

Rust Atomics and Locks

Low-Level Concurrency in Practice

Mara Bos

Rust Atomics and Locks

by Mara Bos

Copyright © 2023 Mara Bos. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,

Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(https://oreilly.com). For more information, contact our corporate/insti-
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade

Development Editor: Shira Evans

Production Editor: Elizabeth Faerm

Copyeditor: Liz Wheeler

Proofreader: Penelope Perkins

Indexer: Ellen Troutman-Zaig

Interior Designer: David Futato

https://oreilly.com/

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

December 2022: First Edition

Revision History for the First Edition

2022-12-14: First Release
2023-01-27: Second Release

See https://oreilly.com/catalog/errata.csp?isbn=9781098119447 for re-
lease details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.

Rust Atomics and Locks, the cover image, and related trade dress
are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not
represent the publisher’s views. While the publisher and the author
have used good faith efforts to ensure that the information and in-
structions contained in this work are accurate, the publisher and the
author disclaim all responsibility for errors or omissions, including
without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions con-
tained in this work is at your own risk. If any code samples or other

https://oreilly.com/catalog/errata.csp?isbn=9781098119447

technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your respon-
sibility to ensure that your use thereof complies with such licenses
and/or rights.

978-1-098-11944-7

[LSI]

To all the Rust contributors who were waiting for me to

review their code while I was busy writing this book.

And to my loved ones, too, of course. ♥

In loving memory of

Amélia Ada Louise, 1994–2021

Foreword

This book provides an excellent overview of low-level concurrency in
the Rust language, including threads, locks, reference counts, atom-
ics, mailboxes/channels, and much else besides. It digs into issues
with CPUs and operating systems, the latter summarizing challenges
inherent in making concurrent code work correctly on Linux, macOS,

and Windows. I was particularly happy to see that Mara illustrates
these topics with working Rust code. It wraps up by discussing sema-
phores, lock-free linked lists, queued locks, sequence locks, and
even RCU.

So what does this book offer someone like myself, who has been
slinging C code for almost 40 years, most recently in the nether
depths of the Linux kernel?

I first learned of Rust from any number of enthusiasts and Linux-relat-
ed conferences. Nevertheless, I was happily minding my own busi-
ness until I was called out by name in a Rust-related LWN article,

“Using Rust for Kernel Development”.
Thus prodded, I wrote a blog
series entitled “So You Want to Rust the Linux Kernel?”. This blog se-
ries sparked a number of spirited discussions, a few of which are visi-
ble in the series’ comments.

https://oreil.ly/OnlX8
https://oreil.ly/eiedc

In one such discussion, a long-time Linux-kernel developer who has
also written a lot of Rust code told me that when writing concurrent
code in Rust, you should write it the way Rust wants you to. I have
since learned that although this is great advice, it leaves open the
question of exactly what Rust wants. This book gives excellent an-
swers to this question, and is thus valuable both to Rust developers
wishing to learn concurrency and to developers of concurrent code in
other languages who would like to learn how best to do so in Rust.

I of course fall into this latter category. However, I must confess that
many of the spirited discussions about Rust concurrency remind me
of my parents’ and grandparents’ long-ago complaints about the in-
convenient safety features that were being added to power tools such
as saws and drills. Some of those safety features are now ubiquitous,

but hammers, chisels, and chainsaws have not changed all that
much. It was not at all easy to work out which mechanical safety fea-
tures would stand the test of time, so I recommend approaching soft-
ware safety features with an attitude of profound humility. And please
understand that I am addressing the proponents of such features as
well as their detractors.

Which brings us to another group of potential readers, the Rust skep-
tics. While I do believe that most Rust skeptics are doing the commu-
nity a valuable service by pointing out opportunities for improvement,
all but the most Rust-savvy of skeptics would benefit from reading

this book. If nothing else, doing so would enable them to provide
sharper and better-targeted criticisms.

Then there are those dyed-in-the-wool non-Rust developers who
would prefer to implement Rust’s concurrency-related safety mecha-
nisms in their own favorite language. This book will give them a deep-
er understanding of the Rust mechanisms that they would like to
replicate, or, better yet, improve upon.

Finally, any number of Linux-kernel developers are noting the
progress that Rust is making toward being included in the Linux ker-
nel; for example, see Jonathan Corbet’s article, “Next Steps for Rust
in the Kernel”. As of October 2022, this is still an experiment, but one
that is being taken increasingly seriously. In fact, seriously enough
that Linus Torvalds has accepted the first bits of Rust-language sup-
port into version 6.1 of the Linux kernel.

Whether you are reading this book to expand your Rust repertoire to
include concurrency, to expand your concurrency repertoire to in-
clude Rust, to improve your existing non-Rust environment, or just to
look at concurrency from a different viewpoint, I wish you the very
best on your journey!

Paul E. McKenney

Meta Platforms Kernel Team

https://oreil.ly/MLrT5

Meta

October 2022

Preface

Rust has played, and keeps playing, a significant role in making sys-
tems programming more accessible.
However, low-level concurrency
topics such as atomics and memory ordering
are still often thought of
as somewhat mystical subjects that are best left to a
very small group
of experts.

While working on Rust-based real-time control systems and the Rust
standard library over the past few years,
I found that many of the
available resources on atomics and related topics only
cover a small
part of the information I was looking for.
Many resources focus entire-
ly on C and C++,
which can make it hard to form the connection with
Rust’s concept of (memory and thread) safety and type system.
The
resources that cover the details of the abstract theory, like C++’s
memory model,
often only vaguely explain how it relates to actual
hardware, if at all.
There are many resources that cover every detail
of the actual hardware,
such as processor instructions and cache co-
herency,
but forming a holistic understanding often requires collecting
bits and pieces
of information from many different places.

This book is an attempt to put relevant information in one place, con-
necting it all together,
providing everything you need to build your
own correct, safe, and ergonomic concurrency primitives,
while un-

derstanding enough about the underlying hardware and the role of
the operating system
to be able to make design decisions and basic
optimization trade-offs.

Who This Book Is For

The primary audience for this book is Rust developers who want to
learn more about low-level concurrency.
Additionally, this book can
also be suitable for those who are not very familiar with Rust yet,
but
would like to know what low-level concurrency looks like from a Rust
perspective.

It is assumed you know the basics of Rust,
have a recent Rust com-
piler installed, and know how to compile and run Rust code using
cargo .
Rust concepts that are important for concurrency are briefly
explained when relevant,
so no prior knowledge about Rust concur-
rency is necessary.

Overview of the Chapters

This book consists of ten chapters.
Here’s what to expect from each
chapter, and what to look forward to:

Chapter 1 — Basics of Rust Concurrency

This chapter introduces all the tools and concepts
we need for
basic concurrency in Rust,
such as threads, mutexes, thread
safety, shared and exclusive references,
interior mutability, and
so on, which are foundational to the rest of the book.

For experienced Rust programmers who are familiar with these
concepts,
this chapter can serve as a quick refresher.
For
those who know these concepts from other languages but
aren’t very
familiar with Rust yet, this chapter will quickly fill you
in
on any Rust-specific knowledge you might need for the rest
of the book.

Chapter 2 — Atomics

In the second chapter we’ll learn about Rust’s atomic types and
all their operations.
We start with simple load and store opera-
tions, and build our way up to more
advanced compare-and-
exchange loops, exploring each new concept with
several real-
world use cases as usable examples.

While memory ordering is relevant for every atomic operation,

that topic is left for the next chapter.
This chapter only covers
situations where relaxed memory ordering suffices,
which is the
case more often than one might expect.

Chapter 3 — Memory Ordering

After learning about the various atomic operations and how to
use them,
the third chapter introduces the most complicated
topic of the book: memory ordering.

We’ll explore how the memory model works,
what happens-be-
fore relationships are and how to create them,
what all the dif-
ferent memory orderings mean,
and why sequentially consis-
tent ordering might not be the answer to everything.

Chapter 4 — Building Our Own Spin Lock

After learning the theory, we put it to practice in the next three
chapters
by building our own versions of several common con-
currency primitives.
The first of these chapters is a short one, in
which we implement a spin lock.

We’ll start with a very minimal version to put
release and ac-
quire memory ordering to practice,
and then we’ll explore
Rust’s concept of safety to turn it
into an ergonomic and hard-
to-misuse Rust data type.

Chapter 5 — Building Our Own Channels

In Chapter 5, we’ll implement from scratch a handful of varia-
tions of a one-shot channel,
a primitive that can be used to
send data from one thread to another.

Starting with a very minimal but entirely unsafe version,
we’ll
work our way through several ways to design a safe interface,

while considering design decisions and their consequences.

Chapter 6 — Building Our Own “Arc”

For the sixth chapter, we’ll take on a more challenging memory
ordering puzzle.
We’re going to implement our own version of
atomic reference counting from scratch.

After adding support for weak pointers and optimizing it for per-
formance,
our final version will be practically identical to Rust’s
standard std::sync::Arc type.

Chapter 7 — Understanding the Processor

The seventh chapter is a deep dive into all the low-level details.

We’ll explore what happens at the processor level,
what the
assembly instructions behind the atomic operations look like
on
the two most popular processor architectures,
what caching is
and how it affects the performance of our code,
and we’ll find
out what remains of the memory model at the hardware level.

Chapter 8 — Operating System Primitives

In Chapter 8 we acknowledge that there are things we can’t do
without the help of the operating system’s kernel and learn
what functionality is available on Linux, macOS, and Windows.

We’ll discuss the concurrency primitives that are available
through pthreads on POSIX systems,
find out what we can do

with the Windows API,
and learn what the Linux futex syscall
does.

Chapter 9 — Building Our Own Locks

Using what we’ve learned in the previous chapters, in Chapter
9 we’re going
to build several implementations of a mutex, con-
dition variable, and
reader-writer lock from scratch.

For each of these, we’ll start with a minimal but complete ver-
sion,
which we’ll then attempt to optimize in various ways.
Us-
ing some simple benchmark tests, we’ll find out
that our at-
tempts at optimization don’t always increase performance,

while we discuss various design trade-offs.

Chapter 10 — Ideas and Inspiration

The final chapter makes sure you don’t fall into a void
after fin-
ishing the book, but are instead left with
ideas and inspiration
for things to build and explore with your
new knowledge and
skills, perhaps kicking off an
exciting journey further into the
depths of low-level concurrency.

Code Examples

All code in this book is written for and tested using Rust 1.66.0,
which
was released on December 15, 2022.
Earlier versions do not include
all features used in this book.
Later versions, however, should work
just fine.

For brevity, the code examples do not include use statements,
ex-
cept for the first time a new item from the standard library is intro-
duced.
As a convenience, the following prelude can be used to import
everything
necessary to compile any of the code examples in this
book:

#[allow(unused)]

use std::{

 cell::{Cell, RefCell, UnsafeCell},

 collections::VecDeque,

 marker::PhantomData,

 mem::{ManuallyDrop, MaybeUninit},

 ops::{Deref, DerefMut},

 ptr::NonNull,

 rc::Rc,

 sync::{*, atomic::{*, Ordering::*}},

 thread::{self, Thread},

};

Supplemental material, including complete versions of all code exam-
ples,
is available at https://marabos.nl/atomics/.

https://marabos.nl/atomics/

You may use all example code offered with this book for any purpose.

Attribution is appreciated, but not required. An attribution usually in-
cludes the title, author, publisher, and ISBN. For example: “Rust
Atomics and Locks by Mara Bos (O’Reilly). Copyright 2023 Mara Bos,

978-1-098-11944-7.”

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Used for new terms, URLs, and emphasis.

Constant width

Used for program listings, as well as within paragraphs to
refer
to program elements such as variable or function names, data
types,
statements, and keywords.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Contact Information

O’Reilly has a web page for this book, where errata, examples, and
any additional information are listed.
It is available at
https://oreil.ly/rust-atomics-and-locks.

Email bookquestions@oreilly.com to comment or ask technical ques-
tions about this book. If you wish to reuse content from this book, and
you feel your reuse falls outside fair use or the permission given in
this Preface, feel free to contact O’Reilly at permissions@oreilly.com.

For news and information about O’Reilly, visit https://oreilly.com.

Follow O’Reilly on Twitter: https://twitter.com/oreillymedia.

Follow the author on Twitter: https://twitter.com/m_ou_se.

https://oreil.ly/rust-atomics-and-locks
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com/
https://twitter.com/oreillymedia
https://twitter.com/m_ou_se

Acknowledgments

I’d like to thank everyone who had a part in the creation this book.

Many people provided support and useful input, which has been in-
credibly helpful.
In particular, I’d like to thank Amanieu d’Antras, Aria
Beingessner,
Paul McKenney, Carol Nichols, and Miguel Raz
Guzmán Macedo for their invaluable
and thoughtful feedback on the
early drafts.
I’d also like to thank everyone at O’Reilly,
and in particu-
lar my editors, Shira Evans and Zan McQuade,
for their inexhaustible
enthusiasm and support.

Chapter 1. Basics of Rust
Concurrency

Long before multi-core processors were commonplace,
operating
systems allowed for a single computer to run many programs concur-
rently.
This is achieved by rapidly switching between processes,
al-
lowing each to repeatedly make a little bit of progress, one by one.

Nowadays, virtually all our computers and even our phones and
watches have processors with multiple cores,
which can truly execute
multiple processes in parallel.

Operating systems isolate processes from each other as much as
possible,
allowing a program to do its thing while completely unaware
of what any other processes are doing.
For example, a process can-
not normally access the memory of another process,
or communicate
with it in any way, without asking the operating system’s kernel first.

However, a program can spawn extra threads of execution, as part of
the same process.
Threads within the same process are not isolated
from each other.
Threads share memory and can interact with each
other through that memory.

This chapter will explain how threads are spawned in Rust, and all
the basic
concepts around them, such as how to safely share data

between multiple threads.
The concepts explained in this chapter are
foundational to the rest of the book.

NOTE

If you’re already familiar with these parts of Rust, feel free to skip ahead.
However,
before you continue to the next chapters,
make sure you have a good understand-
ing of
threads, interior mutability, Send and Sync ,
and know what a mutex, a con-
dition variable, and thread parking are.

Threads in Rust

Every program starts with exactly one thread: the main thread.
This
thread will execute your main function and can be used to spawn
more threads if necessary.

In Rust, new threads are spawned using the
std::thread::spawn function from the standard library.
It takes
a single argument: the function the new thread will execute.
The
thread stops once this function returns.

Let’s take a look at an example:

use std::thread;

fn main() {

 thread::spawn(f);

 thread::spawn(f);

 println!("Hello from the main thread.");

}

fn f() {

 println!("Hello from another thread!");

 let id = thread::current().id();

 println!("This is my thread id: {id:?}");

}

We spawn two threads that will both execute f as their main func-
tion.
Both of these threads will print a message and show their thread
id,
while the main thread will also print its own message.

THREAD ID

The Rust standard library assigns every thread a unique identifier.
This identifier is accessible through Thread::id() and is of the
type ThreadId .
There’s not much you can do with a ThreadId

other than copying it around and checking for equality.
There is no
guarantee that these IDs will be assigned consecutively, only that
they will be different for each thread.

If you run our example program above several times, you might no-
tice the output varies between runs.
This is the output I got on my ma-
chine during one particular run:

Hello from the main thread.

Hello from another thread!

This is my thread id:

Surprisingly, part of the output seems to be missing.

What happened here is that the main thread finished executing the
main function
before the newly spawned threads finished executing
their functions.

Returning from main will exit the entire program, even if other
threads are still running.

In this particular example, one of the newly spawned threads had just
enough
time to get to halfway through the second message, before
the program was shut
down by the main thread.

If we want to make sure the threads are finished before we return
from main ,
we can wait for them by joining them.
To do so, we have
to use the JoinHandle returned by the spawn function:

fn main() {

 let t1 = thread::spawn(f);

 let t2 = thread::spawn(f);

 println!("Hello from the main thread.");

 t1.join().unwrap();

 t2.join().unwrap();

}

The .join() method waits until the thread has finished executing
and returns a std::thread::Result .
If the thread did not suc-
cessfully finish its function because it panicked,
this will contain the
panic message.
We could attempt to handle that situation, or just call
.unwrap() to panic
when joining a panicked thread.

Running this version of our program will no longer result in truncated
output:

Hello from the main thread.

Hello from another thread!

This is my thread id: ThreadId(3)

Hello from another thread!

This is my thread id: ThreadId(2)

The only thing that still changes between runs is the order in which
the messages are printed:

Hello from the main thread.

Hello from another thread!

Hello from another thread!

This is my thread id: ThreadId(2)

This is my thread id: ThreadId(3)

OUTPUT LOCKING

The println macro uses std::io::Stdout::lock() to make
sure its output does not get interrupted.
A println!() expression
will wait until any concurrently running one is finished before writing
any output.
If this was not the case, we could’ve gotten more inter-
leaved output such as:

Hello fromHello from another thread!

 another This is my threthreadHello fromthread id

(the main thread.

2)This is my thread

id: ThreadId(3)

Rather than passing the name of a function to
std::thread::spawn ,
as in our example above,
it’s far more
common to pass it a closure.
This allows us to capture values to
move into the new thread:

let numbers = vec![1, 2, 3];

thread::spawn(move || {

 for n in &numbers {

 println!("{n}");

 }

}).join().unwrap();

Here, ownership of numbers is transferred to the newly spawned
thread,
since we used a move closure.
If we had not used the move

keyword,
the closure would have captured numbers by reference.

This would have resulted in a compiler error, since the new thread
might outlive that variable.

Since a thread might run until the very end of the program’s execu-
tion,
the spawn function has a 'static lifetime bound on its argu-
ment type.
In other words, it only accepts functions that may be kept
around forever.
A closure capturing a local variable by reference may
not be kept around forever,
since that reference would become in-
valid the moment the local variable ceases to exist.

Getting a value back out of the thread is done by returning it from the
closure.
This return value can be obtained from the Result re-
turned by the join method:

let numbers = Vec::from_iter(0..=1000);

let t = thread::spawn(move || {

 let len = numbers.len();

 let sum = numbers.iter().sum::<usize>();

 sum / len

});

let average = t.join().unwrap();

println!("average: {average}");

Here, the value returned by the thread’s closure ()
is sent back to
the main thread through the join method ().

If numbers had been empty, the thread would’ve panicked while try-
ing to divide by zero (),
and join would’ve returned that panic
message instead,
causing the main thread to panic too because of
unwrap ().

THREAD BUILDER

The std::thread::spawn function is actually just a convenient
shorthand for
std::thread::Builder::new().spawn().unwrap() .

A std::thread::Builder allows you to set some settings for the
new thread before spawning it.
You can use it to configure the stack
size for the new thread and to give the new thread a name.
The name
of a thread is available through
std::thread::current().name() , will be used in panic mes-
sages,
and will be visible in monitoring and debugging tools on most
platforms.

Additionally, Builder ’s spawn function returns an
std::io::Result ,
allowing you to handle situations where
spawning a new thread fails.
This might happen if the operating sys-
tem runs out of memory,
or if resource limits have been applied to
your program.
The std::thread::spawn function simply panics if
it is unable to spawn a new thread.

Scoped Threads

If we know for sure that a spawned thread will definitely not outlive a
certain scope,
that thread could safely borrow things that do not live
forever, such as local variables, as long as they outlive that scope.

The Rust standard library provides the std::thread::scope

function to spawn such scoped threads.
It allows us to spawn threads
that cannot outlive the scope of the closure we pass to that function,

making it possible to safely borrow local variables.

How it works is best shown with an example:

let numbers = vec![1, 2, 3];

thread::scope(|s| {

 s.spawn(|| {

 println!("length: {}", numbers.len());

 });

 s.spawn(|| {

 for n in &numbers {

 println!("{n}");

 }

 });

});

We call the std::thread::scope function with a closure.

Our closure is directly executed and gets an argument, s , rep-

resenting the scope.

We use s to spawn threads.
The closures can borrow local
variables like numbers .

When the scope ends, all threads that haven’t been joined yet
are automatically joined.

This pattern guarantees that none of the threads spawned in the
scope can outlive the scope.
Because of that, this scoped spawn

method does not have a 'static bound on its argument type,
al-
lowing us to reference anything as long as it outlives the scope, such
as numbers .

In the example above, both of the new threads are concurrently ac-
cessing numbers .
This is fine, because neither of them (nor the
main thread) modifies it.
If we were to change the first thread to modi-
fy numbers , as shown below,
the compiler wouldn’t allow us to
spawn another thread that also uses numbers :

let mut numbers = vec![1, 2, 3];

thread::scope(|s| {

 s.spawn(|| {

 numbers.push(1);

 });

 s.spawn(|| {

 numbers.push(2); // Error!

 });

});

The exact error message depends on the version of the Rust compil-
er, since it’s often improved to produce better diagnostics,
but at-
tempting to compile the code above will result in something like this:

error[E0499]: cannot borrow `numbers` as mutable

 --> example.rs:7:13

 |

4 | s.spawn(|| {

 | -- first mutable borrow occurs he

5 | numbers.push(1);

 | ------- first borrow occurs due to us

 |

7 | s.spawn(|| {

 | ^^ second mutable borrow occurs h

8 | numbers.push(2);

 | ------- second borrow occurs due to u

THE LEAKPOCALYPSE

Before Rust 1.0, the standard library had a function named
std::thread::scoped
that would directly spawn a thread, just
like std::thread::spawn .
It allowed non- 'static captures,

because instead of a JoinHandle ,
it returned a JoinGuard

which joined the thread when dropped.
Any borrowed data only need-
ed to outlive this JoinGuard .
This seemed safe, as long as the
JoinGuard got dropped at some point.

Just before the release of Rust 1.0,
it slowly became clear that it’s not
possible to guarantee that something will be dropped.
There are
many ways, such as creating a cycle of reference-counted nodes,

that make it possible to forget about something, or leak it, without
dropping it.

Eventually, in what some people refer to as “The Leakpocalypse,”
the
conclusion was made that the design of a (safe) interface cannot rely
on the assumption that
objects will always be dropped at the end of
their lifetime.
Leaking an object might reasonably result in leaking
more objects
(e.g., leaking a Vec will also leak its elements),
but it
may not result in undefined behavior.
Because of this conclusion,

std::thread::scoped was no longer deemed safe
and was re-
moved from the standard library.
Additionally, std::mem::forget

was upgraded from an unsafe function to a safe function,
to em-
phasize that forgetting (or leaking) is always a possibility.

Only much later, in Rust 1.63, a new std::thread::scope func-
tion was added with a
new design that does not rely on Drop for cor-
rectness.

Shared Ownership and Reference
Counting

So far we’ve looked at transferring ownership of a value to a thread
using a move closure (“Threads in Rust”)
and borrowing data from
longer-living parent threads (“Scoped Threads”).
When sharing data
between two threads where neither thread is guaranteed to outlive
the other,
neither of them can be the owner of that data.
Any data
shared between them will need to live as long as the longest living
thread.

Statics

There are several ways to create something that’s not owned by a
single thread.
The simplest one is a static value, which is “owned”
by the entire program,
instead of an individual thread.
In the following
example, both threads can access X , but neither of them owns it:

static X: [i32; 3] = [1, 2, 3];

thread::spawn(|| dbg!(&X));

thread::spawn(|| dbg!(&X));

A static item has a constant initializer, is never dropped,
and al-
ready exists before the main function of the program even starts.

