });

 }

 }

 resolve(foundUsers);

 });

 });

}

We will return the result as a promise, due to the asynchronous na-
ture of the request we are making.

Finally, bindToFirebase() will attach the attributes in this store
to data snapshots in Firebase's database. This method is called by
the constructor, so it serves as initialization for the user data. It's im-
portant to note that this data will be updated when the authentication
status changed to always reflect the most up to date data for the
user:

bindToFirebase() {

 return firebase.auth().onAuthStateChanged((user

 if(this.chatsBind && typeof this.chatsBind.of

 this.chatsBind.off();

 if(this.userBind && typeof this.userBind.off

 this.userBind.off();

 if (user) {

 this.id = user.uid;

 this.isLoggedIn = true;

 this.chatsBind = chats.bindToFirebase(user.

 this.userBind = firebaseApp.database().ref(

 on(

 {

 const userObj = snapshot.val();

 if(!userObj) return;

 this.name = userObj.name;

 this.avatar = userObj.avatar;

 });

 } else {

 this.id = null;

 this.isLoggedIn = false;

 this.userBind = null;

 this.name = null;

 this.avatar = null;

 }

 });

}

We will store the listeners for the chat data (as this.chatsBind)

and for the user data (as this.userBind), so we can remove
them (by calling the off() method) before attaching new listeners
on every auth state change.

Chats Store

This store is responsible for holding all the data and logic surrounding
chats and messages, but it also helps the chats store initializing
when a user is logged in:

/*** src/stores/chats.js ***/

import { observable, computed, map, toJS, action

import { AsyncStorage } from 'react-native'

import { firebaseApp } from '../firebase'

import notifications from '../notifications'

class Chats {

 @observable list;

 @observable selectedChatMessages;

 @observable downloadingChats = false;

 @observable downloadingChat = false;

 @action addMessages = function(chatId, contactI

 //add a list of messages to a chat

 }

 @action selectChat = function(id) {

 //set a chat as selected and retrieve all the

 }

 @action add(user1, user2) {

 //add a new chat to the list of chats for the

 }

 bindToFirebase(userId) {

 //listen for the list of chats in Firebase to

 @observable list

 }

}

const chats = new Chats()

export default chats;

We will store the list of open chats the user has in @observable

list . When a user selects one chat, we will download and synchro-
nize the list of messages on that chat to @observable select-

edChatMessages . Then, we will have a couple of flags to let the
user know when we are downloading data from the Firebase
database.

Let's take a look at each method individually. We will start with add-

Messages :

@action addMessages = function(chatId, contactId,

 if(!messages || messages.length < 1) return;

 messages.forEach((message) => {

 let formattedMessage = {

 _id: message._id,

 user: {

 _id: message.user._id,

 }

 };

 if(message.text) formattedMessage.text = mess

 if(message.createdAt) formattedMessage.create

 message.createdAt/1;

 if(message.user.name) formattedMessage.user.n

 message.user.name;

 if(message.user.avatar) formattedMessage.user

 message.user.avatar;

 if(message.image) formattedMessage.image = me

 //add the message to the chat

 firebaseApp.database().ref('/messages/' +

 chatId).push().set(formattedMessage);

 //notify person on the chat room

 firebaseApp.database().ref('/users/' + contac

 .then(function(snapshot) {

 var notificationsToken = snapshot.val().not

 notifications.sendNotification(notification

 sender: message.user.name,

 text: message.text,

 image: message.user.image,

 chatId

 });

 });

 });

}

This method receives three parameters:

chatId : The ID for the chat in which the messages will be
added.

contactId : The ID for the user to whom we are sending the
message. This will be used to send a notification to the user's
contact.
messages : This is an array with all the messages we want to add
to the chat.

We will loop through the list of messages, formatting the message the
way we want to store it. Then, we will call the set() method on a
database reference to save the new message in Firebase's data-
base. Finally, we need to send the notification to our contact, so we
retrieve their notifications token by querying the users collection by
their contactId .

Sending notifications is normally handled by the backend, but since
we are setting all the logic on the app itself, we need to build a func-
tion to send notifications. We have done this in our notifications mod-

ule: notifications.sendNotification(notifications-

Token, data); .

Let's see what happens when we select a chat to display the mes-
sages for it:

@action selectChat = function(id) {

 this.downloadingChat = true;

 if(this.chatBind && typeof this.chatBind.off ==

 this.chatBind.off();

 this.chatBind = firebaseApp.database().ref('/me

 .on('value', (snapshot) => {

 this.selectedChatMessages = [];

 this.downloadingChat = false;

 const messagesObj = snapshot.val();

 for(var id in messagesObj) {

 this.selectedChatMessages.push({

 _id: id,

 text: messagesObj[id].text,

 createdAt: messagesObj[id].createdAt,

 user: {

 _id: messagesObj[id].user._id,

 name: messagesObj[id].user.name,

 avatar: messagesObj[id].user.avatar

 },

 image: messagesObj[id].image

 });

 }

 });

}

The main piece of functionality here is attaching a listener to the mes-
sages/chat ID collection, which will sync the this.selected-

ChatMessages observable with the list of messages for the select-
ed chat in the database. This means that every time a new message
is stored in Firebase, this.selectedChatMessages will be
synced to reflect it. This is how the on() method in the Firebase
SDK works: we pass a callback, which we can use to synchronize the
real-time database with our app's state.

Adding a new chat will be done using the add() method:

@action add(user1, user2) {

 return new Promise(function(resolve, reject) {

 firebaseApp.database().ref('/chats/' + user1.

 user2.id).set({

 name: user2.name,

 image: user2.avatar,

 contactId: user2.id

 }).then(() => {

 firebaseApp.database().ref('/chats/' + user

 + user1.id +

 user2.id).set({

 name: user1.name,

 image: user1.avatar,

 contactId: user1.id

 }).then(() => {

 resolve();

 })

 })

 });

}

Here, we are building and returning a promise that will be resolved
when the two chats (one per each user participating in the chat) are
updated. These two database updates can be seen as the duplication
of data, but it will also reduce the data structure complexity and there-
fore our code base readability.

The last method in this store is bindToFirebase() :

bindToFirebase(userId) {

 this.downloadingChats = true;

 return firebaseApp.database().ref('/chats/' + u

 on('value', (snap

 this.downloadingChats = false;

 const chatsObj = snapshot.val();

 this.list = [];

 for(var id in chatsObj) {

 this.list.push({

 id,

 name: chatsObj[id].name,

 image: chatsObj[id].image,

 contactId: chatsObj[id].contactId

 });

 }

 });

}

As we saw in our users store, this method will be called when the
user logs in and attaches a listener to the chats/<userId> snap-
shot of data to keep all the chats data synched with the database on
the this.list attribute.

As a convenience, we will group both stores in src/stores/in-

dex.js , so we can import them both on one line of code:

/*** src/stores/index.js ***/

import users from './users';

import chats from './chats';

export {

 users,

 chats

};

This is all about the stores we will be using. As we can see, most of
the business logic is handled here so it can be thoroughly tested.

Let's move now to the helper we will use for notifications.

Push Notifications Using Firebase

Firebase incorporates a push notification service for iOS and Android,

but it unfortunately doesn't provide any JavaScript on their SDK to
use it. For this matter, an open source library was created bridging
the Objective-C and Java SDKs into a React Native module: react-

native-fcm .

We won't cover the installation of this module in this book, as it's a
changing process that can be better followed on its repository at
https://github.com/evollu/react-native-fcm.

We decided to abstract the logic for this module on our src/noti-
fications.js file to make it available for every component while
keeping its maintainability. Let's take a look at this file:

/*** src/notifications.js ***/

import {Platform} from 'react-native';

import FCM, {FCMEvent, RemoteNotificationResult,

let notificationListener = null;

let refreshTokenListener = null;

const API_URL = 'https://fcm.googleapis.com/fcm/s

const FirebaseServerKey = '<Your Firebase Server

https://github.com/evollu/react-native-fcm

const init = (cb) => {

 FCM.requestPermissions();

 FCM.getFCMToken().then(token => {

 cb(token)

 });

 refreshTokenListener = FCM.on(FCMEvent.RefreshT

 cb(token);

 });

}

const onNotification = (cb) => {

 notificationListener = FCM.on(FCMEvent.Notifica

 cb(notif);

 if(Platform.OS ==='ios'){

 switch(notif._notificationType){

 case NotificationType.Remote:

 notif.finish(RemoteNotificationResult

 break;

 case NotificationType.NotificationRespo

 notif.finish();

 break;

 case NotificationType.WillPresent:

 notif.finish(WillPresentNotificationR

 break;

 }

 }

 })

}

const unbind = () => {

 if(notificationListener) notificationListener.r

 if(refreshTokenListener) refreshTokenListener.r

}

const sendNotification = (token, data) => {

 let body = JSON.stringify({

 “to": token,

 “notification": {

 “title": data.sender || '',

 “body": data. text || '',

 “sound": “default"

 },

 “data": {

 “name": data.sender,

 “chatId": data.chatId,

 “image": data.image

 },

 “priority": 10

 });

 let headers = new Headers({

 “Content-Type": “application/json

 “Content-Length": parseInt(body.l

 “Authorization": “key=" + Firebas

 });

 fetch(API_URL, { method: “POST", headers, body

 .then(response => console.log(“Send respo

 .catch(error => console.log(“Error sendin

}

export default { init, onNotification, sendNotifi

There are four functions exposed in this module:

init : This requests the permission to receive push notifications
(in case it was not yet granted) and requests the device token or
refreshes it if changed.

onNotification : This invokes a provided callback when a
notification is received. In iOS, it also calls the appropriate meth-
ods on the notification to close the cycle.

unbind : This stops listening for push notifications.

sendNotification : This formats and sends a push notification
to a specific device using a provided notifications token.