Every thread can borrow it, since it’s guaranteed to always exist.

Leaking

Another way to share ownership is by leaking an allocation.
Using
Box::leak , one can release ownership of a Box , promising to
never drop it.
From that point on, the Box will live forever, without an
owner,
allowing it to be borrowed by any thread for as long as the
program runs.

let x: &'static [i32; 3] = Box::leak(Box::new([1,

thread::spawn(move || dbg!(x));

thread::spawn(move || dbg!(x));

The move closure might make it look like we’re moving ownership
into the threads,
but a closer look at the type of x reveals that we’re

only giving the threads a reference to the data.

TIP

References are Copy , meaning that when you “move” them, the original still ex-
ists,
just like with an integer or boolean.

Note how the 'static lifetime doesn’t mean that the value lived
since the start of the program,
but only that it lives to the end of the
program.
The past is simply not relevant.

The downside of leaking a Box is that we’re leaking memory.
We al-
locate something, but never drop and deallocate it.
This can be fine if
it happens only a limited number of times.
But if we keep doing this,

the program will slowly run out of memory.

Reference Counting

To make sure that shared data gets dropped and deallocated, we
can’t completely give up its ownership.
Instead, we can share owner-
ship.
By keeping track of the number of owners,
we can make sure
the value is dropped only when there are no owners left.

The Rust standard library provides this functionality through the
std::rc::Rc type,
short for “reference counted.” It is very similar

to a Box , except cloning it will not allocate anything new,
but instead
increment a counter stored next to the contained value.
Both the orig-
inal and cloned Rc will refer to the same allocation;
they share own-
ership.

use std::rc::Rc;

let a = Rc::new([1, 2, 3]);

let b = a.clone();

assert_eq!(a.as_ptr(), b.as_ptr()); // Same alloc

Dropping an Rc will decrement the counter.
Only the last Rc , which
will see the counter drop to zero,
will be the one dropping and deallo-
cating the contained data.

If we were to try to send an Rc to another thread, however,
we would
run into the following compiler error:

error[E0277]: `Rc` cannot be sent between threads

 |

8 | thread::spawn(move || dbg!(b));

 | ^^^^^^^^^^^^^^^

As it turns out, Rc is not thread safe (more on that in “Thread Safety:

Send and Sync”).
If multiple threads had an Rc to the same alloca-
tion,
they might try to modify the reference counter at the same time,

which can give unpredictable results.

Instead, we can use std::sync::Arc , which stands for “atomical-
ly reference counted.”
It’s identical to Rc , except it guarantees that
modifications to the reference counter
are indivisible atomic opera-
tions, making it safe to use it with multiple threads.
(More on that in
Chapter 2.)

use std::sync::Arc;

let a = Arc::new([1, 2, 3]);

let b = a.clone();

thread::spawn(move || dbg!(a));

thread::spawn(move || dbg!(b));

We put an array in a new allocation together with a reference
counter, which starts at one.

Cloning the Arc increments the reference count to two and
provides us with a second Arc to the same allocation.

Both threads get their own Arc through which they can ac-
cess the shared array.
Both decrement the reference counter
when they drop their Arc .
The last thread to drop its Arc will
see the counter drop to zero and will be the one to drop and de-
allocate the array.

NAMING CLONES

Having to give every clone of an Arc a different name can quickly
make the code quite cluttered and hard to follow.
While every clone of
an Arc is a separate object, each clone represents the same shared
value,
which is not well reflected by naming each one differently.

Rust allows (and encourages) you to shadow variables by defining a
new variable with the same name.
If you do that in the same scope,

the original variable cannot be named anymore.
But by opening a
new scope, a statement like let a = a.clone(); can be used to
reuse the same name within that scope,
while leaving the original
variable available outside the scope.

By wrapping a closure in a new scope (with {}), we can clone vari-
ables before moving them into the closure,
without having to rename
them.

let a = Arc::new([1, 2, 3]);

let b = a.clone();

thread::spawn(move || {

 dbg!(b);

});

dbg!(a);

The clone of the Arc lives in the same
scope.
Each thread gets its own clone with a
different name.

let a = Arc

thread::spa

 let a =

 move ||

 dbg

 }

});

dbg!(a);

The clone of the A

scope.
We can use
thread.

Because ownership is shared, reference counting pointers (Rc<T>

and Arc<T>)
have the same restrictions as shared references
(&T).
They do not give you mutable access to their contained value,

since the value might be borrowed by other code at the same time.

For example, if we were to try to sort the slice of integers in an
Arc<[i32]> ,
the compiler would stop us from doing so, telling us

that we’re not allowed to mutate the data:

error[E0596]: cannot borrow data in an `Arc` as m

 |

6 | a.sort();

 | ^^^^^^^^

Borrowing and Data Races

In Rust, values can be borrowed in two ways:

Immutable borrowing

Borrowing something with & gives an immutable reference.

Such a reference can be copied. Access to the data it refer-
ences is shared
between all copies of such a reference.
As the
name implies, the compiler doesn’t normally allow you to mu-
tate something through such a reference,
since that might af-
fect other code that’s currently borrowing the same data.

Mutable borrowing

Borrowing something with &mut gives a mutable reference.
A
mutable borrow guarantees it’s the only active borrow of that

data.
This ensures that mutating the data will not change any-
thing that other code is currently looking at.

These two concepts together fully prevent data races:
situations
where one thread is mutating data while another is concurrently ac-
cessing it.
Data races are generally undefined behavior,
which means
the compiler does not need to take these situations into account.
It
will simply assume they do not happen.

To clarify what that means, let’s take a look at an example
where the
compiler can make a useful assumption using the borrowing rules:

fn f(a: &i32, b: &mut i32) {

 let before = *a;

 *b += 1;

 let after = *a;

 if before != after {

 x(); // never happens

 }

}

Here, we get an immutable reference to an integer,
and store the val-
ue of the integer both before and after incrementing the integer that
b refers to.
The compiler is free to assume that the fundamental
rules about borrowing and data races are upheld,
which means that
b can’t possibly refer to the same integer as a does.
In fact, nothing

in the entire program can mutably borrow the integer that a refers to
as long as a is borrowing it.
Therefore, the compiler can easily con-
clude that *a will not change and the condition of the if statement
will never be true,
and can completely remove the call to x from the
program as an optimization.

It’s impossible to write a Rust program that breaks the compiler’s as-
sumptions,
other than by using an unsafe block to disable some of
the compiler’s safety checks.

UNDEFINED BEHAVIOR

Languages like C, C++, and Rust have a set of rules that need to be
followed to avoid something called undefined behavior.
For example,

one of Rust’s rules is that there may never be more than one mutable
reference to any object.

In Rust, it’s only possible to break any of these rules when using
unsafe code.
“Unsafe” doesn’t mean that the code is incorrect or
never safe to use,
but rather that the compiler is not validating for you
that the code is safe. If the code does violate these rules, it is called
unsound.

The compiler is allowed to assume, without checking, that these rules
are never broken.
When broken, this results in something called un-
defined behavior, which we need to avoid at all costs.
If we allow the
compiler to make an assumption that is not actually true,
it can easily
result in more wrong conclusions about different parts of your code,

affecting your whole program.

As a concrete example, let’s take a look at a small snippet that uses
the get_unchecked method on a slice:

let a = [123, 456, 789];

let b = unsafe { a.get_unchecked(index) };

The get_unchecked method gives us an element of the slice giv-
en its index, just like a[index] ,
but allows the compiler to assume
the index is always within bounds, without any checks.

This means that in this code snippet, because a is of length 3,
the
compiler may assume that index is less than three.
It’s up to us to
make sure its assumption holds.

If we break this assumption, for example if we run this with index

equal to 3,
anything might happen.
It might result in reading from
memory whatever was stored in the bytes right after a .
It might
cause the program to crash.
It might end up executing some entirely
unrelated part of the program.
It can cause all kinds of havoc.

Perhaps surprisingly, undefined behavior can even “travel back in
time,” causing problems in code that precedes it.
To understand how
that can happen,
imagine we had a match statement before our
previous snippet, as follows:

match index {

 0 => x(),

 1 => y(),

 _ => z(index),

}

let a = [123, 456, 789];

let b = unsafe { a.get_unchecked(index) };

Because of the unsafe code, the compiler is allowed to assume
index is only ever 0, 1, or 2.
It may logically conclude that the last
arm of our match statement will only ever match a 2,
and thus that
z is only ever called as z(2) .
That conclusion might be used not
only to optimize the match , but also to optimize z itself.
This can
include throwing out unused parts of the code.

If we execute this with an index of 3 , our program might attempt to
execute parts that have been optimized away, resulting in completely
unpredictable behavior,
long before we get to the unsafe block on
the last line.
Just like that, undefined behavior can propagate through
a whole program,
both backwards and forwards, in often very unex-
pected ways.

When calling any unsafe function,
read its documentation carefully
and make sure you fully understand its safety requirements: the as-
sumptions you need to uphold, as the caller, to avoid undefined be-
havior.

Interior Mutability

The borrowing rules as introduced in the previous section are simple,

but can be quite limiting—especially when multiple threads are in-
volved.
Following these rules makes communication between threads
extremely limited and almost impossible,
since no data that’s accessi-
ble by multiple threads can be mutated.

Luckily, there is an escape hatch: interior mutability.
A data type with
interior mutability slightly bends the borrowing rules.
Under certain
conditions, those types can allow mutation through an “immutable”
reference.

In “Reference Counting”, we’ve already seen one subtle example in-
volving interior mutability.
Both Rc and Arc mutate a reference
counter,
even though there might be multiple clones all using the
same reference counter.

As soon as interior mutable types are involved,
calling a reference
“immutable” or “mutable” becomes confusing and inaccurate,
since
some things can be mutated through both.
The more accurate terms
are “shared” and “exclusive”:
a shared reference (&T) can be copied
and shared with others,
while an exclusive reference (&mut T)

guarantees it’s the only exclusive borrowing of that T .
For most
types, shared references do not allow mutation, but there are excep-
tions.
Since in this book we will mostly be working with these excep-
tions,
we’ll use the more accurate terms in the rest of this book.

CAUTION

Keep in mind that interior mutability only bends the rules of shared borrowing to al-
low mutation when shared.
It does not change anything about exclusive borrowing.

Exclusive borrowing still guarantees that there are no other active borrows.
Unsafe
code that results in more than one active exclusive reference to something
always

invokes undefined behavior, regardless of interior mutability.

Let’s take a look at a few types with interior mutability
and how they
can allow mutation through shared references without causing unde-
fined behavior.

Cell

A std::cell::Cell<T> simply wraps a T , but allows mutations
through a shared reference.
To avoid undefined behavior,
it only al-
lows you to copy the value out (if T is Copy), or replace it with an-
other value as a whole.
In addition, it can only be used within a single
thread.

Let’s take a look at an example similar to the one in the previous sec-
tion,
but this time using Cell<i32> instead of i32 :

use std::cell::Cell;

fn f(a: &Cell<i32>, b: &Cell<i32>) {

 let before = a.get();

 b.set(b.get() + 1);

 let after = a.get();

 if before != after {

 x(); // might happen

 }

}

Unlike last time, it is now possible for the if condition to be true.
Be-
cause a Cell<i32> has interior mutability,
the compiler can no
longer assume its value won’t change as long as we have a shared
reference to it.
Both a and b might refer to the same value, such
that mutating through b might affect a as well.
It may still assume,

however, that no other threads are accessing the cells concurrently.

The restrictions on a Cell are not always easy to work with.
Since it
can’t directly let us borrow the value it holds,
we need to move a val-
ue out (leaving something in its place),
modify it, then put it back, to
mutate its contents:

fn f(v: &Cell<Vec<i32>>) {

 let mut v2 = v.take(); // Replaces the conten

 v2.push(1);

 v.set(v2); // Put the modified Vec back

}

RefCell

Unlike a regular Cell , a std::cell::RefCell does allow you
to borrow its contents, at a small runtime cost.
A RefCell<T> does
not only hold a T ,
but also holds a counter that keeps track of any
outstanding borrows.
If you try to borrow it while it is already mutably
borrowed (or vice-versa),
it will panic, which avoids undefined behav-
ior.
Just like a Cell , a RefCell can only be used within a single
thread.

Borrowing the contents of RefCell is done by calling borrow or
borrow_mut :

use std::cell::RefCell;

fn f(v: &RefCell<Vec<i32>>) {

 v.borrow_mut().push(1); // We can modify the

}

While Cell and RefCell can be very useful,
they become rather
useless when we need to do something with multiple threads.
So let’s
move on to the types that are relevant for concurrency.

Mutex and RwLock

An RwLock or reader-writer lock is the concurrent version of a
RefCell .
An RwLock<T> holds a T and tracks any outstanding
borrows.
However, unlike a RefCell , it does not panic on conflict-
ing borrows.
Instead, it blocks the current thread—​putting it to sleep
—​while
waiting for conflicting borrows to disappear.
We’ll just have to
patiently wait for our turn with the data,
after the other threads are
done with it.

Borrowing the contents of an RwLock is called locking.
By locking it
we temporarily block concurrent conflicting borrows,
allowing us to
borrow it without causing data races.

A Mutex is very similar, but conceptually slightly simpler.
Instead of
keeping track of the number of shared and exclusive borrows like an
RwLock ,
it only allows exclusive borrows.

We’ll go more into detail on these types in “Locking: Mutexes and
RwLocks”.

Atomics

The atomic types represent the concurrent version of a Cell ,
and
are the main topic of Chapters 2 and 3.
Like a Cell , they avoid un-
defined behavior by making us copy values in and out as a whole,

without letting us borrow the contents directly.

Unlike a Cell , though, they cannot be of arbitrary size.
Because of
this, there is no generic Atomic<T> type for any T ,
but there are
only specific atomic types such as AtomicU32 and
AtomicPtr<T> .
Which ones are available depends on the platform,

since they require support from the processor to avoid data races.

(We’ll dive into that in Chapter 7.)

Since they are so limited in size,
atomics often don’t directly contain
the information that needs to be shared between threads.
Instead,

they are often used as a tool to make it possible to share other—​often
bigger—​things between threads.
When atomics are used to say
something about other data,
things can get surprisingly complicated.

UnsafeCell

An UnsafeCell is the primitive building block for interior mutability.

An UnsafeCell<T> wraps a T ,
but does not come with any condi-
tions or restrictions to avoid undefined behavior.
Instead, its get()

method just gives a raw pointer to the value it wraps,
which can only
be meaningfully used in unsafe blocks.
It leaves it up to the user to
use it in a way that does not cause any undefined behavior.

Most commonly, an UnsafeCell is not used directly,
but wrapped
in another type that provides safety through a limited interface, such

as Cell or Mutex .
All types with interior mutability—​including all
types discussed above—​are built on top of UnsafeCell .

Thread Safety: Send and Sync

In this chapter, we’ve seen several types that are not thread safe,

types that can only be used on a single thread, such as Rc , Cell ,

and others.
Since that restriction is needed to avoid undefined behav-
ior,
it’s something the compiler needs to understand and check for
you,
so you can use these types without having to use unsafe

blocks.

The language uses two special traits to keep track of which types
can
be safely used across threads:

Send

A type is Send if it can be sent to another thread. In other
words, if ownership of a value of that type can be transferred to
another thread.
For example, Arc<i32> is Send , but
Rc<i32> is not.

Sync

A type is Sync if it can be shared with another thread.
In other
words, a type T is Sync if and only if a shared reference to

that type, &T , is Send .
For example, an i32 is Sync , but a
Cell<i32> is not.
(A Cell<i32> is Send , however.)

All primitive types such as i32 , bool , and str are both Send

and Sync .

Both of these traits are auto traits,
which means that they are auto-
matically implemented for your types based on their fields.
A
struct with fields that are all Send and Sync , is itself also
Send and Sync .

The way to opt out of either of these is to add a field to your type that
does not implement the trait.
For that purpose, the special
std::marker::PhantomData<T> type often comes in handy.

That type is treated by the compiler as a T , except it doesn’t actually
exist at runtime.
It’s a zero-sized type, taking no space.

Let’s take a look at the following struct :

use std::marker::PhantomData;

struct X {

 handle: i32,

 _not_sync: PhantomData<Cell<()>>,

}

In this example, X would be both Send and Sync if handle was
its only field.
However, we added a zero-sized
PhantomData<Cell<()>> field, which is treated as if it were a
Cell<()> .
Since a Cell<()> is not Sync , neither is X .
It is still
Send , however, since all its fields implement Send .

Raw pointers (*const T and *mut T) are neither Send nor
Sync ,
since the compiler doesn’t know much about what they
represent.

The way to opt in to either of the traits is the same as with any other
trait; use an impl block to implement the trait for your type:

struct X {

 p: *mut i32,

}

unsafe impl Send for X {}

unsafe impl Sync for X {}

Note how implementing these traits requires the unsafe keyword,

since the compiler cannot check for you if it’s correct.
It’s a promise
you make to the compiler, which it will just have to trust.

If you try to move something into another thread which is not Send ,

the compiler will politely stop you from doing that.
Here is a small ex-

ample to demonstrate that:

fn main() {

 let a = Rc::new(123);

 thread::spawn(move || { // Error!

 dbg!(a);

 });

}

Here, we try to send an Rc<i32> to a new thread,
but Rc<i32> ,

unlike Arc<i32> , does not implement Send .

If we try to compile the example above, we’re faced with an error that
looks something like this:

error[E0277]: `Rc<i32>` cannot be sent between th

 --> src/main.rs:3:5

 |

3 | thread::spawn(move || {

 | ^^^^^^^^^^^^^ `Rc<i32>` cannot be sent

 |

 = help: within `[closure]`, the trait `Send`

note: required because it's used within this clos

 --> src/main.rs:3:19

 |

3 | thread::spawn(move || {

 | ^^^^^^^

note: required by a bound in `spawn`

The thread::spawn function requires its argument to be Send ,

and a closure is only Send if all of its captures are.
If we try to cap-
ture something that’s not Send ,
our mistake is caught, protecting us
from undefined behavior.

Locking: Mutexes and RwLocks

The most commonly used tool for sharing (mutable) data between
threads is a mutex,
which is short for “mutual exclusion.”
The job of a
mutex is to ensure threads have exclusive access
to some data by
temporarily blocking other threads that try
to access it at the same
time.

Conceptually, a mutex has only two states: locked and unlocked.

When a thread locks an unlocked mutex, the mutex is marked as
locked
and the thread can immediately continue.
When a thread then
attempts to lock an already locked mutex,
that operation will block.

The thread is put to sleep while it waits for the mutex to be unlocked.

Unlocking is only possible on a locked mutex, and should be done
by
the same thread that locked it.
If other threads are waiting to lock the

mutex, unlocking will cause one
of those threads to be woken up, so
it can try to lock the mutex again
and continue its course.

Protecting data with a mutex is simply the agreement between all
threads
that they will only access the data when they have the mutex
locked.
That way, no two threads can ever access that data concur-
rently and cause a data race.

Rust’s Mutex

The Rust standard library provides this functionality through
std::sync::Mutex<T> .
It is generic over a type T , which is the
type of the data the mutex is protecting.
By making this T part of the
mutex, the data can only be accessed through the mutex,
allowing for
a safe interface that can guarantee all threads will uphold the
agreement.

To ensure a locked mutex can only be unlocked by the thread that
locked it,
it does not have an unlock() method.
Instead, its
lock() method returns a special type called a MutexGuard .
This
guard represents the guarantee that we have locked the mutex.
It be-
haves like an exclusive reference through the DerefMut trait,
giving
us exclusive access to the data the mutex protects.
Unlocking the
mutex is done by dropping the guard.
When we drop the guard, we

give up our ability to access the data,
and the Drop implementation
of the guard will unlock the mutex.

Let’s take a look at an example to see a mutex in practice:

use std::sync::Mutex;

fn main() {

 let n = Mutex::new(0);

 thread::scope(|s| {

 for _ in 0..10 {

 s.spawn(|| {

 let mut guard = n.lock().unwrap()

 for _ in 0..100 {

 *guard += 1;

 }

 });

 }

 });

 assert_eq!(n.into_inner().unwrap(), 1000);

}

Here, we have a Mutex<i32> , a mutex protecting an integer,
and
we spawn ten threads to each increment the integer one hundred
times.
Each thread will first lock the mutex to obtain a MutexGuard ,

and then use that guard to access the integer and modify it.
The

guard is implicitly dropped right after,
when that variable goes out
of scope.

After the threads are done, we can safely remove the protection from
the integer through into_inner() .
The into_inner method
takes ownership of the mutex,
which guarantees that nothing else
can have a reference to the mutex anymore, making locking
unnecessary.

Even though the increments happen in steps of one,
a thread observ-
ing the integer would only ever see multiples of 100,
since it can only
look at the integer when the mutex is unlocked.
Effectively, thanks to
the mutex, the one hundred increments together are now a
single in-
divisible—​atomic—​operation.

To clearly see the effect of the mutex, we can make each thread wait
a second before unlocking the mutex:

use std::time::Duration;

fn main() {

 let n = Mutex::new(0);

 thread::scope(|s| {

 for _ in 0..10 {

 s.spawn(|| {

 let mut guard = n.lock().unwrap()

 for in 0..100 {

_ {

 *guard += 1;

 }

 thread::sleep(Duration::from_secs

 });

 }

 });

 assert_eq!(n.into_inner().unwrap(), 1000);

}

When you run the program now, you will see that it takes about 10

seconds to complete.
Each thread only waits for one second, but the
mutex ensures that only one thread at a time can do so.

If we drop the guard—and therefore unlock the mutex—before sleep-
ing one second, we will see it happen in parallel instead:

fn main() {

 let n = Mutex::new(0);

 thread::scope(|s| {

 for _ in 0..10 {

 s.spawn(|| {

 let mut guard = n.lock().unwrap()

 for _ in 0..100 {

 *guard += 1;

 }

 drop(guard); // New: drop the gua

 thread::sleep(Duration::from_secs

 });

 }

 });

 assert_eq!(n.into_inner().unwrap(), 1000);

}

With this change, this program takes only about one second,
since
now the 10 threads can execute their one-second sleep at the same
time.
This shows the importance of keeping the amount of time a mu-
tex is locked as short as possible.
Keeping a mutex locked longer
than necessary can completely nullify any benefits of parallelism,
ef-
fectively forcing everything to happen serially instead.

Lock Poisoning

The unwrap() calls in the examples above relate to lock poisoning.

A Mutex in Rust gets marked as poisoned when a thread panics
while holding the lock.
When that happens, the Mutex will no longer
be locked,
but calling its lock method will result in an Err to indi-
cate it has been poisoned.

This is a mechanism to protect against leaving the data that’s protect-
ed by a mutex in an inconsistent state.
In our example above, if a
thread would panic after incrementing the integer fewer than 100

times,
the mutex would unlock and the integer would be left in an un-
expected state where it is no longer a multiple of 100,
possibly break-
ing assumptions made by other threads.
Automatically marking the
mutex as poisoned in that case forces the user to handle this
possibility.

Calling lock() on a poisoned mutex still locks the mutex.
The Err

returned by lock() contains the MutexGuard ,
allowing us to cor-
rect an inconsistent state if necessary.

While lock poisoning might seem like a powerful mechanism,
recov-
ering from a potentially inconsistent state is not often done in prac-
tice.
Most code either disregards poison or uses unwrap() to panic
if the lock was poisoned,
effectively propagating panics to all users of
the mutex.

LIFETIME OF THE MUTEXGUARD

While it’s convenient that implicitly dropping a guard unlocks the mu-
tex,
it can sometimes lead to subtle surprises.
If we assign the guard
a name with a let statement (as in our examples above),
it’s rela-
tively straightforward to see when it will be dropped, since local vari-
ables are dropped at the end of the scope they are defined in.
Still,
not explicitly dropping a guard might lead to keeping the mutex
locked for longer than necessary, as demonstrated in the examples
above.

Using a guard without assigning it a name is also possible, and can
be very convenient at times.
Since a MutexGuard behaves like an
exclusive reference to the protected data,
we can directly use it with-
out assigning a name to the guard first.
For example, if you have a
Mutex<Vec<i32>> , you can lock the mutex, push an item into the
Vec , and unlock the mutex again, in a single statement:

list.lock().unwrap().push(1);

Any temporaries produced within a larger expression, such as the
guard returned by lock() , will be dropped at the end of the state-
ment.
While this might seem obvious and reasonable, it leads to a
common pitfall that usually involves a match , if let , or while
let statement.
Here is an example that runs into this pitfall:

if let Some(item) = list.lock().unwrap().pop() {

 process_item(item);

}

If our intention was to lock the list, pop an item, unlock the list, and
then process the item after the list is unlocked,
we made a subtle but
important mistake here.
The temporary guard is not dropped until the
end of the entire if let statement,
meaning we needlessly hold on
to the lock while processing the item.

Perhaps surprisingly, this does not happen for a similar if state-
ment, such as in this example:

if list.lock().unwrap().pop() == Some(1) {

 do_something();

}

Here, the temporary guard does get dropped before the body of the
if statement is executed.
The reason is that the condition of a regu-
lar if statement is always a plain boolean, which cannot borrow
anything.
There is no reason to extend the lifetime of temporaries
from the condition to the end of the statement.
For an if let state-
ment, however, that might not be the case.
If we had used front()

rather than pop() , for example, item would be borrowing from the

list,
making it necessary to keep the guard around.
Since the borrow
checker is only really a check and does not influence when or in what
order things are dropped,
the same happens when we use pop() ,

even though that wouldn’t have been necessary.

We can avoid this by moving the pop operation to a separate let

statement.
Then the guard is dropped at the end of that statement,
before the if let :

let item = list.lock().unwrap().pop();

if let Some(item) = item {

 process_item(item);

}

Reader-Writer Lock

A mutex is only concerned with exclusive access.
The MutexGuard

will provide us an exclusive reference (&mut T) to the protected
data,
even if we only wanted to look at the data and a shared refer-
ence (&T) would have sufficed.

A reader-writer lock is a slightly more complicated version of a mutex
that understands the difference between exclusive and shared ac-
cess, and can provide either.
It has three states: unlocked, locked by

a single writer (for exclusive access),
and locked by any number of
readers (for shared access).
It is commonly used for data that is often
read by multiple threads, but only updated once in a while.

The Rust standard library provides this lock through the
std::sync::RwLock<T> type.
It works similarly to the standard
Mutex , except its interface is mostly split in two parts.
Instead of a
single lock() method, it has a read() and write() method for
locking as either a reader or a writer.
It comes with two guard types,

one for readers and one for writers: RwLockReadGuard and
RwLockWriteGuard .
The former only implements Deref to be-
have like a shared reference to the protected data,
while the latter
also implements DerefMut to behave like an exclusive reference.

It is effectively the multi-threaded version of RefCell , dynamically
tracking the number of references to ensure the borrow rules are up-
held.

Both Mutex<T> and RwLock<T> require T to be Send , because
they can be used to send a T to another thread.
An RwLock<T>

additionally requires T to also implement Sync ,
because it allows
multiple threads to hold a shared reference (&T) to the protected
data.
(Strictly speaking, you can create a lock for a T that doesn’t ful-
fill these requirements,
but you wouldn’t be able to share it between
threads as the lock itself won’t implement Sync .)

The Rust standard library provides only one general purpose
RwLock type,
but its implementation depends on the operating sys-
tem.
There are many subtle variations between reader-writer lock im-
plementations.
Most implementations will block new readers when
there is a writer waiting,
even when the lock is already read-locked.

This is done to prevent writer starvation, a situation where many
readers
collectively keep the lock from ever unlocking, never allowing
any writer to
update the data.

MUTEXES IN OTHER LANGUAGES

Rust’s standard Mutex and RwLock types look a bit different than
those you find in other languages like C or C++.

The biggest difference is that Rust’s Mutex<T> contains the data it
is protecting.
In C++, for example, std::mutex does not contain
the data it protects, nor does it even
know what it is protecting.
This
means that it is the responsibility of the user to remember which data
is protected and by which mutex,
and ensure the right mutex is
locked every time “protected” data is accessed.
This is useful to keep
in mind when reading code involving mutexes in other languages,
or
when communicating with programmers who are not familiar with
Rust.
A Rust programmer might talk about “the data inside the
mutex,” or say things like “wrap it in a mutex,” which can be confusing
to those only familiar with mutexes in other languages.

If you really need a stand-alone mutex that doesn’t contain anything,

for example to protect some external hardware, you can use
Mutex<()> .
But even in a case like that, you are probably better off
defining a (possibly zero-sized)
type to interface with that hardware
and wrapping that in a Mutex instead.
That way, you are still forced
to lock the mutex before you can interact with the hardware.

Waiting: Parking and Condition
Variables

When data is mutated by multiple threads,
there are many situations
where they would need to wait for some event, for some condition
about the data to become true.
For example, if we have a mutex pro-
tecting a Vec ,
we might want to wait until it contains anything.

While a mutex does allow threads to wait until it becomes unlocked,
it
does not provide functionality for waiting for any other conditions.
If a
mutex was all we had, we’d have to keep locking the mutex to repeat-
edly check if there’s anything in the Vec yet.

Thread Parking

One way to wait for a notification from another thread is called thread
parking.
A thread can park itself, which puts it to sleep, stopping it
from consuming any CPU cycles.
Another thread can then unpark the
parked thread, waking it up from its nap.

Thread parking is available through the std::thread::park()

function.
For unparking, you call the unpark() method on a
Thread object representing the thread that you want to unpark.

Such an object can be obtained from the join handle returned by

spawn ,
or by the thread itself through
std::thread::current() .

Let’s dive into an example that uses a mutex to share a queue be-
tween two threads.
In the following example,
a newly spawned thread
will consume items from the queue,
while the main thread will insert a
new item into the queue every second.
Thread parking is used to
make the consuming thread wait when the queue is empty.

use std::collections::VecDeque;

fn main() {

 let queue = Mutex::new(VecDeque::new());

 thread::scope(|s| {

 // Consuming thread

 let t = s.spawn(|| loop {

 let item = queue.lock().unwrap().pop_

 if let Some(item) = item {

 dbg!(item);

 } else {

 thread::park();

 }

 });

 // Producing thread

 for i in 0.. {

 queue.lock().unwrap().push_back(i);

 t.thread().unpark();

 thread::sleep(Duration::from_secs(1))

 }

 });

}

The consuming thread runs an infinite loop in which it pops items out
of the queue to display them using the dbg macro.
When the queue
is empty, it stops and goes to sleep using the park() function.
If it
gets unparked, the park() call returns, and the loop continues,

popping items from the queue again until it is empty.
And so on.

The producing thread produces a new number every second by
pushing it into the queue.
Every time it adds an item, it uses the
unpark() method on the Thread object that refers to the con-
suming thread to unpark it.
That way, the consuming thread gets
woken up to process the new element.

An important observation to make here is that this program would still
be theoretically correct,
although inefficient, if we remove parking.

This is important, because park() does not guarantee that it will
only return because of a matching unpark() .
While somewhat
rare, it might have spurious wake-ups.
Our example deals with that

just fine, because the consuming thread will lock the queue,
see that
it is empty, and directly unlock it and park itself again.

An important property of thread parking is that a call to unpark()

before the thread parks itself does not get lost.
The request to unpark
is still recorded, and the next time the thread tries to park itself,
it
clears that request and directly continues without actually going to
sleep.
To see why that is critical for correct operation, let’s go through
a possible ordering of the steps executed by both threads:

1. The consuming thread—let’s call it C—locks the queue.

2. C tries to pop an item from the queue, but it is empty, resulting in
None .

3. C unlocks the queue.

4. The producing thread, which we’ll call P, locks the queue.

5. P pushes a new item onto the queue.

6. P unlocks the queue again.

7. P calls unpark() to notify C that there are new items.

8. C calls park() to go to sleep, to wait for more items.

While there is most likely only a very brief moment between releasing
the queue in step 3 and parking in step 8,
steps 4 through 7 could po-
tentially happen in that moment before the thread parks itself.
If
unpark() would do nothing if the thread wasn’t parked, the notif-
ication would be lost.
The consuming thread would still be waiting,

even if there were an item in the queue.
Thanks to unpark requests
getting saved for a future call to park() , we don’t have to worry
about this.

However, unpark requests don’t stack up.
Calling unpark() two
times and then calling park() two times afterwards still results in
the thread going to sleep.
The first park() clears the request and
returns directly, but the second one goes to sleep as usual.

This means that in our example above it’s important that we only park
the thread
if we’ve seen the queue is empty, rather than park it after
every processed item.
While it’s extremely unlikely to happen in this
example because of the huge (one second) sleep,
it’s possible for
multiple unpark() calls to wake up only a single park() call.

Unfortunately, this does mean that if unpark() is called right after
park() returns, but before the queue gets locked and emptied out,
the unpark() call was unnecessary but still causes the next
park() call to instantly return.
This results in the (empty) queue
getting locked and unlocked an extra time.
While this doesn’t affect
the correctness of the program, it does affect its efficiency and
performance.

This mechanism works well for simple situations like in our example,

but quickly breaks down when things get more complicated.
For ex-

ample, if we had multiple consumer threads taking items from the
same queue,
the producer thread would have no way of knowing
which of the consumers is actually waiting and should be woken up.

The producer will have to know exactly when a consumer is waiting,

and what condition it is waiting for.

Condition Variables

Condition variables are a more commonly used option for waiting for
something to happen to data protected by a mutex.
They have two
basic operations: wait and notify.
Threads can wait on a condition
variable,
after which they can be woken up when another thread noti-
fies that same condition variable.
Multiple threads can wait on the
same condition variable, and notifications can either be sent to one
waiting thread, or to all of them.

This means that we can create a condition variable for specific events
or conditions we’re interested in,
such as the queue being non-empty,

and wait on that condition.
Any thread that causes that event or con-
dition to happen then notifies the condition variable,
without having to
know which or how many threads are interested in that notification.

To avoid the issue of missing notifications in the brief moment be-
tween unlocking a mutex and waiting for a condition variable,
condi-
tion variables provide a way to atomically unlock the mutex and start

waiting.
This means there is simply no possible moment for notifica-
tions to get lost.

The Rust standard library provides a condition variable as
std::sync::Condvar .
Its wait method takes a MutexGuard

that proves we’ve locked the mutex.
It first unlocks the mutex and
goes to sleep.
Later, when woken up, it relocks the mutex and returns
a new MutexGuard
(which proves that the mutex is locked again).

It has two notify functions: notify_one to wake up just one waiting
thread (if any),
and notify_all to wake them all up.

Let’s modify the example we used for thread parking to use
Condvar instead:

use std::sync::Condvar;

let queue = Mutex::new(VecDeque::new());

let not_empty = Condvar::new();

thread::scope(|s| {

 s.spawn(|| {

 loop {

 let mut q = queue.lock().unwrap();

 let item = loop {

 if let Some(item) = q.pop_front()

 break item;

 } else {

 q = not_empty.wait(q).unwrap(

 }

 };

 drop(q);

 dbg!(item);

 }

 });

 for i in 0.. {

 queue.lock().unwrap().push_back(i);

 not_empty.notify_one();

 thread::sleep(Duration::from_secs(1));

 }

});

We had to change a few things:

We now not only have a Mutex containing the queue, but also a
Condvar to communicate the “not empty” condition.

We no longer need to know which thread to wake up, so we don’t
store the return value from spawn anymore.
Instead, we notify
the consumer through the condition variable with the
notify_one method.

Unlocking, waiting, and relocking is all done by the wait

method.
We had to restructure the control flow a bit to be able to

pass the guard to the wait method,
while still dropping it before
processing an item.

Now we can spawn as many consuming threads as we like, and even
spawn more later, without having to change anything.
The condition
variable takes care of delivering the notifications to whichever thread
is interested.

If we had a more complicated system with threads that are interested
in different conditions,
we could define a Condvar for each condi-
tion.
For example, we could define one to indicate the queue is non-
empty and another one to indicate it is empty.
Then each thread
would wait for whichever condition is relevant to what they are doing.

Normally, a Condvar is only ever used together with a single
Mutex .
If two threads try to concurrently wait on a condition vari-
able using two different mutexes,
it might cause a panic.

A downside of a Condvar is that it only works when used together
with a Mutex ,
but for most use cases that is perfectly fine, as that’s
exactly what’s already used to protect the data anyway.

Both thread::park() and Condvar::wait() also have a vari-
ant with a time limit:
 thread::park_timeout() and
Condvar::wait_timeout() .
These take a Duration as an ex-

tra argument, which is the time after which it should
give up waiting
for a notification and unconditionally wake up.

Summary

Multiple threads can run concurrently within the same program
and can be spawned at any time.

When the main thread ends, the entire program ends.

Data races are undefined behavior, which is fully prevented (in
safe code) by Rust’s type system.

Data that is Send can be sent to other threads, and data that is
Sync can be shared between threads.

Regular threads might run as long as the program does, and thus
can only borrow 'static data such as statics and leaked
allocations.

Reference counting (Arc) can be used to share ownership to
make sure data lives as long as at least one thread is using it.
Scoped threads are useful to limit the lifetime of a thread to alllow
it to borrow non- 'static data, such as local variables.

&T is a shared reference. &mut T is an exclusive reference.

Regular types do not allow mutation through a shared reference.

Some types have interior mutability, thanks to UnsafeCell ,

which allows for mutation through shared references.

Cell and RefCell are the standard types for single-threaded
interior mutability.
Atomics, Mutex , and RwLock are their mul-
ti-threaded equivalents.

Cell and atomics only allow replacing the value as a whole,

while RefCell , Mutex , and RwLock allow you to mutate the
value directly by dynamically enforcing access rules.

Thread parking can be a convenient way to wait for some
condition.

When a condition is about data protected by a Mutex ,
using a
Condvar is more convenient, and can be more efficient, than
thread parking.

Chapter 2. Atomics

The word atomic comes from the Greek word ἄτομος, meaning indi-
visible,
something that cannot be cut into smaller pieces.
In computer
science, it is used to describe an operation that is indivisible:
it is ei-
ther fully completed, or it didn’t happen yet.

As mentioned in “Borrowing and Data Races”,
multiple threads con-
currently reading and modifying the same variable normally results in
undefined behavior.
However, atomic operations do allow for different
threads to safely read and modify the same variable.
Since such an
operation is indivisible, it either happens completely before or com-
pletely after another operation,
avoiding undefined behavior.
Later, in
Chapter 7, we’ll see how this works at the hardware level.

Atomic operations are the main building block for anything involving
multiple threads.
All the other concurrency primitives, such as mutex-
es and condition variables, are implemented using atomic operations.

In Rust, atomic operations are available as methods on the standard
atomic types that live in std::sync::atomic .
They all have
names starting with Atomic , such as AtomicI32 or
AtomicUsize .
Which ones are available depends on the hardware
architecture and sometimes operating system,
but almost all plat-
forms provide at least all atomic types up to the size of a pointer.

Unlike most types, they allow modification through a shared refer-
ence (e.g., &AtomicU8).
This is possible thanks to interior mutabili-
ty, as discussed in “Interior Mutability”.

Each of the available atomic types has the same interface
with meth-
ods for storing and loading,
methods for atomic “fetch-and-modify”
operations,
and some more advanced “compare-and-exchange”
methods.
We’ll discuss them in detail in the rest of this chapter.

But, before we can dive into the different atomic operations,
we briefly
need to touch upon a concept called memory ordering:

Every atomic operation takes an argument of type
std::sync::atomic::Ordering ,
which determines what guar-
antees we get about the relative ordering of operations.
The simplest
variant with the fewest guarantees is Relaxed .
 Relaxed still guar-
antees consistency on a single atomic variable,
but does not promise
anything about the relative order of operations
between different
variables.

What this means is that two threads might see operations on different
variables happen in a different order.
For example, if one thread
writes to one variable first
and then to a second variable very quickly
afterwards,
another thread might see that happen in the opposite
order.

In this chapter we’ll only look at use cases where this is not a problem
and simply use Relaxed everywhere without going more into detail.
We’ll discuss all the details of memory ordering and the other avail-
able
memory orderings in Chapter 3.

Atomic Load and Store Operations

The first two atomic operations we’ll look at are the most basic ones:

load and store .
Their function signatures are as follows, using
AtomicI32 as an example:

impl AtomicI32 {

 pub fn load(&self, ordering: Ordering) -> i32

 pub fn store(&self, value: i32, ordering: Ord

}

The load method atomically loads the value stored in the atomic
variable,
and the store method atomically stores a new value in it.
Note how the store method takes a shared reference (&T) rather
than an exclusive reference (&mut T),
even though it modifies the
value.

Let’s take a look at some realistic use cases for these two methods.

Example: Stop Flag

The first example uses an AtomicBool for a stop flag.
Such a flag
is used to inform other threads to stop running.

use std::sync::atomic::AtomicBool;

use std::sync::atomic::Ordering::Relaxed;

fn main() {

 static STOP: AtomicBool = AtomicBool::new(fal

 // Spawn a thread to do the work.

 let background_thread = thread::spawn(|| {

 while !STOP.load(Relaxed) {

 some_work();

 }

 });

 // Use the main thread to listen for user inp

 for line in std::io::stdin().lines() {

 match line.unwrap().as_str() {

 "help" => println!("commands: help, s

 "stop" => break,

 cmd => println!("unknown command: {cm

 }

 }

 // Inform the background thread it needs to s

 STOP.store(true, Relaxed);

 // Wait until the background thread finishes.

 background_thread.join().unwrap();

}

In this example, the background thread is repeatedly running
some_work() ,
while the main thread allows the user to enter some
commands to interact with the program.
In this simple example, the
only useful command is stop to make the program stop.

To make the background thread stop,
the atomic STOP boolean is
used to communicate this condition to the background thread.
When
the foreground thread reads the stop command, it sets the flag to
true,
which is checked by the background thread before each new it-
eration.
The main thread waits until the background thread is finished
with its current iteration
using the join method.

This simple solution works great as long as the flag is regularly
checked by the background thread.
If it gets stuck in some_work()

for a long time,
that can result in an unacceptable delay between the
stop command and the program quitting.

Example: Progress Reporting

In our next example, we process 100 items one by one on a back-
ground thread,
while the main thread gives the user regular updates
on the progress:

use std::sync::atomic::AtomicUsize;

fn main() {

 let num_done = AtomicUsize::new(0);

 thread::scope(|s| {

 // A background thread to process all 100

 s.spawn(|| {

 for i in 0..100 {

 process_item(i); // Assuming this

 num_done.store(i + 1, Relaxed);

 }

 });

 // The main thread shows status updates,

 loop {

 let n = num_done.load(Relaxed);

 if n == 100 { break; }

 println!("Working.. {n}/100 done");

 thread::sleep(Duration::from_secs(1))

 }

 });

i l ! " !"

 println!("Done!");

}

This time, we use a scoped thread (“Scoped Threads”),
which will au-
tomatically handle the joining of the thread for us,
and also allow us to
borrow local variables.

Every time the background thread finishes processing an item,
it
stores the number of processed items in an AtomicUsize .
Mean-
while, the main thread shows that number to the user to inform
them
of the progress, about once per second.
Once the main thread sees
that all 100 items have been processed,
it exits the scope, which im-
plicitly joins the background thread,
and informs the user that every-
thing is done.

Synchronization

Once the last item is processed,
it might take up to one whole second
for the main thread to know,
introducing an unnecessary delay at the
end.
To solve this, we can use thread parking (“Thread Parking”) to
wake the main thread from its sleep
whenever there is new informa-
tion it might be interested in.

Here’s the same example, but now using
thread::park_timeout rather than thread::sleep :

fn main() {

 let num_done = AtomicUsize::new(0);

 let main_thread = thread::current();

 thread::scope(|s| {

 // A background thread to process all 100

 s.spawn(|| {

 for i in 0..100 {

 process_item(i); // Assuming this

 num_done.store(i + 1, Relaxed);

 main_thread.unpark(); // Wake up

 }

 });

 // The main thread shows status updates.

 loop {

 let n = num_done.load(Relaxed);

 if n == 100 { break; }

 println!("Working.. {n}/100 done");

 thread::park_timeout(Duration::from_s

 }

 });

 println!("Done!");

}

Not much has changed.
We’ve obtained a handle to the main thread
through thread::current() ,
which is now used by the back-
ground thread to unpark the main thread after every status update.

The main thread now uses park_timeout rather than sleep ,

such that it can be interrupted.

Now, any status updates are immediately reported to the user,
while
still repeating the last update every second to show that the program
is still running.

Example: Lazy Initialization

The last example before we move on to more advanced atomic oper-
ations is about lazy initialization.

Imagine there is a value x , which we are reading from a file,
obtain-
ing from the operating system,
or calculating in some other way, that
we expect to be constant during a run of the program.
Maybe x is
the version of the operating system, or the total amount of memory,
or
the 400th digit of tau. It doesn’t really matter for this example.

Since we don’t expect it to change,
we can request or calculate it only
the first time we need it, and remember the result.
The first thread
that needs it will have to calculate the value,
but it can store it in an

atomic static to make it available for all threads,
including itself if it
needs it again later.

Let’s take a look at an example of this.
To keep things simple, we’ll
assume x is never zero, so that we can use zero as a placeholder
before it has been calculated.

use std::sync::atomic::AtomicU64;

fn get_x() -> u64 {

 static X: AtomicU64 = AtomicU64::new(0);

 let mut x = X.load(Relaxed);

 if x == 0 {

 x = calculate_x();

 X.store(x, Relaxed);

 }

 x

}

The first thread to call get_x() will check the static X and see
it is
still zero, calculate its value, and store the result back in the static
to
make it available for future use.
Later, any call to get_x() will see
that the value in the static is nonzero,
and return it immediately with-
out calculating it again.

However, if a second thread calls get_x() while the first one is still
calculating x ,
the second thread will also see a zero and also calcu-
late x in parallel.
One of the threads will end up overwriting the result
of the other,
depending on which one finishes first.
This is called a
race.
Not a data race,
which is undefined behavior and impossible in
Rust without using unsafe ,
but still a race with an unpredictable
winner.

Since we expect x to be constant, it doesn’t matter who wins the
race,
as the result will be the same regardless.
Depending on how
much time we expect calculate_x() to take,
this might be a very
good or very bad strategy.