Sending notifications in Firebase can be done using their HTTP API,
so we will use fetch for sending a POST request with the proper
header and body data.

Now, we have all the logic we need to start building our screens and
components.

Login

The <Login /> component heavily relies on the users store for
logic, as it is mostly focused on rendering two forms for login and reg-
istration. All the validation for the forms is done by Firebase, so we
only need to focus on rendering the UI elements and calling the prop-
er store methods.

In this screen, we will be using the react-native-keyboard-

aware-scroll view, which is a module providing a self-scrolling
<Scrollview /> , which reacts to any focused <TextInput />

so they are not hidden when the keyboard pops up.

Let's take a look at the code:

/*** src/screens/Login.js ***/

import React, { PropTypes } from 'react'

import {

 ScrollView,

 TextInput,

 Button,

 Text,

 View,

 Image,

 ActivityIndicator

} from 'react-native';

import { observer, inject } from 'mobx-react/nati

import Icon from 'react-native-vector-icons/FontA

import { KeyboardAwareScrollView } from 'react-na

import LoginForm from '../components/LoginForm'

import RegistrationForm from '../components/Regis

@inject('users') @observer

class Login extends React.Component {

 onLogin(email, password) {

 this.props.users.login(email, password);

 }

 onPressRegister(email, password, name) {

 this.props.users.register(email, password, na

 }

 render() {

 return (

 <KeyboardAwareScrollView style={{padding: 2

 backgroundColor: '#eee'}}>

 <Icon name="comments" size={60} color='#c

 style={{alignSelf: 'center', paddingBot

 <View style={{alignItems: 'center', margi

 <Text>- please, login to continue -</Te

 </View>

 <LoginForm

 onPress={this.onLogin.bind(this)}

 busy={this.props.users.loggingIn}

 loggingError={this.props.users.loggingE

 />

 <View style={{alignItems: 'center', margi

 marginBottom: 20}}>

 <Text>- or register -</Text>

 </View>

 <RegistrationForm

 onPress={this.onPressRegister.bind(this

 busy={this.props.users.registering}

 registeringError={this.props.users.regi

 />

 </KeyboardAwareScrollView>

)

 }

}

export default Login;

We split the login screen in two forms: <LoginForm /> and
<RegistrationForm /> . Both components need to be passed
three props:

onPress : What the component needs to do when the Send but-
ton is pressed.

busy : Are we waiting for remote data?

loginError/registrationError : Description of the error
that happened when logging/register (in case it happened).

We are wrapping the whole screen in a <KeyboardAwareScroll-

View /> to ensure no <TextInput /> gets hidden by the key-
board when focused. Let's take a look at the LoginForm now:

/*** src/components/LoginForm.js ***/

import React, { PropTypes } from 'react'

import {

 TextInput,

 Button,

 Text,

 View,

 Image,

 ActivityIndicator

} from 'react-native';

class LoginForm extends React.Component {

 state= {

 loginEmail: '',

 loginPassword: ''

 }

 onPressLogin() {

 this.props.onPress(this.state.loginEmail,

 this.state.loginPassword);

 }

 render() {

 return (

 <View style={{backgroundColor: 'white', p

 borderRadius: 10}}>

 {

 this.props.loggingError &&

 <View style={{backgroundColor: '#fcc

 alignItems: 'center', marginBottom:

 <Text>{this.props.loggingError}</Te

 </View>

 }

 <TextInput

 autoCapitalize='none'

 autoCorrect={false}

 keyboardType='email-address'returnKey

 style={{height: 40}}

 onChangeText={(loginEmail) => this.se

 value={this.state.loginEmail}

 placeholder='email'

 onSubmitEditing={(event) => {

 this.refs.loginPassword.focus();

 }}

 />

 <TextInput

 ref='loginPassword'

 style={{height: 40}}

 onChangeText={(loginPassword) =>

 this.setState({loginPassword})}

 value={this.state.loginPassword}

 secureTextEntry={true}

 placeholder='password'

 />

 {

 this.props.busy ?

 <ActivityIndicator/>

 :

 <Button

 onPress={this.onPressLogin.bind(thi

 title='Login'

 />

 }

 </View>

)

 }

}

export default LoginForm;

For the <TextInput /> elements containing the email, we set the
property keyboardType='email-address' so the @ sign is
easily accessible on the software keyboard. There are other options

such as numeric keyboards, but we will only use 'email-ad-

dress' for this app.

Another useful prop on <TextInput /> is returnKeyType . We
set returnKeyType='next' for those form inputs that are not the
last ones to display the Next button in the keyboard so the user
knows they can go to the next input by tapping that button. This prop
is used in conjunction with a prop like the following:

onSubmitEditing={(event) => {

 this.refs.loginPassword.focus();

}}

onSubmitEditing is a <TextInput /> prop that will be in-
voked when a user presses the Return or Next button on the key-
board. We are using it to focus on the next <TextInput /> , which
is quite user-friendly when dealing with forms. To get the reference for
the next <TextInput /> we use ref , which is not the safest way,

but is good enough for simple forms. For this to work, we need to as-
sign the corresponding ref to the next <TextInput /> :

ref='loginPassword' .

RegistrationForm is a very similar form:

/*** src/components/RegistrationForm ***/

import React, { PropTypes } from 'react'

import {

 ScrollView,

 TextInput,

 Button,

 Text,

 View,

 Image,

 ActivityIndicator

} from 'react-native';

class RegisterForm extends React.Component {

 state= {

 registerEmail: '',

 registerPassword: '',

 registerName: ''

 }

 onPressRegister() {

 this.props.onPress(this.state.registerEmail,

 this.state.registerPassword, this.state.regis

 }

 render() {

 return (

 <View style={{backgroundColor: 'white', pad

 borderRadius: 10}}>

 {

 this.props.registeringError &&

 <View style={{backgroundColor: '#fcc',

 alignItems: 'center', marginBottom: 1

 <Text>{this.props.registeringError}</

 </View>

 }

 <TextInput

 autoCapitalize='none'

 autoCorrect={false}

 keyboardType='email-address'

 returnKeyType='next'

 style={{height: 40}}

 onChangeText={(registerEmail) =>

 this.setState({registerEmail})}

 value={this.state.registerEmail}

 placeholder='email'

 onSubmitEditing={(event) => {

 this.refs.registerName.focus();

 }}

 />

 <TextInput

 ref='registerName'

 style={{height: 40}}

 onChangeText={(registerName) =>

 this.setState({registerName})}

 returnKeyType='next'

 value={this.state.registerName}

 placeholder='name'

 onSubmitEditing={(event) => {

 this.refs.registerPassword.focus();

 }}

 />

 <TextInput

 ref='registerPassword'

 style={{height: 40}}

 onChangeText={(registerPassword) =>

 this.setState({registerPassword})}

 value={this.state.registerPassword}

 secureTextEntry={true}

 placeholder='password'

 />

 {

 this.props.busy ?

 <ActivityIndicator/>

 :

 <Button

 onPress={this.onPressRegister.bind(th

 title='Register'

 />

 }

 </View>

)

 }

}

export default RegisterForm;

Chats

This is the screen displaying the list of open chats. The special thing
to note here is we are using a second navigator to display selected
chats on top of the chats list. This means we need a
StackNavigator in our Chats component that will contain two
screens: ChatList and Chat . When a user taps on a chat from
ChatList , StackNavigator will display the selected chat on top
of ChatList making the list of chats available through a standard
< back button in the header.