If calculate_x() is expected to take a long time,
it’s better if
threads wait while the first thread is still initializing X ,
to avoid unnec-
essarily wasting processor time.
You could implement this using a
condition variable or thread parking (“Waiting: Parking and Condition
Variables”),
but that quickly gets too complicated for a small example.

The Rust standard library provides exactly this functionality through
std::sync::Once and std::sync::OnceLock ,
so there’s
usually no need to implement these yourself.

Fetch-and-Modify Operations

Now that we’ve seen a few use cases for the basic load and
store operations,
let’s move on to more interesting operations: the
fetch-and-modify operations.
These operations modify the atomic
variable, but also load (fetch) the original value,
as a single atomic
operation.

The most commonly used ones are fetch_add and fetch_sub ,

which perform addition and subtraction, respectively.
Some of the
other available operations are fetch_or and fetch_and for bit-
wise operations,
and fetch_max and fetch_min which can be
used to keep a running maximum or minimum.

Their function signatures are as follows, using AtomicI32 as an
example:

impl AtomicI32 {

 pub fn fetch_add(&self, v: i32, ordering: Ord

 pub fn fetch_sub(&self, v: i32, ordering: Ord

 pub fn fetch_or(&self, v: i32, ordering: Orde

 pub fn fetch_and(&self, v: i32, ordering: Ord

 pub fn fetch_nand(&self, v: i32, ordering: Or

 pub fn fetch_xor(&self, v: i32, ordering: Ord

 pub fn fetch_max(&self, v: i32, ordering: Ord

 pub fn fetch_min(&self, v: i32, ordering: Ord

 pub fn swap(&self, v: i32, ordering: Ordering

}

The one outlier is the operation that simply stores a new value, re-
gardless of the old value.
Instead of fetch_store , it has been
called swap .

Here’s a quick demonstration showing how fetch_add returns the
value before the operation:

use std::sync::atomic::AtomicI32;

let a = AtomicI32::new(100);

let b = a.fetch_add(23, Relaxed);

let c = a.load(Relaxed);

assert_eq!(b, 100);

assert_eq!(c, 123);

The fetch_add operation incremented a from 100 to 123,
but re-
turned to us the old value of 100.
Any next operation will see the value
of 123.

The return value from these operations is not always relevant.
If you
only need the operation to be applied to the atomic value,
but are not
interested in the value itself,
it’s perfectly fine to simply ignore the re-
turn value.

An important thing to keep in mind is that fetch_add and
fetch_sub implement
wrapping behavior for overflows.
Increment-
ing a value past the maximum representable value will wrap around
and result in the minimum representable value.
This is different than
the behavior of the plus and minus operators on regular integers,

which will panic in debug mode on overflow.

In “Compare-and-Exchange Operations”, we’ll see how to do atomic
addition with overflow checking.

But first, let’s see some real-world use cases of these methods.

Example: Progress Reporting from Multiple
Threads

In “Example: Progress Reporting”,
we used an AtomicUsize to re-
port the progress of a background thread.
If we had split the work
over, for example, four threads with each processing 25 items,
we’d
need to know the progress from all four threads.

We could use a separate AtomicUsize for each thread and load
them all in the main thread
and sum them up, but an easier solution is
to use a single AtomicUsize to track the total
number of pro-
cessed items over all threads.

To make that work, we can no longer use the store method, as that
would overwrite
the progress from other threads.
Instead, we can use
an atomic add operation to increment the counter after every pro-
cessed item.

Let’s update the example from “Example: Progress Reporting” to split
the work over four threads:

fn main() {

 let num_done = &AtomicUsize::new(0);

 thread::scope(|s| {

 // Four background threads to process all

 for t in 0..4 {

 s.spawn(move || {

 for i in 0..25 {

 process_item(t * 25 + i); //

 num_done.fetch_add(1, Relaxed

 }

 });

 }

 // The main thread shows status updates,

 loop {

 let n = num_done.load(Relaxed);

 if n == 100 { break; }

 println!("Working.. {n}/100 done");

 thread::sleep(Duration::from secs(1))

 thread::sleep(Duration::from_secs(1))

 }

 });

 println!("Done!");

}

A few things have changed.
Most importantly, we now spawn four
background threads rather than one,
and use fetch_add instead of
store to modify the num_done atomic variable.

More subtly, we now use a move closure for the background
threads,
and num_done is now a reference.
This is not related to our
use of fetch_add ,
but rather to how we spawn four threads in a
loop.
This closure captures t to know which of the four threads it is,

and thus whether to start at item 0, 25, 50, or 75.
Without the move

keyword, the closure would try to capture t by reference.
That isn’t
allowed, as it only exists briefly during the loop.

As a move closure, it moves (or copies) its captures rather than bor-
rowing them,
giving it a copy of t .
Because it also captures
num_done , we’ve changed that variable to be a reference,
since we
still want to borrow that same AtomicUsize .
Note that the atomic
types do not implement the Copy trait,
so we’d have gotten an error
if we had tried to move one into more than one thread.

Closure capture subtleties aside,
the change to use fetch_add

here is very simple.
We don’t know in which order the threads will in-
crement num_done ,
but as the addition is atomic, we don’t have to
worry about anything
and can be sure it will be exactly 100 when all
threads are done.

Example: Statistics

Continuing with this concept of reporting what other threads are doing
through atomics,
let’s extend our example to also collect and report
some statistics on the time it takes to process an item.

Next to num_done , we’re adding two atomic variables,

total_time and max_time ,
to keep track of the amount of time
spent processing items.
We’ll use these to report the average and
peak processing times.

fn main() {

 let num_done = &AtomicUsize::new(0);

 let total_time = &AtomicU64::new(0);

 let max_time = &AtomicU64::new(0);

 thread::scope(|s| {

 // Four background threads to process all

 for t in 0..4 {

 s.spawn(move || {

for i in 0 25 {

 for i in 0..25 {

 let start = Instant::now();

 process_item(t * 25 + i); //

 let time_taken = start.elapse

 num_done.fetch_add(1, Relaxed

 total_time.fetch_add(time_tak

 max_time.fetch_max(time_taken

 }

 });

 }

 // The main thread shows status updates,

 loop {

 let total_time = Duration::from_micro

 let max_time = Duration::from_micros(

 let n = num_done.load(Relaxed);

 if n == 100 { break; }

 if n == 0 {

 println!("Working.. nothing done

 } else {

 println!(

 "Working.. {n}/100 done, {:?}

 total_time / n as u32,

 max_time,

);

 }

 thread::sleep(Duration::from_secs(1))

 }

 });

 println!("Done!");

}

The background threads now use Instant::now() and
Instant::elapsed() to measure
the time they spend in
process_item() .
An atomic add operation is used to add the
number of microseconds to total_time ,
and an atomic max oper-
ation is used to keep track of the highest measurement in
max_time .

The main thread divides the total time by the number of processed
items to obtain the average
processing time, which it then reports to-
gether with the peak time from max_time .

Since the three atomic variables are updated separately,
it is possible
for the main thread to load the values
after a thread has incremented
num_done , but before it has updated total_time ,
resulting in an
underestimate of the average.
More subtly, because the Relaxed

memory ordering gives no guarantees about
the relative order of op-
erations as seen from another thread,
it might even briefly see a new
updated value of total_time , while still seeing an old value of
num_done ,
resulting in an overestimate of the average.

Neither of this is a big issue in our example.
The worst that can hap-
pen is that an inaccurate average is briefly reported to the user.

If we want to avoid this, we can put the three statistics inside a
Mutex .
Then we’d briefly lock the mutex while updating the three
numbers,
which no longer have to be atomic by themselves.
This ef-
fectively turns the three updates into a single atomic operation,
at the
cost of locking and unlocking a mutex, and potentially temporarily
blocking threads.

Example: ID Allocation

Let’s move on to a use case where we actually
need the return value
from fetch_add .

Suppose we need some function, allocate_new_id() ,
that gives
a new unique number every time it is called.
We might use these
numbers to identify tasks or other things in our program;
things that
need to be uniquely identified by something small that can be
easily
stored and passed around between threads, such as an integer.

Implementing this function turns out to be trivial using fetch_add :

use std::sync::atomic::AtomicU32;

fn allocate_new_id() -> u32 {

i i i

 static NEXT_ID: AtomicU32 = AtomicU32::new(0)

 NEXT_ID.fetch_add(1, Relaxed)

}

We simply keep track of the next number to give out,
and increment it
every time we load it.
The first caller will get a 0, the second a 1, and
so on.

The only problem here is the wrapping behavior on overflow.
The
4,294,967,296th call will overflow the 32-bit integer,
such that the next
call will return 0 again.

Whether this is a problem depends on the use case:
how likely is it to
be called this often,
and what’s the worst that can happen if the num-
bers are not unique?
While this might seeem like a huge number,
modern computers can easily execute our function that many times
within seconds.
If memory safety is dependent on these numbers be-
ing unique,
our implementation above is not acceptable.

To solve this, we can attempt to make the function panic if it is called
too many times,
like this:

// This version is problematic.

fn allocate_new_id() -> u32 {

 static NEXT_ID: AtomicU32 = AtomicU32::new(0)

 let id = NEXT_ID.fetch_add(1, Relaxed);

 assert!(id < 1000, "too many IDs!");

 id

}

Now, the assert statement will panic after a thousand calls.
How-
ever, this happens after the atomic add operation already happened,

meaning that NEXT_ID has already been incremented to 1001 when
we panic.
If another thread then calls the function, it’ll increment it to
1002 before panicking, and so on.
Although it might take significantly
longer, we’ll run into the same problem
after 4,294,966,296 panics
when NEXT_ID will overflow to zero again.

There are three common solutions to this problem.
The first one is to
not panic but instead completely abort the process on overflow.
The
std::process::abort function will abort the entire process,
rul-
ing out the possibility of anything continuing to call our function.
While
aborting the process might take a brief moment in which the function
can still be
called by other threads, the chance of that happening bil-
lions of times before
the program is truly aborted is negligible.

This is, in fact, how the overflow check in Arc::clone() in the
standard library is implemented,
in case you somehow manage to
clone it isize::MAX times.
That’d take hundreds of years on a 64-
bit computer,
but is achieveable in seconds if isize is only 32 bits.

A second way to deal with the overflow is to use fetch_sub to
decrement the counter
again before panicking, like this:

fn allocate_new_id() -> u32 {

 static NEXT_ID: AtomicU32 = AtomicU32::new(0)

 let id = NEXT_ID.fetch_add(1, Relaxed);

 if id >= 1000 {

 NEXT_ID.fetch_sub(1, Relaxed);

 panic!("too many IDs!");

 }

 id

}

It’s still possible for the counter to very briefly be incremented beyond
1000
when multiple threads execute this function at the same time,

but it is limited by the number of active threads.
It’s reasonable to as-
sume there will never be billions of active threads at once,
especially
not all simultaneously executing the same function
in the brief mo-
ment between fetch_add and fetch_sub .

This is how overflows are handled for the number of running threads
in the
standard library’s thread::scope implementation.

The third way of handling overflows is arguably the only truly correct
one,
as it prevents the addition from happening at all if it would over-

flow.
However, we cannot implement that with the atomic operations
we’ve seen so far.
For this, we’ll need compare-and-exchange opera-
tions, which we’ll explore next.

Compare-and-Exchange Operations

The most advanced and flexible atomic operation is the compare-
and-exchange operation.
This operation checks if the atomic value is
equal to a given value,
and only if that is the case does it replace it
with a new value,
all atomically as a single operation.
It will return the
previous value and tell us whether it replaced it or not.

Its signature is a bit more complicated than the ones we’ve seen so
far.
Using AtomicI32 as an example, it looks like this:

impl AtomicI32 {

 pub fn compare_exchange(

 &self,

 expected: i32,

 new: i32,

 success_order: Ordering,

 failure_order: Ordering

) -> Result<i32, i32>;

}

Ignoring memory ordering for a moment,
it is basically identical to the
following implementation,
except it all happens as a single, indivisible
atomic operation:

impl AtomicI32 {

 pub fn compare_exchange(&self, expected: i32,

 // In reality, the load, comparison and s

 // all happen as a single atomic operatio

 let v = self.load();

 if v == expected {

 // Value is as expected.

 // Replace it and report success.

 self.store(new);

 Ok(v)

 } else {

 // The value was not as expected.

 // Leave it untouched and report fail

 Err(v)

 }

 }

}

Using this, we can load a value from an atomic variable, perform any
calculation we like,
and then only store the newly calculated value if
the atomic variable didn’t change in the meantime.
If we put this in a

loop to retry if it did change,
we could use this to implement all the
other atomic operations,
making this the most general one.

To demonstrate, let’s increment an AtomicU32 by one without us-
ing fetch_add ,
just to see how compare_exchange is used in
practice:

fn increment(a: &AtomicU32) {

 let mut current = a.load(Relaxed);

 loop {

 let new = current + 1;

 match a.compare_exchange(current, new, Re

 Ok(_) => return,

 Err(v) => current = v,

 }

 }

}

First, we load the current value of a .

We calculate the new value we want to store in a ,
not taking
into account potential concurrent modifications of a by other
threads.

We use compare_exchange to update the value of a ,
but
only if its value is still the same value we loaded before.

https://calibre-pdf-anchor.a/#a378

If a was indeed still the same as before,
it is now replaced by
our new value and we are done.

If a was not the same as before,
another thread must’ve
changed it in the brief moment since we loaded it.
The
compare_exchange operation gives us the changed value
that a had,
and we’ll try again using that value instead.
The
brief moment between loading and updating is so short that it’s
unlikely for this to loop more than a few iterations.

CAUTION

If the atomic variable changes from some
value A to B and then back to A
after
the load operation, but before the compare_exchange operation,
it would still
succeed, even though the atomic variable was changed (and changed back) in the
meantime.
In many cases, as with our increment example, this is not a problem.

However, there are certain algorithms, often involving atomic pointers, for which
this can be a problem.
This is known as the ABA problem.

Next to compare_exchange , there is a similar method named
compare_exchange_weak .
The difference is that the weak ver-
sion may still sometimes leave the value untouched and return an
Err ,
even though the atomic value matched the expected value.
On
some platforms, this method can be implemented more efficiently
and
should be preferred in cases where the consequence of a spurious
compare-and-exchange failure
are insignificant, such as in our

increment function above.
In Chapter 7, we’ll dive into the low-lev-
el details
to find out why the weak version can be more efficient.

Example: ID Allocation Without Overflow

Now, back to our overflow problem in allocate_new_id() from
“Example: ID Allocation”.

To stop incrementing NEXT_ID beyond a certain limit to prevent
overflows,
we can use compare_exchange to implement atomic
addition with an upper bound.
Using that idea, let’s make a version of
allocate_new_id that always handles overflow correctly,
even in
practically impossible situations:

fn allocate_new_id() -> u32 {

 static NEXT_ID: AtomicU32 = AtomicU32::new(0)

 let mut id = NEXT_ID.load(Relaxed);

 loop {

 assert!(id < 1000, "too many IDs!");

 match NEXT_ID.compare_exchange_weak(id, i

 Ok(_) => return id,

 Err(v) => id = v,

 }

 }

}

Now we check and panic before modifying NEXT_ID ,
guaranteeing
it will never be incremented beyond 1000, making overflow impossi-
ble.
We can now raise the upper limit from 1000 to u32::MAX if we
want,
without having to worry about edge cases in which it might get
incremented beyond the limit.

FETCH-UPDATE

The atomic types have a convenience method called
fetch_update
for the compare-and-exchange loop pattern.
It’s
equivalent to a load operation followed by a loop that repeats a
cal-
culation and compare_exchange_weak , just like what we did
above.

Using it, we could implement our allocate_new_id function with
a one-liner:

 NEXT_ID.fetch_update(Relaxed, Relaxed,

 |n| n.checked_add(1)).expect("too many ID

Check out the method’s documentation for details.

We’ll not use the fetch_update method in this book,
so we can
focus on the individual atomic operations.

Example: Lazy One-Time Initialization

In “Example: Lazy Initialization”, we looked at an example of lazy ini-
tialization of a constant value.
We made a function that lazily initial-
izes a value on the first call, but reuses it on later calls.
When multiple
threads run the function concurrently during the first call,
more than

one thread might execute the initialization,
and they will overwrite
each others’ result in an unpredictable order.

This is fine for values that we expect to be constant, or when we don’t
care about changing values.
However, there are also use cases
where such a value gets initialized to a different value each time,

even though we need every invocation of the function within a single
run of the program to return the same value.

For example, imagine a function get_key() that returns a random-
ly generated key
that’s only generated once per run of the program.
It
might be an encryption key used for communication with the pro-
gram, which needs to be unique every time the program is run, but
stays constant within a process.

This means we cannot simply use a store operation after generat-
ing a key,
since that might overwrite a key generated by another
thread just moments ago, resulting
in two threads using different
keys.
Instead, we can use compare_exchange to make sure we
only
store the key if no other thread has already done so,
and other-
wise throw our key away and use the stored key instead.

Here’s an implementation of this idea:

fn get_key() -> u64 {

 static KEY: AtomicU64 = AtomicU64::new(0);

 let key = KEY.load(Relaxed);

 if key == 0 {

 let new_key = generate_random_key();

 match KEY.compare_exchange(0, new_key, Re

 Ok(_) => new_key,

 Err(k) => k,

 }

 } else {

 key

 }

}

We only generate a new key if KEY was not yet initialized.

We replace KEY with our newly generated key, but only if it is
still zero.

If we swapped the zero for our new key, we return our newly
generated key.
New invocations of get_key() will return the
same new key that’s now stored in KEY .

If we lost the race to another thread that initialized KEY before
we could,
we forget our newly generated key and use the key
from KEY instead.

This is a good example of a situation where compare_exchange is
more appropriate than its weak variant.
We don’t run our compare-

https://calibre-pdf-anchor.a/#a404

and-exchange operation in a loop,
and we don’t want to return zero if
the operation spuriously fails.

As mentioned in “Example: Lazy Initialization”,
if
generate_random_key() takes a lot of time,
it might make more
sense to block threads during initialization,
to avoid potentially spend-
ing time generating keys that will not be used.
The Rust standard li-
brary provides such functionality through
 std::sync::Once and
std::sync::OnceLock .

Summary

Atomic operations are indivisible; they have either fully complet-
ed, or they haven’t happened yet.
Atomic operations in Rust are done through the atomic types in
std::sync::atomic , such as AtomicI32 .

Not all atomic types are available on all platforms.

The relative ordering of atomic operations is tricky when multiple
variables are involved. More in Chapter 3.

Simple loads and stores are nice for very basic inter-thread com-
munication, like stop flags and status reporting.

Lazy initialization can be done as a race, without causing a data
race.

Fetch-and-modify operations allow for a small set of basic atomic
modifications
that are especially useful when multiple threads
are modifying the same atomic variable.

Atomic addition and subtraction silently wrap around on overflow.

Compare-and-exchange operations are the most flexible and
general,
and a building block for making any other atomic
operation.

A weak compare-and-exchange operation can be slightly more
efficient.

Chapter 3. Memory Ordering

In Chapter 2, we briefly touched upon the concept of memory order-
ing.
In this chapter, we’ll dive into this topic and explore all the avail-
able memory ordering options,
and, most importantly, when to use
which one.

Reordering and Optimizations

Processors and compilers perform all sorts of tricks to make your pro-
grams run as fast as possible.
A processor might determine that two
particular consecutive instructions in your program
will not affect each
other, and execute them out of order, if that is faster, for example.

While one instruction is briefly blocked on fetching some data from
main memory,
several of the following instructions might be executed
and finished before the first instruction finishes,
as long as that
wouldn’t change the behavior of your program.
Similarly, a compiler
might decide to reorder or rewrite parts of your program
if it has rea-
son to believe it might result in faster execution.
But, again, only if that
wouldn’t change the behavior of your program.

Let’s take a look at the following function as an example:

fn f(a: &mut i32, b: &mut i32) {

 *a += 1;

 *b += 1;

 *a += 1;

}

Here, the compiler will most certainly understand that the order of
these operations does not matter,
since nothing happens between
these three addition operations that depends on
the value of *a or
*b . (Assuming overflow checking is disabled.)
Because of that, it
might reorder the second and third operations,
and then merge the
first two into a single addition:

fn f(a: &mut i32, b: &mut i32) {

 *a += 2;

 *b += 1;

}

Later, while executing this function of the optimized compiled pro-
gram,
a processor might for a variety of reasons end up executing the
second addition before the first addition,
possibly because *b was
available in a cache, while *a had to be fetched from the main
memory.

Regardless of these optimizations, the result stays the same: *a is
incremented by two and *b is incremented by one.
The order in
which they were incremented is entirely invisible to the rest of your
program.

The logic for verifying that a specific reordering or other optimization
won’t affect the behavior of your program
does not take other threads
into account.
In our example above, that’s perfectly fine, as the
unique references (&mut i32) guarantee that nothing else can
possibly
access the values, making other threads irrelevant.
The only
situation where this is a problem is when mutating data that’s shared
between threads.
Or, in other words, when working with atomics.
This
is why we have to explicitly tell the compiler and processor what they
can and can’t do with our atomic operations,
since their usual logic
ignores interactions between threads and might allow
for optimiza-
tions that do change the result of your program.

The interesting question is how we tell them.
If we wanted to precise-
ly spell out exactly what is and isn’t acceptable,
concurrent program-
ming might become exceedingly verbose and error prone,
and maybe
even architecture-specific:

let x = a.fetch_add(1,

 Dear compiler and processor,

 Feel free to reorder this with operations on

 but if there's another thread concurrently ex

y

 please don't reorder this with operations on

 Also, processor, don't forget to flush your s

 If b is zero, though, it doesn't matter.

 In that case, feel free to do whatever is fas

 Thanks~ <3

);

Instead, we can only pick from a small set of options,
represented by
the std::sync::atomic::Ordering enum,
which every atomic
operation takes as an argument.
The set of available options is very
limited,
but has been carefully picked to fit most use cases well.
The
orderings are very abstract and do not directly reflect
the actual com-
piler and processor mechanisms involved, such as instruction re-
ordering.
This makes it possible for your concurrent code to be archi-
tecture-independent and future-proof.
It allows for verification without
knowing the details of every single current and future
processor and
compiler version.

The available orderings in Rust are:

Relaxed ordering: Ordering::Relaxed

Release and acquire ordering: Ordering::{Release,

Acquire, AcqRel}

Sequentially consistent ordering: Ordering::SeqCst

In C++, there is also something called consume ordering,
which has
been purposely omitted from Rust, but is nonetheless interesting to
discuss as well.

The Memory Model

The different memory ordering options have a strict formal definition
to make sure we know exactly what we’re allowed to assume,
and for
compiler writers to know exactly what guarantees they need to pro-
vide to us.
To decouple this from the details of specific processor ar-
chitectures,
memory ordering is defined in terms of an abstract mem-
ory model.

Rust’s memory model, which is mostly copied from C++,
doesn’t
match any existing processor architecture,
but instead is an abstract
model with a strict set of rules that attempt to represent the greatest
common denominator of all current and future architectures,
while
also giving the compiler enough freedom to make useful assumptions
while analyzing and optimizing programs.

We’ve already seen a part of the memory model in action in “Borrow-
ing and Data Races”,
where we talked about how data races result in
undefined behavior.
Rust’s memory model allows for concurrent

atomic stores,
but considers concurrent non-atomic stores to the
same variable to be a data race,
resulting in undefined behavior.

On most processor architectures, however, there is actually no differ-
ence between an
atomic store and a regular non-atomic store, as
we’ll see in Chapter 7.
One could argue that the memory model is
more restrictive than necessary,
but these strict rules make it easier
to reason about a program,
both for the compiler and the program-
mer,
and they leave space for future developments.

Happens-Before Relationship

The memory model defines the order in which operations happen in
terms of happens-before relationships.
This means that as an ab-
stract model, it doesn’t talk about machine instructions, caches,
buf-
fers, timing, instruction reordering, compiler optimizations, and so on,

but instead only defines situations where one thing is guaranteed to
happen before another thing,
and leaves the order of everything else
undefined.

The basic happens-before rule is that everything that happens within
the same thread happens in order.
If a thread is executing f();

g(); , then f() happens-before g() .

Between threads, however, happens-before relationships only occur
in a few specific cases,
such as when spawning and joining a thread,

unlocking and locking a mutex,
and through atomic operations that
use non-relaxed memory ordering.
 Relaxed memory ordering is the
most basic (and most performant) memory ordering that,
by itself,
never results in any cross-thread happens-before relationships.

To explore what that means, let’s take a look at the following example
where we assume a and b are concurrently executed by different
threads:

static X: AtomicI32 = AtomicI32::new(0);

static Y: AtomicI32 = AtomicI32::new(0);

fn a() {

 X.store(10, Relaxed);

 Y.store(20, Relaxed);

}

fn b() {

 let y = Y.load(Relaxed);

 let x = X.load(Relaxed);

 println!("{x} {y}");

}

As mentioned above, the basic happens-before rule is that everything
that
happens within the same thread happens in order.
In this case:

happens-before , and happens-before , as shown in Figure 3-1.

Since we use relaxed memory ordering, there are no other happens-
before relationships in our example.

Figure 3-1. The happens-before relationships between atomic operations in the example
code

If either of a or b completes before the other starts, the output will
be 0 0 or 10 20 .
If a and b run concurrently, it’s easy to see
how the output can be 10 0 .
One way this can happen is if the oper-
ations run in this order: .

More interestingly, the output can also be 0 20 ,
even though there
is no possible globally consistent order of the four operations that
would result in this outcome.
When is executed, there is no hap-

https://marabos.nl/atomics/alt/3-1.html

pens-before relationship with ,
which means it could load either 0 or
20.
When is executed, there is no happens-before relationship with

,
which means it could load either 0 or 10.
Given this, the output 0
20 is a valid outcome.

The important and counter-intuitive thing to understand is that
opera-
tion loading the value 20 does not result in a happens-before rela-
tionship with ,
even though that value is the one stored by .
Our in-
tuitive understanding of the concept of “before” breaks down
when
things don’t necessarily happen in a globally consistent order,
such
as when instruction reordering is involved.

A more practical and intuitive, but less formal, understanding is that
from the perspective of the thread executing b ,
operations and

might appear to happen in the opposite order.

Spawning and Joining

Spawning a thread creates a happens-before relationship between
what happened before the spawn() call, and the new thread.

Similarly, joining a thread creates a happens-before relationship be-
tween
the joined thread and what happens after the join() call.

To demonstrate, the assertion in the following example cannot fail:

static X: AtomicI32 = AtomicI32::new(0);

fn main() {

 X.store(1, Relaxed);

 let t = thread::spawn(f);

 X.store(2, Relaxed);

 t.join().unwrap();

 X.store(3, Relaxed);

}

fn f() {

 let x = X.load(Relaxed);

 assert!(x == 1 || x == 2);

}

Because of the happens-before relationships formed by the join and
spawn operations,
we know for sure that the load from X happens
after the first store, but before the last store,
as visualized in Figure 3-
2.
However, whether it observes the value before or after the second
store is unpredictable.
In other words, it could load either 1 or 2, but
not 0 or 3.

Figure 3-2. The happens-before relationships between the spawn, join, store, and load oper-
ations in the example code

Relaxed Ordering

https://marabos.nl/atomics/alt/3-2.html

While atomic operations using relaxed memory ordering do not pro-
vide any happens-before relationship,
they do guarantee a total modi-
fication order of each individual atomic variable.
This means that all
modifications of the same atomic variable
happen in an order that is
the same from the perspective of every single thread.

To demonstrate what that means, consider the following example
where we assume a and b are concurrently executed by different
threads:

static X: AtomicI32 = AtomicI32::new(0);

fn a() {

 X.fetch_add(5, Relaxed);

 X.fetch_add(10, Relaxed);

}

fn b() {

 let a = X.load(Relaxed);

 let b = X.load(Relaxed);

 let c = X.load(Relaxed);

 let d = X.load(Relaxed);

 println!("{a} {b} {c} {d}");

}

In this example, only one thread modifies X ,
which makes it easy to
see that there’s only one possible order of modification of X :

0→5→15.
It starts at zero, then becomes five, and is finally changed
to fifteen.
Threads cannot observe any values from X that are incon-
sistent with this total modification order.
This means that "0 0 0
0" , "0 0 5 15" , and "0 15 15 15" are some of the
possible
results from the print statement in the other thread,
while an output of
"0 5 0 15" or "0 0 10 15" is impossible.

Even if there’s more than one possible order of modification for an
atomic variable,
all threads will agree on a single order.

Let’s replace a by two separate functions, a1 and a2 ,
which we
assume are each executed by a separate thread:

fn a1() {

 X.fetch_add(5, Relaxed);

}

fn a2() {

 X.fetch_add(10, Relaxed);

}

Assuming these are the only threads modifying X ,
there are now two
possible modification orders:
either 0→5→15, or 0→10→15, depend-
ing on which fetch_add operation executes first.
Whichever hap-

pens, all threads observe the same order.
So, even if we have hun-
dreds of additional threads all running our b() function,
we know
that if one of them prints a 10 ,
the order must be 0→10→15 and
none of them can possibly print a 5 .
And vice versa.

In Chapter 2, we saw several examples of use cases
where this total
modification order guarantee for individual variables is enough,
mak-
ing relaxed memory ordering sufficient.
However, if we try anything
more advanced beyond those examples,
we’ll quickly see we need
something stronger than relaxed memory ordering.

OUT-OF-THIN-AIR VALUES

The lack of ordering guarantees around relaxed memory ordering
can lead to some theoretical complications when operations
depend
on each other in a cyclic way.

To demonstrate, here’s a contrived example where two threads load a
value from
one atomic and store it in the other:

static X: AtomicI32 = AtomicI32::new(0);

static Y: AtomicI32 = AtomicI32::new(0);

fn main() {

 let a = thread::spawn(|| {

 let x = X.load(Relaxed);

 Y.store(x, Relaxed);

 });

 let b = thread::spawn(|| {

 let y = Y.load(Relaxed);

 X.store(y, Relaxed);

 });

 a.join().unwrap();

 b.join().unwrap();

 assert_eq!(X.load(Relaxed), 0); // Might fail

 assert_eq!(Y.load(Relaxed), 0); // Might fail

}

It seems easy to conclude that the values of X and Y will never be
anything other than zero,
since the store operations only store values
that were loaded from these same atomics,
which are only ever zero.

If we strictly follow the theoretical memory model, however,
we have
to come to terms with our cyclic reasoning,
and come to the scary
conclusion that we might be wrong.
In fact, the memory model techni-
cally allows for an outcome where both X and Y
are 37 in the end,

or any other value, making the assertions fail.

Due to the lack of ordering guarantees, the load operations of these
two threads
might both see the result of the store operation of the
other thread,
allowing for a cycle in the order of operations:
we store
37 in Y because we loaded 37 from X ,
which was stored to X be-
cause we loaded 37 from Y ,
which is the value we stored in Y .

Fortunately, the possibility of such out-of-thin-air values
is universally
considered to be a bug in the theoretical model,
and not something
you need to take into account in practice.
The theoretical problem of
how to formalize relaxed memory ordering
without the model allowing
for such anomalies is an unsolved one.
While this is an eyesore for
formal verification that keeps many theoreticians up at night,
the rest
of us can relax in blissful ignorance knowing that this does not hap-
pen in practice.

Release and Acquire Ordering

Release and acquire memory ordering are used in a pair to form a
happens-before relationship between threads.
 Release memory
ordering applies to store operations,
while Acquire memory order-
ing applies to load operations.

A happens-before relationship is formed
when an acquire-load opera-
tion observes the result of a release-store operation.
In this case, the
store and everything before it, happened before
the load and every-
thing after it.

When using Acquire for a fetch-and-modify or compare-and-ex-
change operation,
it applies only to the part of the operation that
loads the value.
Similarly, Release applies only to the store part of
an operation.
 AcqRel is used to represent the combination of
Acquire and Release ,
which causes both the load to use acquire
ordering, and the store to use release ordering.

Let’s go over an example to see how that’s used in practice.
In the fol-
lowing example, we send a 64-bit integer from a spawned thread to
the main thread.
We use an extra atomic boolean to indicate to the
main thread that the integer
has been stored and is ready to be read.

use std::sync::atomic::Ordering::{Acquire, Releas

static DATA: AtomicU64 = AtomicU64::new(0);

static READY: AtomicBool = AtomicBool::new(false)

fn main() {

 thread::spawn(|| {

 DATA.store(123, Relaxed);

 READY.store(true, Release); // Everything

 });

 while !READY.load(Acquire) { // .. is visible

 thread::sleep(Duration::from_millis(100))

 println!("waiting...");

 }

 println!("{}", DATA.load(Relaxed));

}

When the spawned thread is done storing the data,
it uses a release-
store to set the READY flag to true .
When the main thread ob-
serves this through its acquire-load operation,
a happens-before rela-
tionship is established between those two operations,
as shown in
Figure 3-3.
At that point, we know for sure that everything that hap-
pened before the release-store to READY
is visible to everything that
happens after the acquire-load.
Specifically, when the main thread
loads from DATA ,
we know for sure it will load the value stored by

the background thread.
There’s only one possible outcome this pro-
gram can print on its last line: 123 .

Figure 3-3. The happens-before relationships between atomic operations in the example
code, showing the cross-thread relationship formed by the acquire and release operations

If we had used relaxed memory ordering for all operations in this ex-
ample,
the main thread could have seen READY flip to true , while
still loading
a zero from DATA afterwards.

https://marabos.nl/atomics/alt/3-3.html

TIP

The names “release” and “acquire” are based on their most basic use case:
one
thread releases data by atomically storing some value to an atomic variable,
and
another thread acquires it by atomically loading that value.
This is exactly what hap-
pens when we unlock (release) a mutex
and subsequently lock (acquire) it on an-

other thread.

In our example, the happens-before relationship from the READY

flag guarantees that
the store and load operations of DATA cannot
happen concurrently.
This means that we don’t actually need those
operations to be atomic.

However, if we simply try to use a regular non-atomic type for our
data variable,
the compiler will refuse our program, since Rust’s type
system doesn’t allow us to
mutate those from one thread when an-
other thread is also borrowing them.
The type system does not magi-
cally understand the happens-before relationship
we’ve created here.

Some unsafe code is necessary to promise to the compiler that
we’ve thought
about this carefully and we’re sure we’re not breaking
any rules, as follows:

static mut DATA: u64 = 0;

static READY: AtomicBool = AtomicBool::new(false)

fn main() {

thread::spawn(|| {

 thread::spawn(|| {

 // Safety: Nothing else is accessing DATA

 // because we haven't set the READY flag

 unsafe { DATA = 123 };

 READY.store(true, Release); // Everything

 });

 while !READY.load(Acquire) { // .. is visible

 thread::sleep(Duration::from_millis(100))

 println!("waiting...");

 }

 // Safety: Nothing is mutating DATA, because

 println!("{}", unsafe { DATA });

}

MORE FORMALLY

A happens-before relationship is formed
when an acquire-load opera-
tion observes the result of a release-store operation. But what does
that mean?

Imagine that two threads both release-store a seven into the same
atomic variable,
and a third thread loads a seven from that variable.

Does the third thread now have a happens-before relationship with
the first thread or the second one?
That depends on “which seven” it
loaded: the one from thread one or the one from thread two.
(Or per-
haps an unrelated seven.)
This leads us to the conclusion that even
though seven equals seven,
there is something different about the
two sevens from the two threads.

The way to think about this is in terms of the total modification order
that we talked about in “Relaxed Ordering”: the ordered list of all
modifications
that happen to an atomic variable.
Even if the same val-
ue is written to the same variable more than once,
each of these op-
erations represents a separate event in the total modification order of
that variable.
When we load a value, the value loaded matches a spe-
cific point on this per-variable “timeline,” which tells us which opera-
tion we might be synchronizing with.

For example, if the total modification order of the atomic is

1. Initialized at 0
2. Release-store 7 (from thread two)

3. Relaxed-store 6

4. Release-store 7 (from thread one)

then acquire-loading a 7 would synchronize with either the release-
store from the second event, or the release-store from the last event.
However, if we have previously (in terms of happens-before relation-
ships) seen a 6,
we know we’re seeing the last 7, not the first one,

meaning we now have a happens-before relationship with thread
one, and not with thread two.

There is one extra detail, which is that a release-stored value may be
modified by
any number of fetch-and-modify and compare-and-ex-
change operations,
while still resulting in a happens-before relation-
ship with an acquire-load that reads the final result.

For example, imagine an atomic variable with the following total mod-
ification order:

1. Initialized at 0
2. Release-store 7

3. Relaxed-fetch-and-add 1, changing 7 to 8

4. Release-fetch-and-add 1, changing 8 to 9

5. Release-store 7

6. Relaxed-swap 10, changing 7 to 10

Now, if we acquire-load a 9 from this variable, we not only establish a
happens-before relationship
with the fourth operation (that stored this
value), but also with the second operation (which stored a 7),
even
though the third operation used relaxed memory ordering.

Similarly, if we acquire-load a 10 from this variable, which was written
by a relaxed operation,
we still establish a happens-before relation-
ship with the fifth operation (which stored a 7).
Because that was just
a regular store operation
(not a fetch-and-modify or compare-and-ex-
change operation),
it breaks the chain: we don’t establish a happens-
before relationship with any of the other operations.

Example: Locking

Mutexes are the most common use case for release and acquire or-
dering (see “Locking: Mutexes and RwLocks”).
When locking, they
use an atomic operation to check if it was unlocked, using acquire or-
dering,
while also (atomically) changing the state to “locked.”
When
unlocking, they set the state back to “unlocked” using release order-
ing.
This means that there will be a happens-before relationship be-
tween unlocking a mutex and subsequently locking it.

Here’s a demonstration of this pattern:

static mut DATA: String = String::new();

static LOCKED: AtomicBool = AtomicBool::new(false

fn f() {

 if LOCKED.compare_exchange(false, true, Acqui

 // Safety: We hold the exclusive lock, so

 unsafe { DATA.push('!') };

 LOCKED.store(false, Release);

 }

}

fn main() {

 thread::scope(|s| {

 for _ in 0..100 {

 s.spawn(f);

 }

 });

}

As we’ve briefly seen in “Compare-and-Exchange Operations”, com-
pare-and-exchange operations take two memory ordering argu-
ments:
one for the case where the comparison succeeded and the
store happened,
and one for the case where the comparison failed
and the store did not happen.
In f , we attempt to change LOCKED

from false to true ,
and only access DATA if that succeeds.
So,

we only care about the success memory ordering.
If the
compare_exchange operation fails,
that must be because
LOCKED was already set to true ,
in which case f doesn’t do any-
thing.
This matches the try_lock operation on a regular mutex.

NOTE

An observant reader might have already noticed that the compare-and-exchange
operation could
also have been a swap operation, since swapping true for true
when already locked
doesn’t change the correctness of the code:

// This also works.

if LOCKED.swap(true, Acquire) == false {

 …

}

Thanks to the acquire and release memory ordering, we know for
sure that
no two threads can concurrently access DATA .
As visual-
ized in Figure 3-4,
any previous access to DATA happened-before
the subsequent release-store of false to LOCKED ,
which in turn
happened-before the next acquire-compare-and-exchange (or ac-
quire-swap)
operation that changed that false to true , which
happened-before the next access to DATA .

Figure 3-4. The happens-before relationships between atomic operations in the locking ex-
ample, showing two threads locking and unlocking in sequence

In Chapter 4 we’ll turn this concept into a reusable type: a spin lock.

Example: Lazy Initialization with Indirection

In “Example: Lazy One-Time Initialization”, we implemented lazy ini-
tialization
of a global variable, using a compare-and-exchange opera-
tion
to handle situations where multiple threads race to initialize
the
value concurrently.
Because the value was a nonzero 64-bit integer,
we were able to use an AtomicU64 to store it,
using zero as the
placeholder before initializing it.

https://marabos.nl/atomics/alt/3-4.html

To do the same for a much larger data type that does not fit in a single
atomic variable,
we need to look for an alternative.

For this example, let’s say we want to maintain the non-blocking be-
havior,
so that threads never wait for another thread, but instead race
and take the
value from the first thread to complete initialization.
This
means we still need to be able to go from “uninitalized”
to “fully initial-
ized” in a single atomic operation.

As the fundamental theorem of software engineering tells us,
every
problem in computer science can be solved by adding another layer
of indirection,
and this problem is no different.
Since we can’t fit the
data into a single atomic variable,
we can instead use an atomic vari-
able to store a pointer to the data.

An AtomicPtr<T> is the atomic version of a *mut T : a pointer to
T .
We can use a null pointer as the placeholder for the initial state,

and use a compare-and-exchange operation to atomically replace it
with
a pointer to a newly allocated, fully initialized T ,
which can then
be read by the other threads.

Since we’re not only sharing the atomic variable containing the point-
er,
but also the data it points to,
we can no longer use relaxed memo-
ry ordering like in Chapter 2.
We need to make sure that allocating
and initializing the data
does not race with reading it.
In other words,

we need to use release and acquire ordering on the
store and load
operations, to make sure the compiler and processor
won’t break our
code by—​for example—​reordering
the store of the pointer and the ini-
tialization of the data itself.

This leads us to the following implementation,
for some arbitrary data
type called Data :

use std::sync::atomic::AtomicPtr;

fn get_data() -> &'static Data {

 static PTR: AtomicPtr<Data> = AtomicPtr::new(

 let mut p = PTR.load(Acquire);

 if p.is_null() {

 p = Box::into_raw(Box::new(generate_data(

 if let Err(e) = PTR.compare_exchange(

 std::ptr::null_mut(), p, Release, Acq

) {

 // Safety: p comes from Box::into_raw

 // and wasn't shared with any other t

 drop(unsafe { Box::from_raw(p) });

 p = e;

 }

 }

 // Safety: p is not null and points to a prop

 // Safety: p is not null and points to a prop

 unsafe { &*p }

}

If the pointer we acquire-load from PTR is non-null,
we assume it
points to the already initialized data,
and construct a reference to that
data.

If it’s still null, however, we generate new data and store it in a new
allocation using Box::new .
We then turn this Box into a raw point-
er using Box::into_raw ,
so we can attempt to store it into PTR

using a compare-and-exchange operation.
If another thread wins the
initialization race, compare_exchange fails as PTR is no longer
null.
If that happens, we turn our raw pointer back into a Box to de-
allocate it using drop ,
avoiding a memory leak, and continue with
the pointer that the other thread stored in PTR .

The safety comment on the final unsafe block states our assump-
tion that the data it points to has already been initialized.
Note how
this includes an assumption about the order in which things hap-
pened.
To make sure our assumption holds, we use release and ac-
quire memory ordering to make sure initializing the data
has actually
happened-before creating a reference to it.

We load a potentially non-null (i.e., initialized) pointer in two places:

through the load operation and through the compare_exchange

operation when it fails.
So, as explained above, we need to use
Acquire for both the load memory ordering and the
compare_exchange failure memory ordering,
to be able to syn-
chronize with the operation that stores the pointer.
This store hap-
pens when the compare_exchange operation succeeds,
so we
must use Release as its success ordering.

Figure 3-5 shows a visualization of the operations and happens-be-
fore relationships
for a situation in which three threads call
get_data() .
In this situation, thread A and B both observe a null
pointer and both attempt to initialize the
atomic pointer. Thread A
wins that race, causing thread B’s compare_exchange operation
to fail.
Thread C only observes the atomic pointer after it has been ini-
tialized by thread A.
The end result is that all three threads end up us-
ing the box that was allocated by thread A.

Figure 3-5. The operations and happens-before relationships among three threads calling
get_data()

Consume Ordering

Let’s take a closer look at the memory ordering in our last example.
If
we leave the strict memory model aside and think of it in more practi-
cal terms,
we could say that the release ordering prevents the initial-
ization of the data
from being reordered with the store operation that
shares the pointer with the other threads.
This is important, since oth-

https://marabos.nl/atomics/alt/3-5.html

erwise other threads might be able to see the data before it’s fully
initialized.

Similarly, we could explain the acquire ordering as preventing re-
ordering that would cause the data to be accessed before the pointer
is loaded.
One might reasonably wonder, however, if that makes any
sense in practice.
How could the data be accessed before its address
is known?
We might conclude that something weaker than acquire
ordering might suffice.
And we would be right: this weaker ordering is
called consume ordering.

Consume ordering is basically a lightweight—​more efficient—​variant
of acquire ordering,
whose synchronizing effects are limited to things
that depend on the loaded value.

What that means is that if you consume-load a release-stored value
x from an atomic variable, then,
basically, that store happened be-
fore the evaluation of dependent expressions
like *x , array[x] or
table.lookup(x + 1) ,
but not necessarily before independent
operations,
like reading another variable that we don’t need the value
of x for.

Now there’s good news and bad news.

The good news is that—​on all modern processor architectures—​con-
sume ordering is achieved
with the exact same instructions as re-

laxed ordering.
In other words, consume ordering can be “free,” which
—​at least on some platforms—​is not the case for acquire ordering.

The bad news is that no compiler actually implements consume
ordering.

As it turns out, not only is this concept of a “dependent” evaluation
hard to define,
it’s even harder to keep such dependencies intact
while transforming and optimizing a program.
For example, a compil-
er might be able to optimize x + 2 - x to just 2 , effectively drop-
ping the dependency on x .
More subtle variations of this issue can
happen with more realistic expressions like array[x] ,
if the compil-
er is able to make any logical deductions about the possible values of
x or the array’s elements.
The issue gets even more complicated
when taking control flow into account, like if statements or function
calls.

Because of this, compilers upgrade consume ordering to acquire or-
dering, just to be safe.
The C++20 standard even explicitly discour-
ages the use of consume ordering,
noting that an implementation oth-
er than just acquire ordering turned out to be infeasible.

It’s possible that a workable definition and implementation of con-
sume ordering might be found in the future.
Until that time arrives,

however, Rust does not expose Ordering::Consume .

Sequentially Consistent Ordering

The strongest memory ordering is sequentially consistent ordering:

Ordering::SeqCst .
It includes all the guarantees of acquire or-
dering (for loads) and release ordering (for stores),
and also guaran-
tees a globally consistent order of operations.

This means that every single operation using SeqCst ordering with-
in a program
is part of a single total order that all threads agree on.

This total order is consistent with the total modification order of each
individual variable.