For listing the chats, we will use <FlatList /> , a performant inter-
face for rendering simple, flat lists, supporting the most of the fea-
tures from <ListView /> :

/*** src/screens/Chats.js ***/

import React, { PropTypes } from 'react'

import { View, Text, FlatList, ActivityIndicator

import { observer, inject } from 'mobx-react/nati

import { StackNavigator } from 'react-navigation

import Icon from 'react-native-vector-icons/FontA

import notifications from '../notifications'

import ListItem from '../components/ListItem'

import Chat from './Chat'

@inject('chats') @observer

class ChatList extends React.Component {

 imgPlaceholder =

 'https://cdn.pixabay.com/photo/2017/03/21/02/00

 2160923_960_720.png'

 componentWillMount() {

 notifications.onNotification((notif)=>{

 this.props.navigation.goBack();

 this.props.navigation.navigate('Chat', {

 id: notif.chatId,

 name: notif.name || '',

 image: notif.image || this.imgPlaceholder

 })

 });

 }

 render () {

 return (

 <View>

 {

 this.props.chats.list &&

 <FlatList

 data={this.props.chats.list.toJS()}

 keyExtractor={(item, index) => item.i

 renderItem={({item}) => {

 return (

 <ListItem

 text={item.name}

 image={item.image || this.imgPl

 onPress={() => this.props.navig

 {

 id: item.id,

 name: item.name,

 image: item.image || this.img

 contactId: item.contactId

 })}

 />

)

 }}

 />

 }

 {

 this.props.chats.downloadingChats &&

 <ActivityIndicator style={{marginTop: 2

 }

 </View>

)

 }

}

const Navigator = StackNavigator({

 Chats: {

 screen: ChatList,

 navigationOptions: ({navigation}) => ({

 title: 'Chats',

 }),

 },

 Chat: {

 screen: Chat

 }

});

export default class Chats extends React.Componen

 static navigationOptions = {

 tabBarLabel: 'Chats',

 tabBarIcon: ({ tintColor }) => (

 <Icon name="comment-o" size={30} color={tin

)

 };

 render() {

 return <Navigator />

 }

}

The first thing we notice is that we are injecting the chats store
where the list of chats is saved: @inject('chats') @observer .

We need this to build our <FlatList /> , based on this.prop-

s.chats.list , but as the list of chats is an observable MobX ob-

ject, we need to transform it using its toJS() method to make a
JavaScript array out of it.

On the componentWillMount() function, we will invoke onNo-

tification on the notifications module to open the corresponding
chat every time the user presses a push notification on her device.

Therefore, we will use the navigate() method on the navigator to
open the proper chat screen including the name of the contact and
her avatar.

ListItem

The list of chats relies on <ListItem /> to render each specific
chat within the list. This component is a custom UI class we created
to reduce the ChatList component complexity:

/*** src/components/ListItem.js ***/

import React, { PropTypes } from 'react'

import { View, Image, Text, TouchableOpacity } fr

import Icon from 'react-native-vector-icons/FontA

const ListItem = (props) => {

 return (

 <TouchableOpacity onPress={props.onPress}>

 <View style={{height: 60, borderColor: '#cc

 borderBottomWidth: 1,

 marginLeft: 10, flexDirection: 'row'}}>

 <View style={{padding: 15, paddingTop: 10

 <Image source={{uri: props.image}} styl

 borderRadius: 20, resizeMode: 'cover

 </View>

 <View style={{padding: 15, paddingTop: 20

 <Text style={{fontSize: 15}}>{ props.te

 </View>

 <Icon name="angle-right" size={20} color=

 style={{position: 'absolute', right: 20

 </View>

 </TouchableOpacity>

)

}

export default ListItem

There is little logic on this component as it only receives a prop
named onPress() , which will be called when the <ListItem />

is pressed, which, as we saw on this component's parent, will open
the chat screen to show the list of messages on that specific chat.
Let's take a look at the chat screen where all the messages for a
specific chat are rendered.

Chat

To keep our code succinct and maintainable, we will use
GiftedChat for rendering all the messages in a chat, but there is
still some work we need to do to properly render this screen:

/*** src/screens/Chat.js ***/

import React, { PropTypes } from 'react'

import { View, Image, ActivityIndicator } from 'r

import { observer, inject } from 'mobx-react/nati

import { GiftedChat } from 'react-native-gifted-c

@inject('chats', 'users') @observer

class Chat extends React.Component {

 static navigationOptions = ({ navigation, scree

 title: navigation.state.params.name,

 headerRight: <Image source={{uri: navigation.

 style={{

 width: 30,

 height: 30,

 borderRadius: 15,

 marginRight: 10,

 resizeMode: 'cover'

 }}/>

 })

 onSend(messages) {

 this.props.chats.addMessages(this.chatId, thi

 messages);

 }

 componentWillMount() {

 this.contactId = this.props.navigation.state.

 this.chatId = this.props.navigation.state.par

 }

 render () {

 var messages = this.props.chats.selectedChatM

 if(this.props.chats.downloadingChat) {

 return <View><ActivityIndicator style={{mar

 }

 return (

 <GiftedChat

 onSend={(messages) => this.onSend(message

 messages={messages ? messages.toJS().reve

 user={{

 _id: this.props.users.id,

 name: this.props.users.name,

 avatar: this.props.users.avatar

 }}

 />

)

 }

}

export default Chat;

We also need to inject some stores for our <Chat /> component to
work. This time, we need users and chats stores that will be
available as props inside the component. This component also ex-
pects to receive two params from the navigator: chatId (the ID for
the chat) and contactId (the ID for the person the user is chatting
with).

When the component is getting ready to be mounted (onCompo-

nentWillMount()) we save the chatId and contactId in
more convenient variables inside the component and call the se-

lectChat() method on the chats store. This will trigger a re-
quest to Firebase database to fetch the messages for the selected
chat, which will be synced through the chats store and is accessi-
ble to the component through this.props.chats.selected-

ChatMessages . MobX will also update a downloadingChat

property to ensure we let the user know the data is being retrieved
from Firebase.

Lastly, we need to add a onSend() function to GiftedChat ,

which will call the addMessages() method on the chats store to

post the message to Firebase every time the Send button is
pressed.

GiftedChat helped us in largely reducing the amount of work we
need to do in order to render the list of messages for a chat. On the
other hand, we had to format the messages in the way GiftedChat

requires and provide an onSend() function to be executed whenev-
er we need a message posted to our backend.

Search

The search screen is divided into two parts: a <TextInput /> for
the user to search a name and a <FlatList /> to show the list of
contacts found with the entered name:

import React, { PropTypes } from 'react'

import { View, TextInput, Button, FlatList } from

import Icon from 'react-native-vector-icons/FontA

import { observer, inject } from 'mobx-react/nati

import ListItem from '../components/ListItem'

@inject('users', 'chats') @observer

class Search extends React.Component {

 imgPlaceholder = 'https://cdn.pixabay.com/photo

 2160923_960_720.png'

 state = {

 name: '',

 foundUsers: null

 }

 static navigationOptions = {

 tabBarLabel: 'Search',

 tabBarIcon: ({ tintColor }) => (

 <Icon name="search" size={30} color={tintCo

)

 };

 onPressSearch() {

 this.props.users.searchUsers(this.state.name)

 .then((foundUsers) => {

 this.setState({ foundUsers });

 });

 }

 onPressUser(user) {

 //open a chat with the selected user

 }

 render () {

 return (

 <View>

 <View style={{padding: 20, marginTop: 20,

 backgroundColor: '#eee'}}>

 <View style={{backgroundColor: 'white',

 borderRadius: 10}}>

 <TextInput

 style={{borderColor: 'gray', border

 height: 40}}

 onChangeText={(name) => this.setSta

 value={this.state.name}

 placeholder='Name of user'

 />

 <Button

 onPress={this.onPressSearch.bind(th

 title='Search'

 />

 </View>

 </View>

 {

 this.state.foundUsers &&

 <FlatList

 data={this.state.foundUsers}

 keyExtractor={(item, index) => index}

 renderItem={({item}) => {

 return (

 <ListItem

 text={item.name}

 image={item.avatar || this.imgP

 onPress={this.onPressUser.bind(

 />

)

 }}

 />

 }

 </View>

)

 }

}

export default Search;

This component requires the injection of both stores (users and
chats). The users store is used to invoke the searchUsers()

method when the user hits the Search button. This method doesn't
modify the state and therefore we need to provide a callback to re-
ceive the list of found users to finally set that list on the component's
state.

The second store, chats , will be used to store the open chat in Fire-
base by calling add() from the onPressUser() function:

onPressUser(user) {

 this.props.chats.add({

 id: this.props.users.id,

 name: this.props.users.name,

 avatar: this.props.users.avatar || this.imgPl

 notificationsToken: this.props.users.notifica

 }, {

 id: user.id,

 name: user.name,

 avatar: user.avatar || this.imgPlaceholder,

 notificationsToken: user.notificationsToken

 });

 this.props.navigation.navigate('Chats', {});

}

The add() method in the chats store requires two parameters to
be passed: one per each user in the newly open chat. This data will
be properly stored in Firebase, so both users will see the chat on their
chat list in the app. After adding the new chat, we will navigate the
app to the chats screen so the user can see if the addition was
successful.

Profile

The profile screen displays the user's avatar, name, and a Logout

button for signing out:

import React, { PropTypes } from 'react'

import { View, Image, Button, Text } from 'react-

import { observer, inject } from 'mobx-react/nati

import Icon from 'react-native-vector-icons/FontA

import notifications from '../notifications'

@inject('users') @observer

class Profile extends React.Component {

 static navigationOptions = {

 tabBarLabel: 'Profile',

 tabBarIcon: ({ tintColor }) => (

 <Icon name="user" size={30} color={tintColo

),

 };

 imgPlaceholder =

 'https://cdn.pixabay.com/photo/2017/03/21/02/00

 2160923_960_720.png'

 onPressLogout() {

 this.props.users.logout();

 }

 render () {

 return (

 <View style={{ padding: 20 }}>

 {

 this.props.users.name &&

 <View style={{ flexDirection: 'row

 }}>

 <Image

 source={{uri: this.props.users.

 this.imgPlaceholder}}

 style={{width: 100, height: 100

 margin: 20, resizeMode:

 />

 <Text style={{fontSize: 25}}>{thi

 </Text>

 </View>

 }

 <Button

 onPress={this.onPressLogout.bind(this

 title="Logout"

 />

 </View>

)

 }

}

export default Profile;

The logout process is triggered by calling the logout() method on
the users store. Since we controlled the authentication status in our
src/main.js file, the app will automatically return to the Login or
Register screen when the logout is successful.