Since it is strictly stronger than acquire and release memory ordering,

a sequentially consistent load or store can take the place of an ac-
quire-load or release-store in a
release-acquire pair to form a hap-
pens-before relationship.
In other words, an acquire-load can not only
form a happens-before relationship with a release-store,
but also with
a sequentially consistent store, and similarly the other way around.

NOTE

Only when both sides of a happens-before relationship use SeqCst ordering
is it
guaranteed to be consistent with the single total order of SeqCst operations.

While it might seem like the easiest memory ordering to reason
about, SeqCst ordering is almost never necessary in practice.
In
nearly all cases, regular acquire and release ordering suffice.

Here’s an example that depends on sequentially consistent ordered
operations:

use std::sync::atomic::Ordering::SeqCst;

static A: AtomicBool = AtomicBool::new(false);

static B: AtomicBool = AtomicBool::new(false);

static mut S: String = String::new();

fn main() {

 let a = thread::spawn(|| {

 A.store(true, SeqCst);

 if !B.load(SeqCst) {

 unsafe { S.push('!') };

 }

 });

 let b = thread::spawn(|| {

 B.store(true, SeqCst);

 if !A.load(SeqCst) {

 unsafe { S.push('!') };

 }

 });

 a.join().unwrap();

 b.join().unwrap();

}

Both threads first set their own atomic boolean to true to warn the
other
thread that they are about to access S , and then check the oth-
er’s atomic boolean
to see if they can safely access S without caus-
ing a data race.

If both store operations happen before either of the load operations,

it’s possible that neither thread ends up accessing S .
However, it’s
impossible for both threads to access S and cause undefined behav-
ior,
since the sequentially consistent ordering guarantees only one of
them can win the race.
In every possible single total order, the first
operation will be a store operation,
which prevents the other thread
from accessing S .

Virtually all real-world uses of SeqCst involve a similar pattern of a
store
that must be globally visible before a subsequent load on the
same thread.
For these situations, a potentially more efficient alterna-
tive is to instead
use relaxed operations in combination with a
SeqCst fence, which we’ll explore next.

Fences

In addition to operations on atomic variables, there is one more thing
that we can apply a memory ordering to: atomic fences.

The std::sync::atomic::fence function represents an atomic
fence and is either a release fence (Release),
an acquire fence
(Acquire), or both (AcqRel or SeqCst).
A SeqCst fence addi-
tionally also takes part in the sequentially consistent total order.

An atomic fence allows you to separate the memory ordering from
the atomic operation.
This can be useful if you want to apply a memo-
ry ordering to multiple operations,
or if you only want to apply it
conditionally.

In essence, a release-store can be split into a release fence followed
by a (relaxed) store,
and an acquire-load can be split into a (relaxed)

load followed by an acquire fence:

The store of a release-acquire
relationship,

 a.store(1, Release);

can be substituted by a release fence
followed by a relaxed store:

 fence(Release);

 a.store(1, Relaxed);

The load of a release-ac
relationship,

 a.load(Acqu

can be substituted by a

load followed by an acqu

 a.load(Rela

 fence(Acqui

Using a separate fence can result in an extra processor instruction,

though,
which can be slightly less efficient.

More importantly, unlike a release-store or an acquire-load, a fence is
not tied to any single atomic variable.
This means that a single fence
can be used for multiple variables at once.

Formally, a release fence can take the place of a release operation in
a happens-before relationship
if that release fence is followed (on the
same thread) by any atomic operation that stores
a value observed
by the acquire operation we’re synchronizing with.
Similarly, an ac-
quire fence can take the place of any acquire operation
if that acquire

fence is preceded (on the same thread) by any atomic operation that
loads
a value stored by the release operation.

Putting this together, it means that a happens-before relationship is
created between a release fence and an acquire fence
if any store
after the release fence is observed by any load before the acquire
fence.

For example, suppose we have one thread executing a release fence
followed by
three atomic store operations to different variables,
and
another thread executing three load operations from those same vari-
ables followed by an acquire fence, as follows:

Thread 1:

fence(Release);

A.store(1, Relaxed);

B.store(2, Relaxed);

C.store(3, Relaxed);

Thread 2:

A.load(Relaxed);

B.load(Relaxed);

C.load(Relaxed);

fence(Acquire);

In this situation, if any of the load operations on thread 2 loads the
value from the corresponding store operation of thread 1,
the release
fence on thread 1 happens-before the acquire fence on thread 2.

A fence does not have to directly precede or follow the atomic opera-
tions.
Anything else can happen in between, including control flow.

This can be used to make the fence conditional, similar to how com-
pare-and-swap operations have both a success and a failure
ordering.

For example, if we load a pointer from an atomic variable using ac-
quire memory ordering,
we could use a fence to apply the acquire or-
dering only when the pointer is not null:

Using an acquire-load:

let p = PTR.load(Acquire);

if p.is_null() {

 println!("no data");

} else {

 println!("data = {}", unsafe { *p });

}

U

This can be beneficial if the pointer is often expected to be null, to
avoid
acquire memory ordering when not necessary.

Let’s take a look at a more complicated use case of release and ac-
quire fences:

use std::sync::atomic::fence;

static mut DATA: [u64; 10] = [0; 10];

const ATOMIC_FALSE: AtomicBool = AtomicBool::new(

static READY: [AtomicBool; 10] = [ATOMIC_FALSE; 1

fn main() {

 for i in 0..10 {

 thread::spawn(move || {

 let data = some_calculation(i);

 unsafe { DATA[i] = data };

 READY[i].store(true, Release);

 });

 }

 thread::sleep(Duration::from_millis(500));

 let ready: [bool; 10] = std::array::from_fn(

 if ready.contains(&true) {

 fence(Acquire);

 for i in 0..10 {

 if ready[i] {

 println!("data{i} = {}", unsafe {

 }

 }

 }

}

TIP

std::array::from_fn is an easy way to execute something a certain number
of times and collect the results into an array.

In this example, 10 threads do some calculations and store their re-
sults in a (non-atomic) shared variable.
Each thread sets an atomic
boolean to indicate that the data is ready to be read by the main
thread,
using a normal release-store.
The main thread waits for half a
second,
checks all 10 booleans to see which threads are done,
and
prints whichever results are ready.

Instead of using 10 acquire-load operations to read the booleans, the
main
thread uses relaxed operations and a single acquire fence.
It
executes the fence before reading the data, but only if there is data to
be read.

While in this particular example it might be completely unnecessary
to put any effort into such optimization,
this pattern for saving the
overhead of additional acquire operations can be important
when
building highly efficient concurrent data structures.

A SeqCst fence is both a release fence and an acquire fence (just
like AcqRel),
but also part of the single total order of sequentially
consistent operations.
However, only the fence is part of the total or-
der, but not necessarily the atomic operations before or after it.
This
means that unlike a release or acquire operation,
a sequentially con-
sistent operation cannot be split into a relaxed operation and a mem-
ory fence.

COMPILER FENCES

In addition to a regular atomic fence, the Rust standard library also
provides a compiler fence:

std::sync::atomic::compiler_fence .
Its signature is identi-
cal to that of the regular fence() we discussed above,
but its ef-
fects are restricted to just the compiler.
Unlike a regular atomic fence,

it does not prevent the processor from, for example, reordering in-
structions.
In the vast majority of use cases for fences, a compiler
fence does not suffice.

A potential use case might arise when implementing a Unix signal
handler, or an interrupt on embedded systems.
These are mecha-
nisms that can suddenly interrupt a thread to temporarily execute an
unrelated function
on the same processor core.
Because it happens
on the same processor core, the usual ways in which the processor
might
affect memory ordering don’t apply. (More on that in Chapter 7.)

In this case, a compiler fence might suffice, potentially saving an in-
struction and hopefully increasing performance.

Another use case involves process-wide memory barriers.
This tech-
nique falls outside the scope of Rust’s memory model
and is only
supported on some operating systems:
on Linux through the
membarrier syscall, and on Windows using the
FlushProcessWriteBuffers function.
It effectively allows a
thread to forcefully inject a (sequentially consistent)
atomic fence into
all concurrently running threads.
This allows us to replace two match-
ing fences
with a lightweight compiler fence on one side
and a heavy-
weight process-wide barrier on the other side.
If the code on the side
of the lightweight fence is executed much more often, this can im-
prove overall performance.
(See the documentation of the
membarrier crate on crates.io for more details and a cross-plat-
form way to use such barriers in Rust.)

A compiler fence can also be an interesting tool for exploring the ef-
fect of the processor on memory ordering.
In “An Experiment”, we’ll
break our code on purpose by replacing a regular fence with a com-
piler fence.
This will let us experience the subtle but potentially disas-
trous effects of the
processor when using the wrong memory order-
ing.

Common Misconceptions

There are a lot of misconceptions around memory ordering.
Before
we end this chapter, let’s go over the most common ones.

Myth: I need strong memory ordering to make sure changes are
“immediately” visible.

A common misunderstanding is that using a weak memory ordering
like Relaxed means that changes to an atomic variable
might never
arrive at another thread, or only after a significant delay.
The name
“relaxed” might make it sound like nothing happens until something
forces some part of the hardware to wake up and do what it should’ve
done instead of relaxing.

The truth is that the memory model doesn’t say anything about timing
at all.
It only defines in which order certain things happen; not how
long you might have to wait for them.
A hypothetical computer in
which it takes years to get data from one thread to another
is quite
unusable, but can perfectly satisfy the memory model.

In real life, memory ordering is about things like reordering instruc-
tions, which usually happen at nanosecond scale.
Stronger memory
ordering does not make your data travel faster;
it might even slow
your program down.

Myth: Disabling optimization means I don’t need to care about
memory ordering.

Both the compiler and the processor play a role in making things hap-
pen in a different order than we might expect.
Disabling compiler opti-
mization does not disable every possible transformation in the com-
piler,
and does not disable the processor features that result in in-
struction reordering and similar potentially problematic behavior.

Myth: Using a processor that doesn’t reorder instructions
means I don’t need to care about memory ordering.

Some simple processors, such as those in small microcontrollers,

have only one
core and only ever execute one instruction at a time,

all in order.
However, while it’s true that on such devices there’s a sig-
nificantly lower chance of an
incorrect memory ordering resulting in
actual issues,
it’s still possible for the compiler to make invalid as-
sumptions based on incorrect memory ordering,
breaking your code.

Besides that, it’s also important to realize that even when a processor
does not execute instructions out of order,
it might still have other fea-
tures that can be relevant for memory ordering.

Myth: Relaxed operations are free.

Whether this is true depends on your definition of “free.”
It’s true that
Relaxed is the most efficient memory ordering
and that it can be

significantly faster than the others.
It’s even true that on all modern
platforms, relaxed load and store operations
compile down to the
same processor instructions as non-atomic reads and writes.

If an atomic variable is only used by a single thread,
any difference in
speed with a non-atomic variable will most likely be because of
the
compiler having more freedom and being more effective at optimizing
non-atomic operations.
(Compilers tend to avoid most types of opti-
mizations for atomic variables.)

However, accessing the same memory from multiple threads is usu-
ally
significantly slower than accessing it from a single thread.
A
thread that continuously writes to an atomic variable will likely
experi-
ence a noticeable slowdown when other threads start repeatedly
reading the variable,
since the processor cores and their caches now
have to start collaborating.

We’ll explore this effect in Chapter 7.

Myth: Sequentially consistent memory ordering is a great de-
fault and is always correct.

Putting aside performance concerns, sequentially consistent memory
ordering is
often seen as the perfect type of memory ordering to de-
fault to, because of its strong guarantees.
It’s true that if any other
memory ordering is correct, SeqCst is also correct.
This might

make it sound like SeqCst is always correct.
However, it’s entirely
possible that a concurrent algorithm is simply incorrect, regardless of
memory ordering.

More importantly, when reading code, SeqCst basically tells the
reader: “this
operation depends on the total order of every single
SeqCst operation in the program,” which is an incredibly far-reach-
ing claim.
The same code would likely be easier to review and verify if
it used weaker memory ordering instead, if possible.
For example,

Release effectively tells the reader: “this relates to an acquire oper-
ation on the same variable,” which involves far fewer considerations
when forming an understanding of the code.

It is advisable to see SeqCst as a warning sign.
Seeing it in the wild
often means that either something complicated is going on,
or simply
that the author did not take the time to analyze their memory ordering
related assumptions,
both of which are reasons for extra scrutiny.

Myth: Sequentially consistent memory ordering can be used for
a “release-load” or an “acquire-store.”

While SeqCst can stand in for Acquire or Release ,
it is not a
way to somehow create an acquire-store or release-load. Those re-
main nonexistent.
Release only applies to store operations, and ac-
quire only to load operations.

For example, a Release -store does not form any release-acquire
relationship with a SeqCst -store.
If you need them to be part of a
globally consistent order, both operations will have to use SeqCst .

Summary

There might not be a global consistent order of all atomic opera-
tions,
as things can appear to happen in a different order from
different threads.

However, each individual atomic variable has its own total modifi-
cation order,
regardless of memory ordering, which all threads
agree on.

The order of operations is formally defined through happens-be-
fore relationships.

Within a single thread, there is a happens-before relationship be-
tween every single operation.

Spawning a thread happens-before everything the spawned
thread does.

Everything a thread does happens-before joining that thread.

Unlocking a mutex happens-before locking that mutex again.

Acquire-loading the value from a release-store establishes a
happens-before relationship.
This value may be modified by any
number of fetch-and-modify and compare-and-exchange
operations.

A consume-load would be a lightweight version of an acquire-
load, if it existed.

Sequentially consistent ordering results in a globally consistent
order of operations,
but is almost never necessary and can make
code review more complicated.

Fences allow you to combine the memory ordering of multiple
operations
or apply a memory ordering conditionally.

Chapter 4. Building Our Own Spin
Lock

Locking a regular mutex (see “Locking: Mutexes and RwLocks”)
will
put your thread to sleep when the mutex is already locked.
This
avoids wasting resources while waiting for the lock to be released.
If
a lock is only ever held for very brief moments and the threads lock-
ing it can run in parallel on different processor cores,
it might be bet-
ter for the threads to repeatedly try to lock it without actually going to
sleep.

A spin lock is a mutex that does exactly that.
Attempting to lock an al-
ready locked mutex will result in busy-looping or spinning:
repeatedly
trying over and over again until it finally succeeds.
This can waste
processor cycles, but can sometimes result in lower latency when
locking.

NOTE

Many real-world implementations of mutexes, including std::sync::Mutex
on
some platforms, briefly behave like a spin lock before asking the operating system
to put a thread to sleep.
This is an attempt to combine the best of both worlds,
al-
though it depends entirely on the specific use case whether this behavior is benefi-

cial or not.

In this chapter, we’ll build our own SpinLock type,
applying what
we’ve learned in Chapters 2 and 3,
and see how we can use Rust’s
type system to provide a safe and useful interface to the user of our
SpinLock .

A Minimal Implementation

Let’s implement such a spin lock from scratch.

The most minimal version is pretty simple, as follows:

pub struct SpinLock {

 locked: AtomicBool,

}

All we need is a single boolean that indicates whether it is locked or
not.
We use an atomic boolean, since we want more than one thread
to be able to interact with it simultaneously.

Then all we need is a constructor function, and the lock and
unlock methods:

impl SpinLock {

 pub const fn new() -> Self {

 Self { locked: AtomicBool::new(false) }

 }

}

 pub fn lock(&self) {

 while self.locked.swap(true, Acquire) {

 std::hint::spin_loop();

 }

 }

 pub fn unlock(&self) {

 self.locked.store(false, Release);

 }

}

The locked boolean starts at false ,
the lock swaps that for
true and keeps trying if it was already true ,
and the unlock

method just sets it back to false .

NOTE

Instead of using a swap operation, we could also have used a compare-and-ex-
change operation to atomically
check if the boolean is false and set it to true if
that’s the case:

 while self.locked.compare_exchange_weak(

 false, true, Acquire, Relaxed).is_err()

It’s a bit more verbose, but depending on your tastes this might be easier to follow,

as it more clearly captures the concept of an operation that can fail or succeed.
It

might also result in slightly different instructions, however, as we’ll see in Chapter 7.

Within the while loop, we use a spin loop hint, which tells
the pro-
cessor that we’re spinning while waiting for something to change.
On
most major platforms, this hint results in a special instruction that
causes the processor core
to optimize its behavior for such a situa-
tion.
For example, it might temporarily slow down or prioritize other
useful things it can do.
Unlike blocking operations such as
thread::sleep or thread::park , however,
a spin loop hint
does not cause the operating system to be called
to put your thread
to sleep in favor of another thread.

TIP

In general, it’s good idea to include such a hint in a spin loop.
Depending on the sit-
uation, it might even be good to execute this hint several times
before attempting to
access the atomic variable again.
If you care about the last few nanoseconds of
performance and want to find the optimal strategy,
you’ll have to benchmark your

specific use case.
Unfortunately, the conclusions of such benchmarks can be highly
dependent on the
hardware, as we’ll see in Chapter 7.

We use acquire and release memory ordering to make sure that
every unlock() call
establishes a happens-before relationship with
the lock() calls that follow.
In other words, to make sure that after
locking it, we can safely assume that
whatever happened during the
last time it was locked has already happened.
This is the most classic
use case of acquire and release ordering: acquiring and releasing a
lock.

Figure 4-1 visualizes a situation where our SpinLock is used
to pro-
tect access to some shared data, with two threads concurrently at-
tempting to acquire the lock.
Note how the unlock operation on the
first thread forms a happens-before relationship with the
lock opera-
tion on the second thread, which makes sure the threads cannot ac-
cess the data concurrently.

Figure 4-1. The happens-before relationships between two threads using our SpinLock to
protect access to some shared data

An Unsafe Spin Lock

Our SpinLock type above has a fully safe interface since, by itself,
it doesn’t cause any undefined behavior when misused.
In most use
cases, however, it will be used to protect mutations to a shared vari-
able,
which means the user will still have to use unsafe, unchecked
code.

https://marabos.nl/atomics/alt/4-1.html

To provide an easier interface, we can change the lock method to
give us an exclusive reference (&mut T)
to the data protected by
the lock, since in most use cases, it’s the lock operation that guaran-
tees that it’s safe to assume exclusive access.

To be able to do that, we have to change the type to be generic over
the
type of data it protects and add a field to hold that data.
Since this
data can be mutated (or accessed exclusively) even though the spin
lock itself is shared,
we need to use interior mutability (see “Interior
Mutability”), for which we’ll use an UnsafeCell :

use std::cell::UnsafeCell;

pub struct SpinLock<T> {

 locked: AtomicBool,

 value: UnsafeCell<T>,

}

As a precaution, UnsafeCell does not implement Sync , which
means that our
type is now no longer shareable between threads,

making it rather useless.
To fix that, we need to promise to the com-
piler that it is actually safe for our type
to be shared between threads.

However, since the lock can be used to send values of type T from
one thread to another,
we must limit this promise to types that are

safe to send between threads.
So, we (unsafely) implement Sync
for SpinLock<T> for all T that implement Send , like this:

unsafe impl<T> Sync for SpinLock<T> where T: Send

Note that we don’t need to require that T is Sync , because our
SpinLock<T> will only
allow one thread at a time to access the T

it protects.
Only if we were to give multiple threads access at once,

like a reader-writer lock does for readers,
would we (additionally)

need to require T: Sync .

Next, our new function now needs to take a value of type T to ini-
tialize that UnsafeCell with:

impl<T> SpinLock<T> {

 pub const fn new(value: T) -> Self {

 Self {

 locked: AtomicBool::new(false),

 value: UnsafeCell::new(value),

 }

 }

 …

}

And then we get to the interesting part: lock and unlock .
The
reason we are doing all this, is to be able to return a &mut T from
lock() ,
such that the user isn’t required to write unsafe, unchecked
code when using
our lock to protect their data.
This means that we
now have to use unsafe code on our side, within the implementation
of lock .
An UnsafeCell can give us a raw pointer to its contents
(*mut T) through its get() method,
which we can convert to a
reference within an unsafe block, as follows:

 pub fn lock(&self) -> &mut T {

 while self.locked.swap(true, Acquire) {

 std::hint::spin_loop();

 }

 unsafe { &mut *self.value.get() }

 }

Since the function signature of lock contains a reference both in its
input and output,
the lifetimes of the &self and &mut T have
been elided and assumed to be identical.
(See “Lifetime Elision” in
“Chapter 10: Generic Types, Traits, and Lifetimes” of the Rust Book.)

We can make the lifetimes explicit by writing them out manually, like
this:

 pub fn lock<'a>(&'a self) -> &'a mut T { … }

This clearly shows that the lifetime of the returned reference is the
same as that of &self .
This means that we have claimed that the
returned reference is valid as long as the lock itself exists.

If we pretend unlock() doesn’t exist, this would be a perfectly safe
and sound interface.
A SpinLock can be locked, resulting in a
&mut T , and can then never be locked again,
which guarantees this
exclusive reference is indeed exclusive.

If we try to add the unlock() method back, however, we would
need a way to limit the lifetime of the returned
reference until the next
call to unlock() .
If the compiler understood English, perhaps this
would work:

 pub fn lock<'a>(&self) -> &'a mut T

 where

 'a ends at the next call to unlock() on s

 even if that's done by another thread.

 Oh, and it also ends when self is dropped

 (Thanks!)

 { … }

Unfortunately, that’s not valid Rust.
Instead of trying to explain this
limitation to the compiler,
we’ll have to explain it to the user.
To shift
the responsibility to the user,
we mark the unlock function as

unsafe ,
and leave a note for them explaining what they need to do
to keep things sound:

 /// Safety: The &mut T from lock() must be go

 /// (And no cheating by keeping reference to

 pub unsafe fn unlock(&self) {

 self.locked.store(false, Release);

 }

A Safe Interface Using a Lock Guard

To be able to provide a fully safe interface,
we need to tie the unlock-
ing operation to the end of the &mut T .
We can do that by wrapping
this reference in our own type that behaves like a reference,
but also
implements the Drop trait to do something when it is dropped.

Such a type is often called a guard, as it effectively guards the state
of the lock,
and stays responsible for that state until it is dropped.

Our Guard type will simply contain a reference to the SpinLock ,

so that it can
both access its UnsafeCell and reset the
AtomicBool later:

pub struct Guard<T> {

 lock: &SpinLock<T>,

}

If we try to compile this, however, the compiler tells us:

error[E0106]: missing lifetime specifier

 --> src/lib.rs

 |

 | lock: &SpinLock<T>,

 | ^ expected named lifetime par

 |

help: consider introducing a named lifetime param

 |

 ~ pub struct Guard<'a, T> {

 | ^^^

 ~ lock: &'a SpinLock<T>,

 | ^^

 |

Apparently, this is not a place where lifetimes can be elided.
We have
to make explicit that the reference has a limited lifetime,
exactly as
the compiler suggests:

pub struct Guard<'a, T> {

 lock: &'a SpinLock<T>,

}

This guarantees the Guard cannot outlive the SpinLock .

Next, we change the lock method on our SpinLock to return a
Guard :

 pub fn lock(&self) -> Guard<T> {

 while self.locked.swap(true, Acquire) {

 std::hint::spin_loop();

 }

 Guard { lock: self }

 }

Our Guard type has no constructor and its field is private,
so this is
the only way the user can obtain a Guard .
Therefore, we can safely
assume that the existence of a Guard means that
the SpinLock

has been locked.

To make Guard<T> behave like an (exclusive) reference,
transpar-
ently giving access to the T ,
we have to implement the special
Deref and DerefMut traits as follows:

td {D f D fM t}

use std::ops::{Deref, DerefMut};

impl<T> Deref for Guard<'_, T> {

 type Target = T;

 fn deref(&self) -> &T {

 // Safety: The very existence of this Gua

 // guarantees we've exclusively locked th

 unsafe { &*self.lock.value.get() }

 }

}

impl<T> DerefMut for Guard<'_, T> {

 fn deref_mut(&mut self) -> &mut T {

 // Safety: The very existence of this Gua

 // guarantees we've exclusively locked th

 unsafe { &mut *self.lock.value.get() }

 }

}

As the final step, we implement Drop for Guard ,
allowing us to
completely remove the unsafe unlock method:

impl<T> Drop for Guard<'_, T> {

 fn drop(&mut self) {

 self.lock.locked.store(false, Release);

 }

}

And just like that, through the magic of Drop and Rust’s type sys-
tem,
we gave our SpinLock type a fully safe (and useful) interface.

Let’s try it out:

fn main() {

 let x = SpinLock::new(Vec::new());

 thread::scope(|s| {

 s.spawn(|| x.lock().push(1));

 s.spawn(|| {

 let mut g = x.lock();

 g.push(2);

 g.push(2);

 });

 });

 let g = x.lock();

 assert!(g.as_slice() == [1, 2, 2] || g.as_sli

}

The program above demonstrates how easy our SpinLock is to
use.
Thanks to Deref and DerefMut , we can directly call the
Vec::push method on the guard.
And thanks to Drop , we don’t
need to worry about unlocking.

Explicitly unlocking is also possible, by calling drop(g) to drop the
guard.
If you try to unlock too early, you’ll see the guard doing its job
through a compiler error.
For example, if you insert drop(g); be-
tween the two push(2) lines,
the second push will not compile,

since you’ve already dropped g at that point:

error[E0382]: borrow of moved value: `g`

 --> src/lib.rs

 |

 | drop(g);

 | - value moved here

 | g.push(2);

 | ^^^^^^^^^ value borrowed here after mov

Thanks to Rust’s type system, we can rest assured that mistakes like
this
are caught before we can even run our program.

Summary

A spin lock is a mutex that busy-loops, or spins, while waiting.

Spinning can reduce latency, but can also be a waste of clockcy-
cles and reduce performance.

A spin loop hint, std::hint::spin_loop() , can be used to
inform the processor of a spin loop,
which might increase its

efficiency.

A SpinLock<T> can be implement with just an AtomicBool

and an UnsafeCell<T> ,
the latter of which is necessary for
interior mutability (see “Interior Mutability”).
A happens-before relationship between unlock and lock opera-
tions
is necessary to prevent a data race, which would result in
undefined behavior.
Acquire and release memory ordering are a perfect fit for this use
case.

When making unchecked assumptions necessary to avoid unde-
fined behavior,
the responsibility can be shifted to the caller by
making the function unsafe .

The Deref and DerefMut traits can be used to make a type
behave like a reference,
transparently providing access to anoth-
er object.
The Drop trait can be used to do something when an object is
dropped,
such as when it goes out of scope, or when it is passed
to drop() .

A lock guard is a useful design pattern of a special type that’s
used to represent
(safe) access to a locked lock.
Such a type
usually behaves similarly to a reference, thanks to the Deref

traits,
and implements automatic unlocking through the Drop

trait.

Chapter 5. Building Our Own
Channels

Channels can be used to send data between threads,
and they come
in many variants.
Some channels can only be used between exactly
one sender and one receiver,
while others can send from any number
of threads,
or even allow multiple receivers.
Some channels are
blocking, meaning that receiving (and sometimes sending) is a block-
ing operation,
making your thread sleep until the operation can be
completed.
Some channels are optimized for throughput, while others
are optimized for low latency.

The variations are endless, and there is no one-size-fits-all version
that fits all use cases.

In this chapter, we’ll implement a few relatively simple channels
to not
only explore some more applications of atomics,
but also to learn
more about how our requirements and assumptions can be captured
in Rust’s type system.

A Simple Mutex-Based Channel

A basic channel implementation does not require any knowledge of
atomics.
We can take a VecDeque , which is basically a Vec that

allows for efficient adding and removing of elements on both ends,

and protect it with a Mutex to allow multiple threads to access it.
We
then use the VecDeque as a queue of data, often called messages,

that’s been sent but not yet received.
Any thread that wants to send a
message can simply add it to the back of the queue,
and any thread
that wants to receive a message just has to remove one from the
front of the queue.

There’s just one more thing to add, which is used to make the receive
operation blocking:
a Condvar (see “Condition Variables”) to notify
waiting receivers of a new messsage.

An implementation of this can be quite short and relatively straightfor-
ward, as shown below:

pub struct Channel<T> {

 queue: Mutex<VecDeque<T>>,

 item_ready: Condvar,

}

impl<T> Channel<T> {

 pub fn new() -> Self {

 Self {

 queue: Mutex::new(VecDeque::new()),

 item_ready: Condvar::new(),

 }

 }

 pub fn send(&self, message: T) {

 self.queue.lock().unwrap().push_back(mess

 self.item_ready.notify_one();

 }

 pub fn receive(&self) -> T {

 let mut b = self.queue.lock().unwrap();

 loop {

 if let Some(message) = b.pop_front()

 return message;

 }

 b = self.item_ready.wait(b).unwrap();

 }

 }

}

Note how we didn’t have to use any atomics or unsafe code and
didn’t have to think about the Send or Sync traits.
The compiler un-
derstands the interface of Mutex and what guarantees that type
provides,
and will implicitly understand that if both Mutex<T> and
Condvar can safely be shared between threads,
so can our
Channel<T> .

Our send function locks the mutex to push the new message to the
back of the queue,
and directly notifies one potentially waiting receiv-
er after unlocking the queue, by using the condition variable.

The receive function also locks the mutex to pop the next mes-
sage from the front of the queue,
but will use the condition variable to
wait if there’s no message available yet.

TIP

Remember that the Condvar::wait method will unlock the Mutex while wait-
ing and relock it before returning.
So, our receive function will not keep the mu-
tex locked while waiting.

While this channel is very flexible in usage, as it allows any number of
sending and receiving threads,
its implementation can be far from op-
timal in many situations.
Even if there are plenty of messages ready
to be received, any send or receive operation will briefly block
any
other send or receive operation, since they all have to lock the same
mutex.
If VecDeque::push has to grow the capacity of the
VecDeque ,
all sending and receiving threads will have to wait for
that one thread to finish the reallocation,
which might be unaccept-
able in some situations.

Another property which might be undesirable is that this channel’s
queue might grow without bounds.
Nothing is stopping senders from
continuously sending new messages at a higher rate
than receivers
are processing them.

An Unsafe One-Shot Channel

The variety of use cases for channels is virtually endless.
However, in
the rest of this chapter,
we’ll focus on a specific type of use case:

sending exactly one message from one thread to another.
A channel
designed for such a use case is often called a one-shot channel.

We could take our Mutex<VecDeque> based implementation from
above and substitute the VecDeque for an Option ,
effectively re-
ducing the capacity of the queue to exactly one message.
It would
avoid allocation, but would still have some of the same downsides of
using a Mutex .
We can avoid this by building our own one-shot
channel from scratch using atomics.

First, let’s build a minimal implementation of a one-shot channel with-
out putting much
thought into its interface.
Later in this chapter, we’ll
explore ways to improve its interface,
and how to team up with Rust’s
type system to provide users of our channel a pleasant experience.

The tools we need to start with are basically the same as we used for
our SpinLock<T> (from Chapter 4):
an UnsafeCell for storage
and an AtomicBool to indicate its state.
In this case, we use the
atomic boolean to indicate whether the message is ready for
consumption.

Before a message is sent, the channel is “empty” and does not con-
tain any message of type T yet.
We could use an Option<T> in-
side the cell to allow for the absence of a T .
However, that could
waste valuable space in memory,
since our atomic boolean already
tells us whether there is a message or not.
Instead, we can use a
std::mem::MaybeUninit<T> , which is essentially the bare
bones unsafe version of Option<T> :
it requires its user to manually
keep track of whether it has been initialized or not,
and almost its en-
tire interface is unsafe, as it can’t perform its own checks.

Putting that all together, we start our first attempt with this struct
definition:

use std::mem::MaybeUninit;

pub struct Channel<T> {

 message: UnsafeCell<MaybeUninit<T>>,

 ready: AtomicBool,

}

Just like for our SpinLock<T> ,
we need to tell the compiler that our
channel is safe to share between threads,
or at least as long as T is
Send :

unsafe impl<T> Sync for Channel<T> where T: Send

A new channel is empty, with ready set to false , and message

left uninitialized:

impl<T> Channel<T> {

 pub const fn new() -> Self {

 Self {

 message: UnsafeCell::new(MaybeUninit:

 ready: AtomicBool::new(false),

 }

 }

 …

}

To send a message, it first needs to be stored in the cell,
after which
we can release it to the receiver by setting the ready flag to true .

Attempting to do this more than once would be dangerous,
since after
setting the ready flag, the receiver might read the message at any

point,
which could race with a second attempt to send a message.

For now, we make this the responsibility of the user by making the
method unsafe and
leaving a note for them:

 /// Safety: Only call this once!

 pub unsafe fn send(&self, message: T) {

 (*self.message.get()).write(message);

 self.ready.store(true, Release);

 }

In the snippet above, we use the UnsafeCell::get method to ob-
tain a pointer to the MaybeUninit<T> ,
and unsafely dereference
that to call MaybeUninit::write to initialize it.
This could result in
undefined behavior when misused, but we’ve punted that responsibil-
ity over to the caller.

For the memory ordering, we need to use release ordering, since the
atomic store effectively releases
the message to the receiver.
This
makes sure the initialization of the message will be finished from the
perspective of the receiving thread if it loads true from
self.ready with acquire ordering.

For receiving, we’ll not bother with providing a blocking interface for
now.
Instead, we’ll provide two methods: one to check whether a
message is available, and another to receive it.
We’ll leave it to the

user of our channel to use something like thread parking (“Thread
Parking”)
if they want to block.

These are the last two methods to complete this version of our
channel:

 pub fn is_ready(&self) -> bool {

 self.ready.load(Acquire)

 }

 /// Safety: Only call this once,

 /// and only after is_ready() returns true!

 pub unsafe fn receive(&self) -> T {

 (*self.message.get()).assume_init_read()

 }

While the is_ready method can always be called safely,
the
receive method uses MaybeUninit::assume_init_read() ,

which unsafely assumes it has already been initialized
and that it isn’t
being used to produce multiple copies of non- Copy objects.
Just like
for send , we simply make that our user’s problem by making the
function itself unsafe .

The result is a technically usable channel, but one that is unwieldy
and generally disappointing.
If held right, it does exactly what it is

supposed to do, but there are many subtle ways to misuse it.

Calling send more than once might result in a data race, since the
second sender will be overwriting
the data while the receiver might be
trying to read the first message.
Even if receiving was properly syn-
chronized,
calling send from multiple threads might result in two
threads attempting to concurrently write
to the cell, again resulting in
a data race.
Also, calling receive more than once results in two
copies of the message,
even if T does not implement Copy and
thus cannot safely be copied.

A more subtle issue is the lack of a Drop implementation for our
channel.
The MaybeUninit type does not track whether it has
been initialized or not,
and will therefore not automatically drop its
contents when dropped.
This means that if a message is sent but
never received, the message will never be dropped.
This is not un-
sound, but it’s still something to avoid.
While leaking is universally
considered safe in Rust, it’s generally only acceptable as a conse-
quence of another leak.
For example, leaking a Vec also leaks its
contents, but regular usage of a Vec does not result in any leaks.

Since we made the user responsible for everything, it’s only a matter
of time
before this results in an unfortunate accident.

Safety Through Runtime Checks

To allow for a safer interface,
we can add some checks to make mis-
use result in a panic with a clear message,
which is much preferable
to undefined behavior.

Let’s start with the issue of calling receive before a message is
ready.
This one is simple to handle, as all we have to do is make the
receive method
validate the ready flag before attempting to
read a message:

 /// Panics if no message is available yet.

 ///

 /// Tip: Use `is_ready` to check first.

 ///

 /// Safety: Only call this once!

 pub unsafe fn receive(&self) -> T {

 if !self.ready.load(Acquire) {

 panic!("no message available!");

 }

 (*self.message.get()).assume_init_read()

 }

The function is still unsafe, as the user is still responsible for not call-
ing this function more than once,
but failing to check is_ready()

first no longer results in undefined behavior.

Since we now have an acquire-load of the ready flag inside the
receive method
providing the necessary synchronization, we can
lower
the memory ordering of the load in is_ready to Relaxed ,

since that one is now only used for indicative purposes:

 pub fn is_ready(&self) -> bool {

 self.ready.load(Relaxed)

 }

NOTE

Remember that the total modification order (see “Relaxed Ordering”) on ready

guarantees that after is_ready loads true from it, receive will also see
true .
There is no possibility of is_ready returning true and receive()

still panicking,
regardless of the memory ordering used in is_ready .

The next issue to address is what happens when calling receive

more than once.
We can easily make that result in a panic as well by
setting the ready flag back to false in our receive method,

like this:

 /// Panics if no message is available yet,

 /// or if the message was already consumed.

 ///

 /// Tip: Use `is_ready` to check first.

 pub fn receive(&self) -> T {

p () {

 if !self.ready.swap(false, Acquire) {

 panic!("no message available!");

 }

 // Safety: We've just checked (and reset)

 unsafe { (*self.message.get()).assume_ini

 }

We’ve simply changed the load for a swap to false ,
and sud-
denly the receive method is fully safe to call in any condition.
The
function is no longer marked as unsafe .
Instead of making the user
responsible for everything,
we now take responsibility for the unsafe
code, resulting in less stress for our user.

For send , things are slightly more complicated.
To prevent multiple
send calls from accessing the cell at the same time,
we need to
know whether another send call has already started.
The ready

flag only tells us whether another send call has already finished,
so
that won’t suffice.

Let’s add a second flag, named in_use , to indicate whether the
channel has been taken in use:

pub struct Channel<T> {

 message: UnsafeCell<MaybeUninit<T>>,

 in_use: AtomicBool, // New!

 ready: AtomicBool,

}

impl<T> Channel<T> {

 pub const fn new() -> Self {

 Self {

 message: UnsafeCell::new(MaybeUninit:

 in_use: AtomicBool::new(false), // Ne

 ready: AtomicBool::new(false),

 }

 }

 …

}

Now all we need to do is set in_use to true in the send method
before
accessing the cell and panic if it was already set by another
call:

 /// Panics when trying to send more than one

 pub fn send(&self, message: T) {

 if self.in_use.swap(true, Relaxed) {

 panic!("can't send more than one mess

 }

 unsafe { (*self.message.get()).write(mess

 self.ready.store(true, Release);

 }

We can use relaxed memory ordering for the atomic swap operation,

because the total modification order (see “Relaxed Ordering”) of
in_use guarantees
that there will only be a single swap operation
on in_use that will return false ,
which is the only case in which
send will attempt to access the cell.

We now have a fully safe interface, though there is still one problem
left.
The last remaining issue occurs when sending a message that’s
never received: it will never be dropped.
While this does not result in
undefined behavior and is allowed in safe code,
it’s definitely some-
thing to avoid.

Since we reset the ready flag in the receive method, fixing this
is easy:
the ready flag indicates whether there’s a not-yet-received
message in the cell
that needs to be dropped.

In the Drop implementation of our Channel ,
we don’t need to use
an atomic operation to check the atomic ready flag, because an ob-
ject can only be dropped if it is fully owned by whichever thread is
dropping it,
with no outstanding borrows.
This means we can use the
AtomicBool::get_mut method, which takes an exclusive refer-
ence (&mut self),
proving that atomic access is unnecessary.
The
same holds for UnsafeCell , through UnsafeCell::get_mut .

Using that, here’s the final piece of our fully safe and non-leaking
channel:

impl<T> Drop for Channel<T> {

 fn drop(&mut self) {

 if *self.ready.get_mut() {

 unsafe { self.message.get_mut().assum

 }

 }

}

Let’s try it out!

Since our Channel doesn’t provide a blocking interface (yet),
we’ll
manually use thread parking to wait on a message.
The receiving
thread will park() itself as long as there’s no message ready,
and
the sending thread will unpark() the receiver once it has sent
something.

Here’s a complete test program, sending the string literal "hello
world!"
through our Channel from a second thread back to the
main thread:

fn main() {

 let channel = Channel::new();

 let t = thread::current();

 thread::scope(|s| {

 s.spawn(|| {

 channel.send("hello world!");

 t.unpark();

 });

 while !channel.is_ready() {

 thread::park();

 }

 assert_eq!(channel.receive(), "hello worl

 });

}

This program compiles, runs, and exits cleanly, showing that our
Channel works as it should.

If we duplicate the send line, we can also see one of our safety
checks in action, producing
the following panic message when the
program is run:

thread '<unnamed>' panicked at 'can't send more t

While a panicking program isn’t great, it’s far better for a program to
reliably panic than to get anywhere near the potential horrors of un-
defined
behavior.

USING A SINGLE ATOMIC FOR THE CHANNEL STATE

In case you can’t get enough of implementing channels, here’s a sub-
tle variation that can save one byte of memory.

Instead of using two separate atomic booleans to represent the state
of the channel,
we instead use a single AtomicU8 to represent all
four states.
Rather than atomically swapping booleans,
we’ll have to
use compare_exchange to atomically check if the channel
is in the
expected state and change it to another state.

const EMPTY: u8 = 0;

const WRITING: u8 = 1;

const READY: u8 = 2;

const READING: u8 = 3;

pub struct Channel<T> {

 message: UnsafeCell<MaybeUninit<T>>,

 state: AtomicU8,

}

unsafe impl<T: Send> Sync for Channel<T> {}

impl<T> Channel<T> {

 pub const fn new() -> Self {

 Self {

 message: UnsafeCell::new(MaybeUninit:

 state: AtomicU8::new(EMPTY),

 }

 }

 pub fn send(&self, message: T) {

 if self.state.compare_exchange(

 EMPTY, WRITING, Relaxed, Relaxed

).is_err() {

 panic!("can't send more than one mess

 }

 unsafe { (*self.message.get()).write(mess

 self.state.store(READY, Release);

 }

 pub fn is_ready(&self) -> bool {

 self.state.load(Relaxed) == READY

 }

 pub fn receive(&self) -> T {

 if self.state.compare_exchange(

 READY, READING, Acquire, Relaxed

).is_err() {

 panic!("no message available!");

 }

 unsafe { (*self.message.get()).assume_ini

 }

}

impl<T> Drop for Channel<T> {

 fn drop(&mut self) {

 if *self.state.get_mut() == READY {

 unsafe { self.message.get_mut().assum

 }

 }

}

Safety Through Types

While we’ve successfully protected users of our Channel from un-
defined behavior,
they still risk a panic if they accidentally use it incor-
rectly.
Ideally, the compiler would check correct usage and point out
misuse before the program is even run.

Let’s take a look at the issue of calling send or receive more
than once.

To prevent a function from being called more than once,
we can let it
take an argument by value, which—​for non- Copy types—​will con-
sume the object.
After an object is consumed, or moved, it’s gone
from the caller, preventing it from being used another time.

By representing the ability to call send or receive each as a sep-
arate (non- Copy) type,
and consuming that object when performing

the operation, we can make sure each can only happen once.

This brings us to the following interface design, where instead of a
single Channel type,
a channel is represented by a pair of a
Sender and a Receiver ,
which each have a method that takes
self by value:

pub fn channel<T>() -> (Sender<T>, Receiver<T>) {

pub struct Sender<T> { … }

pub struct Receiver<T> { … }

impl<T> Sender<T> {

 pub fn send(self, message: T) { … }

}

impl<T> Receiver<T> {

 pub fn is_ready(&self) -> bool { … }

 pub fn receive(self) -> T { … }

}

The user can create a channel by calling channel() ,
which will
give them one Sender and one Receiver .
They can freely pass
each of these objects around, move them to another thread, and so
on.
However, they cannot end up with multiple copies of either of

them,
guaranteeing that send and receive can each only be
called once.

To implement this, we need to find a place for our UnsafeCell and
AtomicBool .
Previously, we just had a single struct with those
fields, but now we have two separate structs,
each of which could
outlive the other.

Since the sender and receiver will need to share the ownership of
those variables,
we’ll use an Arc (“Reference Counting”) to provide
us with a reference-counted shared allocation,
in which we store the
shared Channel object.
As shown below, the Channel type does
not have to be public,
as its existence is just an implementation detail
irrelevant to the user.

pub struct Sender<T> {

 channel: Arc<Channel<T>>,

}

pub struct Receiver<T> {

 channel: Arc<Channel<T>>,

}

struct Channel<T> { // no longer `pub`

 message: UnsafeCell<MaybeUninit<T>>,

 ready: AtomicBool,

}

unsafe impl<T> Sync for Channel<T> where T: Send

Just like before, we implement Sync for Channel<T> on the con-
dition that T is Send ,
to allow it to be used across threads.

Note how we no longer need the in_use atomic boolean like we did
in our previous channel implementation.
It was only used by send to
check that it hadn’t been called more than once,
which is now stati-
cally guaranteed through the type system.

The channel function to create a channel and sender-receiver pair
looks similar to
the Channel::new function we had previously, ex-
cept it wraps the Channel in an Arc ,
and wraps that Arc and a
clone of it in the Sender and Receiver types:

pub fn channel<T>() -> (Sender<T>, Receiver<T>) {

 let a = Arc::new(Channel {

 message: UnsafeCell::new(MaybeUninit::uni

 ready: AtomicBool::new(false),

 });

 (Sender { channel: a.clone() }, Receiver { ch

}

The send , is_ready , and receive methods are basically iden-
tical to the ones we implemented before,
with a few differences:

They are now moved to their respective type, such that only the
(one single) sender can send,
and only the (one single) receiver
can receive.

send and receive now take self by value rather than by
reference, to make sure they can each only be called once.

send can no longer panic, as its precondition (only being called
once) is now statically guaranteed.

So, they now look like this:

impl<T> Sender<T> {

 /// This never panics. :)

 pub fn send(self, message: T) {

 unsafe { (*self.channel.message.get()).wr

 self.channel.ready.store(true, Release);

 }

}

impl<T> Receiver<T> {

 pub fn is_ready(&self) -> bool {

 self.channel.ready.load(Relaxed)

 }

 pub fn receive(self) -> T {

 if !self.channel.ready.swap(false, Acquir

 panic!("no message available!");

 }

 unsafe { (*self.channel.message.get()).as

 }

}

The receive function can still panic, since the user might still call it
before is_ready() returns true .
It also still uses swap to set
the ready flag back to false (instead of just load),
so that the
Drop implementation of Channel knows whether there’s an un-
read message that needs to be dropped.