Summary

We covered several important topics for most of the modern enter-
prise apps: user management, data synchronization, complex app
state, and handling forms. This is a complete app, which we manage
to fix with a small code base and the help of MobX and Firebase.

Firebase is very capable of handling this app in production with a
large number of users, but building our own backend system should
not be a complex task, especially if we have experience in working
with socket.io and real-time databases.

There are some aspects missing in this lesson such as handling se-
curity (which can be done fully within Firebase) or creating chat
rooms for more than two users. In any case, these aspects fall out of
React Native's environment, so they were intentionally left out.

After finishing this lesson, we should be able to build any app on top
of Firebase and MobX as we covered the most used user cases on
both pieces of technology. Of book, there are some more complex
cases that were left out, but they can be easily learned by having a
good understanding of the basics explained throughout this lesson.

In the next lesson, we will build a very different kind of app: a game
written in React Native.

Assessments

1. This ____ store is responsible for holding all the data and logic sur-
rounding chats and messages, and also helps the chats store ini-
tializing when a user is logged in.

1. Push notification
2. List
3. Chats
4. Search

2. Which of the following is the main function to calculate the new po-
sition for each sprite stored in the sprites.

1. getRockProps()

2. reducer()

3. action()

4. moveSprites()

3. State whether the following statement is True or False: Firebase
allows mobile developers to store and sync data between users
and devices in real time using a cloud-hosted, NoSQL database.

4. The background image is not contained in any custom component
but in ______. This is because it doesn't need any special logic be-
ing a static element.
1. <GamseContainer />

2. <Image />

3. <TouchableWithoutFeedback />

4. <TouchableOpacity />

5. What are the available Redux actions?

Chapter 4. Project 4 – Game

Most of the most successful apps on the app stores are games. They
proved to be really popular as mobile users tend to play all sort of
games while commuting, in waiting rooms, when traveling, or even
when relaxing at home. It is a fact that mobile users are more inclined
to pay for a game than for any other kind of app in the market as the
perceived value is higher most of the time.

Modern games are usually built in powerful gaming engines such as
Unity or Unreal, as they provide a wide range of tools and frame-
works to work with sprites, animations, or physics. But the reality is
that great games can also be built in React Native due to its native
capabilities. Moreover, React Native has introduced many web and
mobile app programmers into game development as it offers them a
familiar and intuitive interface. Of book, there are some concepts in
game development which need to be understood in order to make the
most of the library when building games. Concepts like sprites, ticks,

or collisions are small hurdles, which may need to be overcome by
non-game developers before building a game.

The game will be built for both iOS and Android, and will use a limited
number of external libraries. Redux, the state management library,

was chosen to help calculate the position of every sprite on each
frame.

We will use some custom sprites and add a sound effect to notice
each time the score is increased. One of the main challenges when
building a game is making sure the sprites are rendered responsively,

so different devices will show the game with the same proportions
providing the same game experience across different screen sizes.

This game will be designed to be played in portrait mode only.

Overview

The game we will build in this lesson has simple mechanics:

The goal is to help a parrot fly between rocks in a cave
Tapping the screen will result in the parrot flying higher
Gravity will pull the parrot toward the ground
Any collision between the parrot and the rocks or the ground will
result in the end of the game
The score will be increased every time the parrot flies through a
group of rocks

This kind of game is very well suited to being built with React Native,

as it doesn't really need complex animations or physics capabilities.

All we need to be sure of is that we move every sprite (graphics com-
ponent) on the screen at the correct time to create the feeling of con-
tinuous animation.

Let's take a look at the initial screen for our game:

This screen presents the logo and instructions about how to get the
game started. In this case, a simple tap will start up the game me-
chanics causing the parrot to fly forward and up on every tap.

The player must help our parrot to fly through the rocks. Each time a
set of rocks is passed, the player will get one point.

To make it more difficult, the heights of the rocks will vary forcing the
parrot to fly higher or lower to pass through the rocks. If the parrot
collides with a rock or the ground, the game will stop and the final
score will be presented to the user:

At this point, the user will be able to restart the game by tapping again
on the screen.

To make it nicer and easier to play, tapping can be done anywhere on
the screen, causing a different effect depending on which screen the
user is on:

On the initial screen tapping will start up the game
In-game tapping will result in the parrot flying higher
On the GAME OVER screen tapping will restart the game and re-
set the score

As can be observed, it will be a very simple game but, due to this,

easily extendable and fun to play. One import aspect when building
this kind of app is counting with a nice set of graphics. For this matter,
we will download our assets from one of the multiple game assets
markets, which can be found online (most game assets cost a small
amount of money although free assets can be found every now and
then).

The technical challenges for this game lie more in how the sprites will
be moved over time than on a complex state to be maintained. De-
spite this, we will use Redux to keep and update the app's state as it
is a performant and well-known solution. Besides revisiting Redux,

we will review the following topics in this lesson:

Handling animated sprites
Playing sound effects
Detecting colliding sprites
Absolute positioning in different screen resolutions

Sprites

Sprites are the graphics used by the games, normally grouped into
one or several images. Many game engines include tools to split and
manage those graphics in a convenient way, but this is not the case
in React Native. Since it was designed with a different kind of app
having in mind, there are several libraries supporting React Native in
the task of dealing with sprites, but our game will be simple enough
not to need any of these libraries, so we will store one graphic in each
image and we will load them separately into the app.

Before starting to build the game, let's get acquainted with the graph-
ics we will load, as they will be the building blocks for the whole app.

Numbers

Instead of using a <Text/> component to display the score in our
game, we will use sprites for a more attractive look. These are the im-
ages we will use to represent the user's score:

As mentioned, all these graphics will be stored in separate images
(named 0.png to 9.png) due to React Native's lack of sprite split-
ting capabilities.

Background

We need a large background to make sure it will fit all screen sizes. In
this lesson, we will use this sprite as a static graphic although it could
be easily animated to create a nice parallax effect:

From this background, we will take a piece of ground to animate.

Ground

The ground will be animated in a loop to create a constant feeling of
velocity. The size of this image needs to be larger than the maximum
screen resolution we want to support, as it should be moved from one
side of the screen to the opposite. At all times, two ground images will
be displayed, one after the other to ensure at least one of them is
shown on the screen during the animation:

Rocks

The moving rocks are the obstacles our parrot needs to pass. There
will be one on the top and one on the bottom and both will be animat-
ed at the same speed as the ground. Their height will vary for each
pair of rocks but always keep the same gap size between them:

In our images folder, we will have rock-up.png and rock-

down.png representing each sprite.

Parrot

We will use two different images for our main character so we can
create an animation displaying when the user has tapped on the
screen:

The first image will be displayed when the parrot is moving down:

This second image will be shown every time the user presses the
screen to move the parrot up. The images will be named
parrot1.png and parrot2.png .

The Home Screen

For the home screen, we will display two images: a logo and some
instructions about how to get the game started. Let's take a look at

them:

The instructions to start the game just point out that tapping will get
the game started:

Game Over Screen

When the parrot hits a rock or the ground, the game will end. Then, it
is time to display a game over sign and a reset button to get the game
started again:

Although the entire screen will be touchable to get the game restart-
ed, we will include a button to let the user know that tapping will result
in the game restarting:

This image will be stored as reset.png .

This is the full list of images we will have in our game:

Now, we know the list of images we will use in our game. Let's take a
look at the whole folder structure.

Setting up the folder structure

Let's initialize a React Native project using React Native's CLI. The
project will be named birdGame and will be available for iOS and
Android devices:

react-native init --version="0.46.4" birdGame

As this one is a simple game, we will only need one screen in which
we will position all our sprites moving, showing, or hiding them de-
pending on the state of the game, which will be managed by Redux.

Therefore, our folder structure will be in line the standard Redux
apps:

The actions folder will only contain one file as there are only three
actions which may happen in this game (start , tick , and

bounce). There is also a sounds folder to store the sound effect
which will be played every time the parrot passes a pair of rocks:

For each sprite, we will create a component so we can move it, show
it, or hide it easily:

Again, only one reducer will be needed to process all our actions. We
will also create two helper files:

constants.js : This is where we will store helper variables for
dividing the height and the width of the screen for the device play-
ing the game
sprites.js : This stores all the functions which will calculate
how the sprites should be positioned in each frame to create the
required animations

main.js will serve as the entry point for both iOS and Android and
will be responsible to initialize Redux:

The rest of the files are generated by React Native's CLI.

Let's now review the package.json file we will need to set the de-
pendencies up in our project:

/*** package.json ***/

{

 “name": “birdGame",

 “version": “0.0.1",

 “private": true,

 “scripts": {

 “start": “node node_modules/react-native/loca

 “test": “jest"

 },

 “dependencies": {

 “react": “16.0.0-alpha.12",

 “react-native": “0.46.4",

 “react-native-sound": “^0.10.3",

 “react-redux": “^4.4.5",

 “redux": “^3.5.2"

 },

 “devDependencies": {

 “babel-jest": “20.0.3",

 “babel-preset-react-native": “2.1.0",

 “jest": “20.0.4",

 “react-test-renderer": “16.0.0-alpha.12"

 },

 “jest": {

 “preset": “react-native"

 }

}

Apart from Redux libraries, we will import react-native-sound ,

which will be in charge of playing any sounds in our game.

After running npm install , we will have our app ready to start
coding. As happened in previous apps, the entry point for our mes-
saging app will be the same code both in index.ios.js for iOS
and in index.android.js for Android, but both will delegate the
initialisation logic to src/main.js :

/*** index.ios.js and index.android.js ***/

import { AppRegistry } from 'react-native';

import App from './src/main';

AppRegistry.registerComponent('birdGame', () => A

src/main.js is responsible for initializing Redux and will set
GameContainer as the root component in our app:

/*** src/main.js ***/

import React from “react";

import { createStore, combineReducers } from “red

import { Provider } from “react-redux";

import gameReducer from “./reducers/game";

import GameContainer from “./components/GameConta

let store = createStore(combineReducers({ gameRed

export default class App extends React.Component

 render() {

 return (

 <Provider store={store}>

 <GameContainer />

 </Provider>

);

 }

}

We use GameContainer as the root of the component tree in our
app. As a regular Redux app, a <Provider /> component is in
charge of supplying the store to all the components which require
reading or modifying the application state.

GameContainer

GameContainer is responsible for starting up the game once the
user taps the screen. It will do this using requestAnimation-

Frame() --one of the custom timers implemented in React Native.

requestAnimationFrame() is similar to setTimeout() , but
the former will fire after all the frame has flushed, whereas the latter
will fire as quickly as possible (over 1000x per second on a iPhone
5S); therefore, requestAnimationFrame() is more suited for an-
imated games as it deals only with frames.

As happens with most animated games, we need to create a loop to
animate the sprites in the screen by calculating the next position of
each element on each frame. This loop will be created by a function
named nextFrame() inside our GameContainer :

nextFrame() {

if (this.props.gameOver) return;

 var elapsedTime = new Date() - this.time;

 this.time = new Date();

 this.props.tick(elapsedTime);

this.animationFrameId =

 requestAnimationFrame(this.nextFrame.bind(t

}

This function will be aborted if the property gameOver is set to
true . Otherwise, it will trigger the action tick() (which calculates
how the sprites should be moved on to the next frame, based on the
elapsed time) and finally calls itself through requestAnimation-

Frame() . This will keep the loop in the game to animate the moving
sprites.

Of book, this nextFrame() should be called at the start for the first
time, so we will also create a start() function inside
GameContainer to get the game started:

start() {

cancelAnimationFrame(this.animationFrameId);

 this.props.start();

 this.props.bounce();

 this.time = new Date();

 this.setState({ gameOver: false });

this.animationFrameId =

 requestAnimationFrame(this.nextFrame.bind(t

}

The start function makes sure there is no animation started by
calling cancelAnimationFrame() . This will prevent any double
animations being performed when the user resets the game.

Then, the functions trigger the start() action, which will just set a
flag in the store to notice the game has started.

We want to start the game by moving the parrot up, so the user has
the time to react. For this, we also call the bounce() action.

Finally, we start the animation loop by passing the already known
nextFrame() function as a callback of requestAnimation-
Frame() .

Let's also review the render() method we will use for this
container:

render() {

 const {

 rockUp,

 rockDown,

 ground,

 ground2,

 parrot,

 isStarted,

 gameOver,

 bounce,

 score

 } = this.props;

 return (

 <TouchableOpacity

onPress={

 !isStarted || gameOver ? this.start.bin

 bounce.bind(this)

 }

 style={styles.screen}

activeOpacity={1}

 >

 <Image

 source={require(“../../images/bg.png")}

 style={[styles.screen, styles.image]}

 />

 <RockUp

 x={rockUp.position.x * W} //W is a resp

 //explained i

 y={rockUp.position.y}

 height={rockUp.size.height}

 width={rockUp.size.width}

 />

 <Ground

 x={ground.position.x * W}

 y={ground.position.y}

 height={ground.size.height}

 width={ground.size.width}

 />

 <Ground

 x={ground2.position.x * W}

 y={ground2.position.y}

 height={ground2.size.height}

 width={ground2.size.width}

 />

 <RockDown

 x={rockDown.position.x * W}

 y={rockDown.position.y * H} //H is a re

 //explained

 //section

 height={rockDown.size.height}

 width={rockDown.size.width}

 />

 <Parrot

 x={parrot.position.x * W}

 y={parrot.position.y * H}

 height={parrot.size.height}

 width={parrot.size.width}

 />

 <Score score={score} />

 {!isStarted && <Start />}

 {gameOver && <GameOver />}

 {gameOver && isStarted && <StartAgain />}

 </TouchableOpacity>

);

 }

It may be lengthy, but actually, it's a simple positioning of all the visi-
ble elements on the screen while wrapping them in a <Touchable-

Opacity /> component to capture the user tapping no matter in
which part of the screen. This <TouchableOpacity /> compo-
nent is actually not sending any feedback to the user when they tap
the screen (we disabled it by passing activeOpacity={1} as a
prop) since this feedback is already provided by the parrot bouncing
on each tap.

NOTE

We could have used React Native's <Touchable-

WithoutFeedback /> for this matter, but it has sev-
eral limitations which would have harmed our
performance.

The provided onPress attribute just defines what the app should do
when the user taps on the screen:

If the game is active, it will bounce the parrot sprite
If the user is on the game over screen it will restart the game by
calling the start() action

All other children in the render() method are the graphic elements
in our game, specifying for each of them, their position and size. It's
also important to note several points:

There are two <Ground /> components because we need to
continuously animate it in the x axis. They will be positioned one
after the other horizontally to animate them together so when the
end of the first <Ground /> component is shown on screen, the
beginning of the second will follow creating the sense of
continuum.

The background is not contained in any custom component but in
<Image /> . This is because it doesn't need any special logic be-
ing a static element.
Some positions are multiplied by factor variables (W and H). We
will take a deeper look at these variables in the constants section.

At this point, we only need to know that they are variables helping
in the absolute positioning of the elements taking into account all
screen sizes.

Let's now put all these functions together to build up our <Game-
Container /> :

/*** src/components/GameContainer.js ***/

import React, { Component } from “react";

import { connect } from “react-redux";

import { bindActionCreators } from “redux";

import { TouchableOpacity, Image, StyleSheet }

import * as Actions from “../actions";

import { W, H } from “../constants";

import Parrot from “./Parrot";

import Ground from “./Ground";

import RockUp from “./RockUp";

import RockDown from “./RockDown";

import Score from “./Score";

import Start from “./Start";

import StartAgain from “./StartAgain";

import GameOver from “./GameOver";

class Game extends Component {

constructor() {

 super();

 this.animationFrameId = null;

 this.time = new Date();

 }

 nextFrame() {

 ...

 }

 start() {

 ...

 }

componentWillUpdate(nextProps, nextState) {

 if (nextProps.gameOver) {

 this.setState({ gameOver: true });

 cancelAnimationFrame(this.animationFrameI

 }

 }

shouldComponentUpdate(nextProps, nextState) {

 return !nextState.gameOver;

 }

 render() {

 ...

 }

}

const styles = StyleSheet.create({

 screen: {

 flex: 1,

 alignSelf: “stretch",

 width: null

 },

 image: {

 resizeMode: “cover"

 }

});

function mapStateToProps(state) {

 const sprites = state.gameReducer.sprites;

 return {

parrot: sprites[0],

 rockUp: sprites[1],

 rockDown: sprites[2],

 gap: sprites[3],

 ground: sprites[4],

 ground2: sprites[5],

 score: state.gameReducer.score,

 gameOver: state.gameReducer.gameOver,

 isStarted: state.gameReducer.isStarted

 };

}

function mapStateActionsToProps(dispatch) {

 return bindActionCreators(Actions, dispatch);

}

export default connect(mapStateToProps, mapStat

We added three more ES6 and React lifecycle methods to this
component:

super() : The constructor will save an attribute named anima-

tionFrameId to capture the ID for the animation frame in which
the nextFrame function will run and also another attribute
named time will store the exact time at which the game was ini-

tialized. This time attribute will be used by the tick() function
to calculate how much the sprites should be moved.

componentWillUpdate() : This function will be called every
time new props (positions and sizes for the sprites in the game)

are passed. It will detect when the game must be stopped due to a
collision so the game over screen will be displayed.

shouldComponentUpdate() : This performs another check to
avoid re-rendering the game container if the game has ended.

The rest of the functions are Redux related. They are in charge of
connecting the component to the store by injecting actions and
attributes:

mapStateToProps() : This gets the data for all the sprites in the
store and injects them into the component as props. The sprites
will be stored in an array and therefore they will be accessed by
index. On top of these, the Score , a flag noting if the current
game is over, and a flag noting if the game is in progress will also
be retrieved from the state and injected into the component.
mapStateActionsToProps() : This will inject the three avail-
able actions (tick , bounce , and start) into the component
so they can be used by it.

NOTE

Accessing the sprites data by index is not a recom-
mended practice as indexes can change if the num-
ber of sprites grows, but we will use it like this in this
app for simplicity reasons.

Actions

As we mentioned before, only three Redux actions will be available:

tick() : To calculate the next position of the sprites on the
screen
bounce() : To make the parrot fly up
start() : To initialize the game variables

This means our src/actions/index.js file should be very
simple:

/*** src/actions/index.js ***/

export function start() {

 return { type: “START" };

}

export function tick(elapsedTime) {

 return { type: “TICK", elapsedTime };

}

export function bounce() {

 return { type: “BOUNCE" };

}

Only the tick() action needs to pass a payload: the time it passed
since the last frame.

Reducer

Since we have a very limited amount of actions, our reducer will also
be fairly simple and will delegate most of the functionality to the
sprites helper functions in the src/sprites.js file:

/*** src/reducers/index.js ***/

import {

 sprites,

 moveSprites,

 checkForCollision,

 getUpdatedScore,

 bounceParrot

} from “../sprites";

const initialState = {

 score: 0,

 gameOver: false,

 isStarted: false,

 sprites

};

export default (state = initialState, action) =>

 switch (action.type) {

 case “TICK":

 return {

 ...state,

 sprites: moveSprites(state.sprites, actio

 gameOver: checkForCollision(state.sprites

 state.sprites.slice(1)),

 score: getUpdatedScore(state.sprites, sta

 };

 case “BOUNCE":

 return {

 ...state,

 sprites: bounceParrot(state.sprites)

 };

 case “START":

 return {

 ...initialState,

 isStarted: true

 };

 default:

 return state;

 }

};

The start() function only needs to set the isStarted flag to
true , as the initial state will have it set to false by default. We will
reuse this initial state every time the game ends.

bounce() will use the bounceParrot() function from the sprites
module to set a new direction for the main character.

The most important changes will happen when the tick() function
is triggered, as it needs to calculate the positions of all moving ele-
ments (through the moveSprites() function), detect if the parrot
has collided with any static elements (through the checkForCol-

lision() function), and update the score in the store (through the
getUpdatedScore() function).

As we can see, most of the game's functionality is delegated to the
helper functions inside the sprites module, so let's take a deeper look
into the src/sprites.js file.

The Sprites Module

The structure of the sprites module is formed by an array of sprites
and several exported functions:

/*** src/sprites.js ***/

import sound from “react-native-sound";

const coinSound = new sound(“coin.wav", sound.MAI

let heightOfRockUp = 25;

let heightOfRockDown = 25;

let heightOfGap = 30;

let heightOfGround = 20;

export const sprites = [

 ...

];

function prepareNewRockSizes() {

 ...

}

function getRockProps(type) {

 ...

}

export function moveSprites(sprites, elapsedTime

 ...

}

export function bounceParrot(sprites) {

 ...

}

function hasCollided(mainSprite, sprite) {

 ...

}

export function checkForCollision(mainSprite, spr

 ...

}

export function getUpdatedScore(sprites, score) {

 ...

}

This module begins by loading the sound effect we will play when the
parrot passes a set of rocks to give feedback to the user about the in-
crement in their score.

Then, we define some heights for several sprites:

heightOfRockUp : This is the height of the rock which will ap-
pear in the upper part of the screen.

heightOfRockDown : This is the height of the rock which will
show in the lower part of the screen.

heightOfGap : We will create an invisible view between the up-
per and the lower rock to detect when the parrot has passed each
set of rocks so the score is updated. This this gap's height.
heightOfGround : This is a static value for the height of the
ground.

Each other item in this module plays a role in moving or positioning
the sprites on the screen.

The Sprites Array

This is the array in charge of storing all the sprite's positions and
sizes at a given time. Why are we using an array for storing our
sprites instead of a hash map (Object)? Mainly for extensibility; al-
though a hash map would make our code noticeably more readable,

if we want to add new sprites of an existing type (as it happens with
the ground sprite in this app) we would need to use artificial keys
for each of them despite being the same type. Using an array of
sprites is a recurrent pattern in game development which allows to
decouple the implementation from the list of sprites.

Whenever we want to move a sprite, we will update its position in this
array:

export const sprites = [

 {

 type: “parrot",

 position: { x: 50, y: 55 },

 velocity: { x: 0, y: 0 },

 size: { width: 10, height: 8 }

 },

 {

 type: “rockUp",

 position: { x: 110, y: 0 },

 velocity: { x: -1, y: 0 },

 size: { width: 15, height: heightOfRockUp }

 },

 {

 type: “rockDown",

 position: { x: 110, y: heightOfRockUp + 30 },

 velocity: { x: -1, y: 0 },

 size: { width: 15, height: heightOfRockDown }

 },

 {

 type: “gap",

 position: { x: 110, y: heightOfRockUp },

 velocity: { x: -1, y: 0 },

 size: { width: 15, height: 30 }

 },

 {

 type: “ground",

 position: { x: 0, y: 80 },

 velocity: { x: -1, y: 0 },

 size: { width: 100, height: heightOfGround }

 },

 {

 type: “ground",

 position: { x: 100, y: 80 },

 velocity: { x: -1, y: 0 },

 size: { width: 100, height: heightOfGround }

 }

];

The array will store the initial values for positioning and sizing all the
moving sprites in the game.

prepareNewRockSizes()

This function randomly calculates the size of the next upper and low-
er rock together with the height of the gap between them:

function prepareNewRockSizes() {

 heightOfRockUp = 10 + Math.floor(Math.random()

 heightOfRockDown = 50 - heightOfRockUp;

 heightOfGap = 30;

}

It's important to note that this function only calculates the heights for
the new set of rocks but doesn't create them. This is just a prepara-
tion step.

getRockProps()

The helper functions to format the position and size attributes
of a rock (or gap) :

function getRockProps(type) {

 switch (type) {

 case “rockUp":

 return { y: 0, height: heightOfRockUp };

 case “rockDown":

 return { y: heightOfRockUp + heightOfGap,

 height: heightOfRockDown };

 case “gap":

 return { y: heightOfRockUp, height: heightO

 }

}

moveSprites()

This is the main function as it calculates the new position for each
sprite stored in the sprites array. Game development relies in physics
to calculate the position for each sprite in each frame.

For example, if we want to move an object to the right side of the
screen, we will need to update its x position a number of pixels. The
more pixels we add to the object's x attribute for the next frame, the
faster it will move (sprite.x = sprite.x + 5; moves
sprite five times faster than sprite.x = sprite.x + 1;).

As we can see in the following example, the way we calculate the
new position for each sprite is based on three factors: the current po-
sition of the sprite, the time that has passed since the last frame
(elapsedTime), and the gravity/velocity of the sprite (i.e.

sprite.velocity.y + elapsedTime * gravity).

Additionally, we will use the helper function getRockProps to get
the new sizes and positions for the rocks. Let's take a look at how the
moveSprites function looks like:

export function moveSprites(sprites, elapsedTime

 const gravity = 0.0001;

 let newSprites = [];

 sprites.forEach(sprite => {

 if (sprite.type === “parrot") {

 var newParrot = {

 ...sprite,

 position: {

 x: sprite.position.x,

 y:

 sprite.position.y +

 sprite.velocity.y * elapsedTime +

 0.5 * gravity * elapsedTime * elapsed

 },

 velocity: {

 x: sprite.velocity.x,

 y: sprite.velocity.y + elapsedTime * gr

 }

 };

 newSprites.push(newParrot);

 } else if (

 sprite.type === “rockUp" ||

 sprite.type === “rockDown" ||

 sprite.type === “gap"

) {

 let rockPosition,

 rockSize = sprite.size;

 if (sprite.position.x > 0 - sprite.size.wid

 rockPosition = {

 x: sprite.position.x + sprite.velocity.

 y: sprite.position.y

 };

 } else {

 rockPosition = { x: 100, y: getRockProps(

 rockSize = { width: 15,

 height: getRockProps(sprite.

 }

 var newRock = {

 ...sprite,

 position: rockPosition,

 size: rockSize

 };

 newSprites.push(newRock);

 } else if (sprite.type === “ground") {

 let groundPosition;

 if (sprite.position.x > -97) {

 groundPosition = { x: sprite.position.x +

 y: 80 };

 } else {

 groundPosition = { x: 100, y: 80 };

 }

 var newGround = { ...sprite, position: grou

 newSprites.push(newGround);

 }

 });

 return newSprites;

}

Calculating the next position for a sprite is, most of the time, basic ad-
dition (or subtraction). Let's take, for example, how the parrot should

move:

var newParrot = {

 ...sprite,

 position: {

 x: sprite.position.x,

 y:

 sprite.position.y +

 sprite.velocity.y * elapsedTime +

 0.5 * gravity * elapsedTime * elapsed

 },

 velocity: {

 x: sprite.velocity.x,

 y: sprite.velocity.y + elapsedTime * gr

 }

 }

The parrot will only move vertically, basing its speed on gravity, so
the x attribute will always stay fixed for it while the y attribute will
change according to the function sprite.position.y +

sprite.velocity.y * elapsedTime + 0.5 * gravity *

elapsedTime * elapsedTime which, in summary, adds the
elapsed time and the gravity in different factors.

The calculations for how the rocks should move are a little more com-
plex, as we need to take into account every time the rocks disappear

from the screen (if (sprite.position.x > 0 - sprite.-

size.width)). As they have been passed, we need to recreate
them with different heights (rockPosition = { x: 100, y:

getRockProps(sprite.type).y }).

We have the same behavior for the ground, in terms of having to
recreate it once it abandons the screen completely (if (sprite.-

position.x > -97)).

bounceParrot()

The only task for this function is changing the velocity of the main
character, so it will fly up reversing the effect of gravity. This function
will be called whenever the user taps on the screen while the game is
started:

export function bounceParrot(sprites) {

 var newSprites = [];

 var sprite = sprites[0];

 var newParrot = { ...sprite, velocity: { x: spr

 y: -0.05 } };

 newSprites.push(newParrot);

 return newSprites.concat(sprites.slice(1));

}

It's a simple operation in which we take the parrot's sprite data from
the sprites array; we change its velocity on the y axis to a nega-
tive value so that the parrot moves upwards.

checkForCollision()

checkForCollision() is responsible for identifying if any of the
rigid sprites have collided with the parrot sprite, so the game can be
stopped. It will use hasCollided() as a supporting function to
perform the required calculations on each specific sprite:

function hasCollided(mainSprite, sprite) {

 /***

 *** we will check if 'mainSprite' has entered

 *** space occupied by 'sprite' by comparing th

 *** position, width and height

 ***/

 var mainX = mainSprite.position.x;

 var mainY = mainSprite.position.y;

 var mainWidth = mainSprite.size.width;

 var mainHeight = mainSprite.size.height;

 var spriteX = sprite.position.x;

 var spriteY = sprite.position.y;

 var spriteWidth = sprite.size.width;

 var spriteHeight = sprite.size.height;

 /***

 *** this if statement checks if any border of

 *** sits within the area covered by sprite

 ***/

 if (

 mainX < spriteX + spriteWidth &&

 mainX + mainWidth > spriteX &&

 mainY < spriteY + spriteHeight &&

 mainHeight + mainY > spriteY

) {

 return true;

 }

}

export function checkForCollision(mainSprite, spr

 /***

 *** loop through all sprites in the sprites ar

 *** checking, for each of them, if there is a

 *** collision with the mainSprite (parrot)

 ***/

 return sprites.filter(sprite => sprite.type !==

 return hasCollided(mainSprite, sprite);

 });

}

For simplicity, we assume that all sprites have a rectangular shape
(even though rocks grow thinner towards the end) because the calcu-
lation would be a lot more complex if we considered different shapes.

In summary, checkForCollision() is just looping through the
sprites array to find any colliding sprite, hasCollided()

checks for collisions based on the sprite size and position. In just an
if statement, we compare the boundaries of a sprite and the par-
rot's sprite to see if any of those boundaries are occupying the same
area of the screen.

getUpdatedScore()

The last function in the sprites module will check if the score needs to
be updated based on parrot position relative to the gap position (the
gap between the upper and the lower rock is also counted as a
sprite):

export function getUpdatedScore(sprites, score) {

 var parrot = sprites[0];

 var gap = sprites[3];

 var parrotXPostion = parrot.position.x;

 var gapXPosition = gap.position.x;

 var gapWidth = gap.size.width;

 if (parrotXPostion === gapXPosition + gapWidth)

 coinSound.play();

 score++;

 prepareNewRockSizes();

 }

 return score;

}

An if statement checks if the parrot's position in the x axis has sur-
passed the gap (gapXPosition + gapWidth). When this hap-
pens, we play the sound we created in the header of the module
(const coinSound = new sound(“coin.wav", sound.-

MAIN_BUNDLE);) by calling its play() method. Moreover, we will
increase the score variable and prepare a new set of rocks to be
rendered when the current ones leave the screen.

Constants

We already saw the variables W and H . They represent one part of
the screen if we divided it into 100 parts. Let's take a look at the
constants.js file to understand this better:

/*** src/constants.js ***/

import { Dimensions } from “react-native";

var { width, height } = Dimensions.get(“window");

export const W = width / 100;

export const H = height / 100;

W can be calculated as the total width of the device's screen divided
by 100 units (as percentages are easier to reason about when posi-
tioning our sprites). The same goes for H ; it can be calculated by di-
viding the total height by 100 . Using these two constants, we can
position and size our sprites relative to the size of the screen, so all
screen sizes will display the same ratios for positions and sizes.

These constants will be used in all the visual components requiring
responsive capabilities so they will show and move different depend-
ing on the screen size. This technique will ensure the game is

playable even in small screens as the sprites will be resized
accordingly.

Let's move on now to the components which will be displayed inside
the <GameContainer /> .

Parrot

The main character will be represented by this component, which will
comprise of two different images (the same parrot with its wings up
and down) driven by the Y position property passed by <GameCon-

tainer /> :

/*** src/components/parrot.js ***/

import React from “react";

import { Image } from “react-native";

import { W, H } from “../constants";

export default class Parrot extends React.Compone

 constructor() {

 super();

 this.state = { wings: “down" };

 }

 componentWillUpdate(nextProps, nextState) {

 if (this.props.y < nextProps.y) {

 this.setState({ wings: “up" });

 } else if (this.props.y > nextProps.y) {

 this.setState({ wings: “down" });

 }

 }

 render() {

 let parrotImage;

 if (this.state.wings === “up") {

 parrotImage = require(“../../images/parrot1

 } else {

 parrotImage = require(“../../images/parrot2

 }

 return (

 <Image

 source={parrotImage}

 style={{

 position: “absolute",

 resizeMode: “contain",

 left: this.props.x,

 top: this.props.y,

 width: 12 * W,

 height: 12 * W

 }}

 />

);

 }

}

We use a state variable named wings to pick which image the par-
rot will be--when it is flying up the image with the wings down will be
displayed while the wings up will be shown when flying down. The

way this will be calculated is based on the position of the bird on the y
axis passed as a property from the container:

If the Y position is lower than the previous Y position means the
bird is going down and therefore the wings should be up
If the Y position is higher than the previous Y position means the
bird is going up and therefore the wings should be down

The size of the parrot is fixed to 12 * W both for the height and
width as the sprite is a square and we want it to be sized relative to
the width of each screen device.

RockUp and RockDown

The sprites for the rocks have no logic on them and are basically
<Image /> components positioned and sized by the parent compo-
nent. This is the code for <RockUp /> :

/*** src/components/RockUp.js ***/

import React, { Component } from “react";

import { Image } from “react-native";

import { W, H } from “../constants";

export default class RockUp extends Component {

 render() {

 return (

 <Image

 resizeMode="stretch"

 source={require(“../../images/rock-down.p

 style={{

 position: “absolute",

 left: this.props.x,

 top: this.props.y,

 width: this.props.width * W,

 height: this.props.height * H

 }}

 />

);

 }

}

The height and the width will be calculated by the following formulae:

this.props.width * W and this.props.height * H . This
will size the rock relative to the device's screen and the provided
height and width.

The code for <RockDown /> is quite similar:

/*** src/components/RockDown.js ***/

import React, { Component } from “react";

import { Image } from “react-native";

import { W, H } from “../constants";

export default class RockDown extends Component {

 render() {

 return (

 <Image

 resizeMode="stretch"

 source={require(“../../images/rock-up.png

 style={{

 position: “absolute",

 left: this.props.x,

 top: this.props.y,

 width: this.props.width * W,

 height: this.props.height * H

 }}

 />

);

 }

}

Ground

Building the ground component is similar to the rock sprites. An im-
age rendered in the proper position and size will be sufficient for this
component:

/*** src/components/Ground.js ***/

import React, { Component } from “react";

import { Image } from “react-native";

import { W, H } from “../constants";

export default class Ground extends Component {

 render() {

 return (

 <Image

 resizeMode="stretch"

 source={require(“../../images/ground.png"

 style={{

 position: “absolute",

 left: this.props.x,

 top: this.props.y * H,

 width: this.props.width * W,

 height: this.props.height * H

 }}

 />

);

 }

}

In this case, we will use H to relatively positioning the ground image.

Score

We decided to use number images to render the score, so we will
need to load them and pick the appropriate digits depending on the
user's score:

/*** src/components/Score.js ***/

import React, { Component } from “react";

import { View, Image } from “react-native";

import { W, H } from “../constants";

export default class Score extends Component {

getSource(num) {

 switch (num) {

 case “0":

 return require(“../../images/0.png");

 case “1":

 return require(“../../images/1.png");

 case “2":

 return require(“../../images/2.png");

 case “3":

 return require(“../../images/3.png");

 case “4":

 return require(“../../images/4.png");

 case “5":

 return require(“../../images/5.png");

 case “6":

 return require(“../../images/6.png");

 case “7":

 return require(“../../images/7.png");

 case “8":

 return require(“../../images/8.png");

 case “9":

 return require(“../../images/9.png");

 default:

 return require(“../../images/0.png");

 }

 }

 render() {

 var scoreString = this.props.score.toString()

 var scoreArray = [];

 for (var index = 0; index < scoreString.lengt

 scoreArray.push(scoreString[index]);

 }

 return (

 <View

 style={{

 position: “absolute",

 left: 47 * W,

 top: 10 * H,

 flexDirection: “row"

 }}

 >

 {scoreArray.map(

 function(item, i) {

 return (

 <Image

 style={{ width: 10 * W }}

 key={i}

 resizeMode="contain"

 source={this.getSource(item)}

 />

);

 }.bind(this)

)}

 </View>

);

 }

}

We are doing the following in the render method:

Converting the score to a string
Converting the string into a list of digits
Turning this list of digits into a list of images using the supporting
getSource() function

One of the limitations in React Native <Image /> is that its source
cannot be required as a variable. Hence, we are using this small trick
of retrieving the source from our getSource() method, which actu-
ally acquires all the possible images and returns the correct one
through a switch / case clause.

Start

The start screen includes two images:

A logo
A start button explaining how to start up the game (tapping any-
where on the screen)

/*** src/components/Start.js ***/

import React, { Component } from “react";

import { Text, View, StyleSheet, Image } from “

import { W, H } from “../constants";

export default class Start extends Component {

 render() {

 return (

 <View style={{ position: “absolute", left

 <Image

 resizeMode="contain"

 source={require(“../../images/logo.pn

 style={{ width: 60 * W }}

 />

 <Image

 resizeMode="contain"

 style={{ marginTop: 15, width: 60 * W

 source={require(“../../images/tap.png

 />

 </View>

);

 }

}

We are using our H and W constants again to ensure the elements
are positioned in the right place on every device screen.

GameOver

When the parrot collides with a rock or the ground, we should display
the game over screen. This screen only contains two images:

A game over sign
A button to restart the game

Let's first take a look at the game over sign:

/*** src/components/GameOver.js ***/

import React, { Component } from “react";

import { Image } from “react-native";

import { W, H } from “../constants";

export default class GameOver extends Component {

 render() {

 return (

 <Image

 style={{

 position: “absolute",

 left: 15 * W,

 top: 30 * H

 }}

 resizeMode="stretch"

 source={require(“../../images/game-over.p

 />

);

 }

}

Now, let's move on to the reset the game button.

StartAgain

Actually, the reset button is only a sign as the user will be able to tap
not only on the button but anywhere on the screen to get the game
started. In any case, we will position this button properly on every
screen using the H and W constants:

/*** src/components/StartAgain.js ***/

import React, { Component } from “react";

import { Text, View, StyleSheet, TouchableOpacity

from “react-native";

import { W, H } from “../constants";

export default class StartAgain extends Component

 render() {

 return (

 <Image

 style={{ position: “absolute", left: 35 *

 resizeMode="contain"

 source={require(“../../images/reset.png")

 />

);

 }

}

Summary

Games are a very special kind of app. They are based on displaying
and moving sprites on the screen, depending on the time and the
user interaction. That is why we spent most of this lesson explaining
how we could easily display all the images in the most performant
way and how to position and size them.

We also reviewed a common trick to position and size sprites relative-
ly to the height and width of the device screen.

Despite not being designed for games specifically, Redux was used
to store and distribute the sprite's data around the components in our
app.

At a general level, we proved that React Native can be used to build
performant games and, although it lacks game-specific tooling, we
can produce a very readable code which means it should be easy to
extend and maintain. In fact, some very easy extensions can be cre-
ated at this stage to make the game more fun and playable: increase
speed after passing a specific amount of obstacles, reduce or in-
crease the gap size, show more than one set of rocks on screen at
once, and so.

With this, we've come to the end of this learning journey. I hope you'd
a smooth journey and gained a lot of knowledge on React.

I wish you all the best for your future projects. Keep learning and
exploring!

Assessments

1. Name the graphics that are used by the games, normally grouped
into one or several images.

1. Numbers
2. Background
3. Ground
4. Sprites

2. State whether the following statement is True or False: Sprites are
the graphics used by the games, normally grouped into one or sev-
eral images. Many game engines include tools to split and manage
those graphics in a convenient way, but this is not the case in Re-
act Native.

3. State whether the following statement is True or False: The sprites
array is the array in charge of storing all the sprite's positions and
sizes at a given time.

4. Which functions are in charge of connecting the component to the
store by injecting actions and attributes?

5. ________ is responsible for starting up the game once the user
taps the screen. It will do this using
requestAnimationFrame() --one of the custom timers imple-
mented in React Native.

1. nextFrame()

2. cancelAnimationFrame()

3. GameContainer

4. mapStateToProps(state)

Appendix 5. Assessment Answers

Lesson 1: Project 1 – Car Booking
App

Question
Number

Answer

1 2

2 1

3 3

4 4

Question
Number

Answer

5
shadowColor : This adds the hexadecimal or
RGBA value of the color we want for our
component
shadowOffset : This shows how far we want
our shadow to be casted
shadowRadius : This shows the value of the
radius in the corner of our shadow
shadowOpacity : This shows how dark we
want our shadow to be

Lesson 2: Project 2 – Image Sharing
App

Question
Number

Answer

1 2

2 1

3 True

4 3

5
onPress : What the component needs to do
when the Send button is pressed
busy : This means "Are we waiting for remote
data?"
loginError/registrationError : De-
scription of the error that happened when log-
ging/register (in case it happened)

Lesson 3: Project 3 – Messaging App

Question
Number

Answer

1 3

2 4

3 True

4 2

5
tick() : To calculate the next position of the
sprites on the screen
bounce() : To make the parrot fly up
start() : To initialize the game variables

Lesson 4: Project 4 – Game

Question
Number

Answer

1 4

2 True

3 True

Question
Number

Answer

4
mapStateToProps() : This gets the data for
all the sprites in the store and injects them into
the component as props. The sprites will be
stored in an array and therefore they will be ac-
cessed by an index. On top of these, the Score,

a flag noting if the current game is over and a
flag noting if the game is in progress, will also be
retrieved from the state and injected into the
component.
mapStateActionsToProps() : This will in-
ject the three available actions (tick ,

bounce , and start) into the component so
they can be used by it.

5 3

	React: Cross-Platform Application Development with React Native
	React: Cross-Platform Application Development with React Native
	Credits
	Meet Your Expert

	Preface
	What's in It for Me?
	What Will I Get from This Book ?
	Prerequisites

	1. Project 1 – Car Booking App
	Overview
	Setting up the Folder Structure
	Files and Folders Created by React Native's CLI
	__tests__/
	android/ and ios/
	node_modules/
	Files in the Root Folder

	react-native link

	Running the App in the Simulator
	The Developer Menu

	Creating our App's Entry Point
	Adding Images to Our App

	LocationSearch
	Aligning Elements

	LocationPin
	flexDirection
	Dimensions
	Shadows

	ClassSelection
	Adding Custom Fonts
	Animations

	ConfirmationModal
	Summary
	Assessments

	2. Project 2 – Image Sharing App
	Overview
	Setting up the Folder Structure
	Redux
	ImagesList
	Gallery
	Header
	ActivityIndicator
	Camera
	MyImages
	ImageGrid
	Actions
	Reducers
	API
	Summary
	Assessments

	3. Project 3 – Messaging App
	Overview
	Firebase
	Real-Time Database
	Reading Data from Firebase's Database
	Updating Data in Firebase's Database

	Authentication

	Setting up the Folder Structure
	Users Store
	Chats Store
	Push Notifications Using Firebase
	Login
	Chats
	ListItem
	Chat
	Search
	Profile
	Summary
	Assessments

	4. Project 4 – Game
	Overview
	Sprites
	Numbers
	Background
	Ground
	Rocks
	Parrot
	The Home Screen
	Game Over Screen

	Setting up the folder structure
	GameContainer
	Actions
	Reducer
	The Sprites Module
	The Sprites Array
	prepareNewRockSizes()
	getRockProps()
	moveSprites()
	bounceParrot()
	checkForCollision()
	getUpdatedScore()

	Constants
	Parrot
	RockUp and RockDown
	Ground
	Score
	Start
	GameOver
	StartAgain
	Summary
	Assessments

	5. Assessment Answers
	Lesson 1: Project 1 – Car Booking App
	Lesson 2: Project 2 – Image Sharing App
	Lesson 3: Project 3 – Messaging App
	Lesson 4: Project 4 – Game