That Drop implementation is exactly the same as the one we imple-
mented before:

impl<T> Drop for Channel<T> {

 fn drop(&mut self) {

 if *self.ready.get_mut() {

 unsafe { self.message.get_mut().assum

 }

 }

}

The Drop implementation of Arc<Channel<T>> will decrement
the reference counter of the allocation
when either the Sender<T>

or Receiver<T> is dropped.
When dropping the second one, that
counter reaches zero, and the Channel<T> itself is dropped.
That
will invoke our Drop implementation above, where we get to drop
the message if one was sent but not received.

Let’s try it out:

fn main() {

 thread::scope(|s| {

 let (sender, receiver) = channel();

 let t = thread::current();

 s.spawn(move || {

 sender.send("hello world!");

 t.unpark();

 });

 while !receiver.is_ready() {

 thread::park();

 }

 assert_eq!(receiver.receive(), "hello wor

 });

}

It’s a bit inconvenient that we still have to manually use thread park-
ing to wait on a message,
but we’ll deal with that problem later.

Our goal, for now, was to make at least one form of misuse impossi-
ble at compile time.
Unlike last time, attempting to send twice does
not result in a program that panics,
but instead does not result in a
valid program at all.
If we add another send call to the working pro-
gram above, the compiler now catches the issue and patiently in-
forms us of our mistake:

error[E0382]: use of moved value: `sender`

 --> src/main.rs

 |

 | sender.send("hello world!");

 | --------------------

 | `sender` moved due to th

 |

 | sender.send("second message");

 | ^^^^^^ value used here after mov

 |

note: this function takes ownership of the receiv

 --> src/lib.rs

 |

 | pub fn send(self, message: T) {

 | ^^^^

 = note: move occurs because `sender` has type

 which does not implement the `Copy` tr

Depending on the situation, it can be extremely tricky to design an
in-
terface that catches mistakes at compile time.
If the situation does
lend itself to such an interface, it can result not only in more conve-
nience for the user,
but also in a reduced number of runtime checks
for things that are now statically guaranteed.
We no longer needed
the in_use flag, and removed the swap and check from the send

method, for example.

Unfortunately, new problems may arise that could lead to more run-
time overhead.
In this case, the problem was the split ownership,
for
which we had to reach for an Arc and pay the cost of an allocation.

Having to make trade-offs between safety, convenience, flexibility,

simplicity, and performance is unfortunate, but sometimes unavoid-
able.
Rust generally strives to make it easy to excel at all of these,
but
sometimes makes you trade a bit of one to maximize another.

Borrowing to Avoid Allocation

The Arc -based channel implementation we just designed is very
convenient to use—at the cost of some performance, since it has to
allocate memory.
If we want to optimize for efficiency,
we can trade
some convenience for performance by making the user responsible
for the shared Channel object.
Instead of taking care of the alloca-

tion and ownership of the Channel behind the scenes,
we can force
the user to create a Channel that can be borrowed by the Sender

and Receiver .
That way, they can choose to simply put that
Channel in a local variable, avoiding the overhead of allocating
memory.

We will also have to trade in some simplicity, since we will now have
to deal with borrowing and lifetimes.

So, the three types will now look as follows, with Channel public
again, and Sender and Receiver borrowing it
for a certain
lifetime.

pub struct Channel<T> {

 message: UnsafeCell<MaybeUninit<T>>,

 ready: AtomicBool,

}

unsafe impl<T> Sync for Channel<T> where T: Send

pub struct Sender<'a, T> {

 channel: &'a Channel<T>,

}

pub struct Receiver<'a, T> {

 channel: &'a Channel<T>,

}

Instead of a channel() function to create a (Sender,

Receiver) pair,
we move back to the Channel::new we had
earlier in this chapter,
allowing the user to create such an object as a
local variable.

In addition, we need a way for the user to create a Sender and
Receiver object
that will borrow the Channel .
This will need to
be an exclusive borrow (&mut Channel),
to make sure there can’t
be multiple senders or receivers for the same channel.
By providing
both the Sender and the Receiver at the same time,
we can split
the exclusive borrow into two shared borrows,
such that both the
sender and receiver can reference the channel,
while preventing any-
thing else from touching the channel.

This leads us to the following implementation:

impl<T> Channel<T> {

 pub const fn new() -> Self {

 Self {

 message: UnsafeCell::new(MaybeUninit:

 ready: AtomicBool::new(false),

 }

 }

 pub fn split<'a>(&'a mut self) -> (Sender<'a,

 *self = Self::new();

 (Sender { channel: self }, Receiver { cha

 }

}

The split method, with its somewhat complicated signature, war-
rants a closer look.
It exclusively borrows self through an exclusive
reference,
but it splits that into two shared references, wrapped in the
Sender and Receiver types.
The 'a lifetime makes it clear that
both of those objects borrow something with a limited lifetime;
in this
case, the Channel itself.
Since the Channel is exclusively bor-
rowed, the caller will not be able to borrow or move it
as long as the
Sender or Receiver object exists.

Once those objects both cease to exist, however, the mutable borrow
expires and the compiler
happily lets the Channel object be bor-
rowed again by a second call to split() .
While we can assume
split() cannot be called again while the Sender and
Receiver still exist,
we cannot prevent a second call to split()

after those objects are dropped or forgotten.
We need to make sure
we don’t accidentally create a new Sender or Receiver object
for
a channel that already has its ready flag set, since that would break
the
assumptions that prevent undefined behavior.

By overwriting *self with a new empty channel in split() , we
make sure it’s in the expected state
when creating the Sender and
Receiver states.
This also invokes the Drop implementation on
the old *self , which will take care of dropping
a message that was
previously sent but not received.

NOTE

Since the lifetime in the signature of split comes from self , it can be elided.

The signature of split in the snippet above is identical to this less verbose
version:

pub fn split(&mut self) -> (Sender<T>, Receiver<T>) { … }

While this version doesn’t explicitly show that the returned objects borrow self ,

the compiler still checks correct usage of the lifetime exactly the same as
it does

with the more verbose version.

The remaining methods and Drop implementation are
the same as
in our Arc -based implementation,
except for an additional '_ life-
time argument to the Sender and Receiver types.
(If you forget
those, the compiler will helpfully suggest adding them.)

For completeness, here’s the remaining code:

impl<T> Sender<' , T> {

impl T Sender _, T {

 pub fn send(self, message: T) {

 unsafe { (*self.channel.message.get()).wr

 self.channel.ready.store(true, Release);

 }

}

impl<T> Receiver<'_, T> {

 pub fn is_ready(&self) -> bool {

 self.channel.ready.load(Relaxed)

 }

 pub fn receive(self) -> T {

 if !self.channel.ready.swap(false, Acquir

 panic!("no message available!");

 }

 unsafe { (*self.channel.message.get()).as

 }

}

impl<T> Drop for Channel<T> {

 fn drop(&mut self) {

 if *self.ready.get_mut() {

 unsafe { self.message.get_mut().assum

 }

 }

}

Let’s test it!

fn main() {

 let mut channel = Channel::new();

 thread::scope(|s| {

 let (sender, receiver) = channel.split();

 let t = thread::current();

 s.spawn(move || {

 sender.send("hello world!");

 t.unpark();

 });

 while !receiver.is_ready() {

 thread::park();

 }

 assert_eq!(receiver.receive(), "hello wor

 });

}

The reduction in convenience compared to the Arc -based version is
quite minimal:
we only needed one more line to manually create a
Channel object.
Note, however, how the channel has to be created
before the scope,
to prove to the compiler that its existence will out-
last both the sender and receiver.

To see the compiler’s borrow checker in action, try adding a second
call to channel.split()
in various places.
You’ll see that calling it
a second time within the thread scope results in an error,
while calling
it after the scope is acceptable.
Even calling split() before the
scope is fine,
as long as you stop using the returned Sender and
Receiver before the scope starts.

Blocking

Let’s finally deal with the last remaining major inconvenience of our
Channel ,
the lack of a blocking interface.
We’ve already used
thread parking every time we tested a new variant of our channel.
It
shouldn’t be too hard to integrate that pattern into the channel itself.

To be able to unpark the receiver, the sender needs to know which
thread to unpark.
The std::thread::Thread type represents a
handle to a thread and is exactly what we need for calling
unpark() .
We’ll store the handle to the receiving thread inside the
Sender object, as follows:

use std::thread::Thread;

pub struct Sender<'a, T> {

 channel: &'a Channel<T>,

 receiving_thread: Thread, // New!

}

This handle would refer to the wrong thread, however, if the
Receiver object is sent between threads.
The Sender would be
unaware of that and would still refer to the thread that originally held
the Receiver .

We can handle that problem by making the Receiver a bit more
restrictive,
by not allowing it to be sent between threads anymore.
As
discussed in “Thread Safety: Send and Sync”,
we can use the special
PhantomData marker type to add this restriction to our struct.
A
PhantomData<*const ()> does the job, since a raw pointer,
such as *const () , does not implement Send :

pub struct Receiver<'a, T> {

 channel: &'a Channel<T>,

 _no_send: PhantomData<*const ()>, // New!

}

Next, we’ll have to modify the Channel::split method to fill in the
new fields, like this:

 pub fn split<'a>(&'a mut self) -> (Sender<'a,

 *self = Self::new();

 (

(

 Sender {

 channel: self,

 receiving_thread: thread::current

 },

 Receiver {

 channel: self,

 _no_send: PhantomData, // New!

 }

)

 }

We use the handle to the current thread for the
receiving_thread field,
since the Receiver object we return
will stay on the current thread.

The send method doesn’t change much, as shown below.
We only
have to call unpark() on the receiving_thread to wake up
the receiver in case it is waiting:

impl<T> Sender<'_, T> {

 pub fn send(self, message: T) {

 unsafe { (*self.channel.message.get()).wr

 self.channel.ready.store(true, Release);

 self.receiving_thread.unpark(); // New!

 }

}

The receive function undergoes a slightly larger change.
The new
version won’t panic if there’s no message yet,
but will instead patient-
ly wait for a message using thread::park() and try again,
as
many times as necessary.

impl<T> Receiver<'_, T> {

 pub fn receive(self) -> T {

 while !self.channel.ready.swap(false, Acq

 thread::park();

 }

 unsafe { (*self.channel.message.get()).as

 }

}

NOTE

Remember that thread::park() might return spuriously.
(Or because some-
thing other than our send method called unpark() .)
This means that we cannot
assume that the ready flag has been set when park() returns.
So, we need to
use a loop to check the flag again after getting unparked.

The Channel<T> struct, its Sync implementation, its new func-
tion, and its Drop implementation remain unchanged.

Let’s try it out!

fn main() {

 let mut channel = Channel::new();

 thread::scope(|s| {

 let (sender, receiver) = channel.split();

 s.spawn(move || {

 sender.send("hello world!");

 });

 assert_eq!(receiver.receive(), "hello wor

 });

}

Clearly, this Channel is more convenient to use than the last one,

at least in this simple test program.
We’ve had to pay for this conve-
nience by trading in some flexibility:
only the thread that calls
split() may call receive() .
If you swap the send and
receive lines, this program will no longer compile.
Depending on
the use case, that might be entirely fine, useful, or very inconvenient.

There are a number of ways to address that issue,
many of which will
cost us some additional complexity and affect performance.
In gener-
al, the number of variations and trade-offs we can continue
to explore
are virtually endless.

We could easily spend an unhealthy number of hours implementing
another twenty
variants of a one-shot channel, each with slightly dif-
ferent properties,
for every imaginable use case and more.
While that
might sound like lots of fun,
we should probably avoid that rabbit hole
and end this chapter before things get out of hand.

Summary

A channel is used to send messages between threads.

A simple and flexible, but potentially inefficient, channel is rela-
tively
easy to implement with just a Mutex and a Condvar .

A one-shot channel is a channel designed to send only one
message.

The MaybeUninit<T> type can be used to represent a poten-
tially not-yet-initialized T .
Its interface is mostly unsafe, making
its user responsible for tracking whether
it has been initialized,

not duplicating Copy data, and dropping its contents if
necessary.

Not dropping objects (also called leaking or forgetting) is safe,

but frowned upon when done without good reason.

Panicking is an important tool for creating a safe interface.

Taking a non- Copy object by value can be used to prevent
something to be done more than once.

Exclusively borrowing and splitting borrows can be a powerful
tool for forcing correctness.

We can make sure an object stays on the same thread by mak-
ing sure its type does not implement Send ,
which can be
achieved with the PhantomData marker type.

Every design and implementation decision involves a trade-off
and can best be made with a specific use case in mind.

Designing something without a use case can be fun and educa-
tional,
but can turn out to be an endless task.

Chapter 6. Building Our Own “Arc”

In “Reference Counting”, we saw the std::sync::Arc<T>
type
that allows for shared ownership through reference counting.
The
Arc::new function creates a new allocation, just like Box::new .

However, unlike a Box , a cloned Arc will share the original
alloca-
tion, without creating a new one.
The shared allocation will only be
dropped once the Arc and all its clones are dropped.

The memory ordering considerations involved in an implementation
of this type
can get quite interesting.
In this chapter, we’ll put more of
the theory to practice by implementing our own Arc<T> .
We’ll start
with a basic version,
then extend it to support weak pointers for cyclic
structures,
and finish the chapter with an optimized version
that’s
nearly identical to the implementation in the standard library.

Basic Reference Counting

Our first version will use a single AtomicUsize to count
the num-
ber of Arc objects that share an allocation.
Let’s start with a struct
that holds this counter and the T object:

struct ArcData<T> {

 ref_count: AtomicUsize,

 data: T,

}

Note that this struct is not public.
It’s an internal implementation detail
of our Arc implementation.

Next is the Arc<T> struct itself,
which is effectively just a pointer to
a (shared) ArcData<T> object.

It might be tempting to make it a wrapper for a Box<ArcData<T>> ,

using a standard Box to handle the allocation of the ArcData<T> .

However, a Box represents exclusive ownership, not shared owner-
ship.
We can’t use a reference either, because we’re not just borrow-
ing the data owned by something else,
and its lifetime (“until the last
clone of this Arc is dropped”) is not directly representable with a
Rust lifetime.

Instead, we’ll have to resort to using a pointer and handle allocation
and
the concept of ownership manually.
Instead of a *mut T or
*const T , we’ll use a std::ptr::NonNull<T> ,
which repre-
sents a pointer to T that is never null.
That way, an
Option<Arc<T>> will be the same size as an Arc<T> ,
using the
null pointer representation for None .

use std::ptr::NonNull;

pub struct Arc<T> {

 ptr: NonNull<ArcData<T>>,

}

With a reference or a Box , the compiler automatically understands
for which T it should make your struct Send or Sync .
When using
a raw pointer or NonNull , however, it’ll conservatively assume it’s
never Send or Sync
unless we explicitly tell it otherwise.

Sending an Arc<T> across threads results in a T object being
shared, requiring T to be Sync .
Similarly, sending an Arc<T>

across threads could result in another thread
dropping that T , effec-
tively transferring it to the other thread, requiring T to be Send .
In
other words, Arc<T> should be Send if and only if T is both
Send and Sync .
The exact same holds for Sync , since a shared
&Arc<T> can be cloned into a new Arc<T> .

unsafe impl<T: Send + Sync> Send for Arc<T> {}

unsafe impl<T: Send + Sync> Sync for Arc<T> {}

For Arc<T>::new , we’ll have to create a new allocation with an
ArcData<T>
with a reference count of one.
We’ll use Box::new

to create a new allocation,
 Box::leak to give up our exclusive
ownership of this allocation,
and NonNull::from to turn it into a
pointer:

impl<T> Arc<T> {

 pub fn new(data: T) -> Arc<T> {

 Arc {

 ptr: NonNull::from(Box::leak(Box::new

 ref_count: AtomicUsize::new(1),

 data,

 }))),

 }

 }

 …

}

We know the pointer will always point to a valid ArcData<T>
as
long as the Arc object exists.
However, this is not something the
compiler knows or checks for us,
so accessing the ArcData

through the pointer
requires unsafe code.
We’ll add a private helper
function
to get from the Arc to the ArcData ,
since this is some-
thing we’ll have to do several times:

 fn data(&self) -> &ArcData<T> {

 unsafe { self.ptr.as_ref() }

 }

Using that, we can now implement the Deref trait
to make our
Arc<T> transparently behave like a reference to a T :

impl<T> Deref for Arc<T> {

 type Target = T;

 fn deref(&self) -> &T {

 &self.data().data

 }

}

Note that we don’t implement DerefMut .
Since an Arc<T> repre-
sents shared ownership,
we can’t unconditionally provide a &mut T .

Next: the Clone implementation.
The cloned Arc will use the
same pointer,
after incrementing the reference counter:

impl<T> Clone for Arc<T> {

 fn clone(&self) -> Self {

 // TODO: Handle overflows.

 self.data().ref_count.fetch_add(1, Relaxe

 Arc {

 ptr: self.ptr,

 }

 }

}

We can use Relaxed memory ordering to increment the reference
counter,
since there are no operations on other variables
that need to
strictly happen before or after this atomic operation.
We already had
access to the contained T before this operation
(through the original
Arc), and that remains unchanged afterwards
(but now through at
least two Arc objects).

An Arc would need to be cloned many times before
the counter has
any chance of overflowing,
but running
std::mem::forget(arc.clone()) in a loop
can make it hap-
pen.
We can use any of the techniques discussed in
“Example: ID Al-
location” and
“Example: ID Allocation Without Overflow” to handle
this issue.

To keep things as efficient as possible in the normal (non-overflow-
ing) case,
we’ll keep the original fetch_add and simply abort the
whole process
if we get uncomfortably close to overflowing:

 if self.data().ref_count.fetch_add(1, Rel

std::process::abort();

 std::process::abort();

 }

NOTE

Aborting the process is not instant,
leaving for some time during which another
thread can also call Arc::clone ,
incrementing the reference counter further.
Therefore, just checking for usize::MAX - 1 would not suffice.
However, using
usize::MAX / 2 as the limit works fine:
assuming every thread takes at least a

few bytes of space in memory,
it’s impossible for usize::MAX / 2 threads to ex-
ist concurrently.

Just like we increment the counter when cloning,
we need to decre-
ment it when dropping an Arc .
The thread that sees the counter go
from one to zero
knows it dropped the last Arc<T> , and is responsi-
ble for
dropping and deallocating the ArcData<T> .

We’ll use Box::from_raw to reclaim exclusive ownership of the
allocation,
and then drop it right away using drop() :

impl<T> Drop for Arc<T> {

 fn drop(&mut self) {

 // TODO: Memory ordering.

 if self.data().ref_count.fetch_sub(1, …)

 unsafe {

 drop(Box::from_raw(self.ptr.as_pt

 }

 }

 }

}

For this operation, we can’t use Relaxed ordering,
since we need to
make sure that nothing is still accessing the data when we drop it.
In
other words, every single drop of one of the former Arc clones must
have happened
before the final drop.
So, the final fetch_sub must
establish a happens-before relationship with
every previous
fetch_sub operation, which we can do using release and acquire
ordering:
decrementing it from, for example, two to one effectively “re-
leases” the data,
while decrementing it from one to zero “acquires”
ownership of it.

We could use AcqRel memory ordering to cover both cases,
but
only the final decrement to zero needs Acquire ,
while the others
only need Release .
For efficiency, we’ll use only Release for the
fetch_sub operation
and a separate Acquire fence only when
necessary:

 if self.data().ref_count.fetch_sub(1, Rel

 fence(Acquire);

 unsafe {

 drop(Box::from_raw(self.ptr.as_pt

}

 }

 }

Testing It

To test that our Arc is behaving as intended,
we can write a unit test
that creates an Arc
containing a special object that lets us know
when it gets dropped:

#[test]

fn test() {

 static NUM_DROPS: AtomicUsize = AtomicUsize::

 struct DetectDrop;

 impl Drop for DetectDrop {

 fn drop(&mut self) {

 NUM_DROPS.fetch_add(1, Relaxed);

 }

 }

 // Create two Arcs sharing an object containi

 // and a DetectDrop, to detect when it's drop

 let x = Arc::new(("hello", DetectDrop));

 let y = x.clone();

 // Send x to another thread, and use it there

let t std thread spawn(move || {

 let t = std::thread::spawn(move || {

 assert_eq!(x.0, "hello");

 });

 // In parallel, y should still be usable here

 assert_eq!(y.0, "hello");

 // Wait for the thread to finish.

 t.join().unwrap();

 // One Arc, x, should be dropped by now.

 // We still have y, so the object shouldn't h

 assert_eq!(NUM_DROPS.load(Relaxed), 0);

 // Drop the remaining `Arc`.

 drop(y);

 // Now that `y` is dropped too,

 // the object should've been dropped.

 assert_eq!(NUM_DROPS.load(Relaxed), 1);

}

This compiles and runs fine,
so it seems our Arc is behaving as in-
tended!
While this is encouraging, it doesn’t prove that the implemen-
tation is fully correct.
It’s advisable to use a long stress test involving
many threads to gain more confidence.

MIRI

It can also be very useful to run tests using Miri.
Miri is an experimen-
tal but very useful and powerful tool to check unsafe code
for various
forms of undefined behavior.

Miri is an interpreter for the Rust compiler’s mid-level intermediate
representation.
This means that it runs your code not by compiling it
to native processor instructions,
but instead by interpreting it at a
point when information like types and lifetimes are
still available.
Be-
cause of this, Miri runs programs significantly slower than when they
are compiled and run normally,
but is able to detect many mistakes
that would result in undefined behavior.

It includes experimental support for detecting data races, which al-
lows it to detect memory ordering problems.

For more details and a guide on how to use Miri, see its GitHub page.

Mutation

As mentioned before, we can’t implement DerefMut for our Arc .

We can’t unconditionally promise exclusive access (&mut T) to the
data,
because it might be accessed through other Arc objects.

https://oreil.ly/4V0Ra

However, what we can do is to allow it conditionally.
We can make a
method that only gives out a &mut T if the reference counter is one,

proving that there’s no other Arc object that could be used to ac-
cess the same data.

This function, which we’ll call get_mut ,
will have to take a &mut

Self to make sure
nothing else can use this same Arc to access
the T .
Knowing that there’s only one Arc would be meaningless
if
that one Arc can still be shared.

We’ll need to use acquire memory ordering
to make sure that threads
that previously owned a clone of the Arc
are no longer accessing
the data.
We need to establish a happens-before relationship with
every single drop that led to the reference counter being one.

This only matters when the reference counter is actually one;
if it’s
higher, we’ll not provide a &mut T , and the memory ordering is irrel-
evant.
So, we can use a relaxed load, followed by a conditional ac-
quire fence, as follows:

 pub fn get_mut(arc: &mut Self) -> Option<&mut

 if arc.data().ref_count.load(Relaxed) ==

 fence(Acquire);

 // Safety: Nothing else can access th

 // there's only one Arc, to which we

 unsafe { Some(&mut arc.ptr.as_mut().d

 } else {

 None

 }

 }

This function does not take a self argument,
but takes a regular
argument (named arc) instead.
This means it can only be called as
Arc::get_mut(&mut a) ,
and not as a.get_mut() .
This is ad-
visable for types that implement Deref ,
to avoid ambiguity with a
similarly named method on the underlying T .

The returned mutable reference implicitly borrows the lifetime from
the argument,
meaning that nothing can use the original Arc as long
as the returned &mut T
is still around, allowing for safe mutation.

When the lifetime of the &mut T expires,
the Arc can be used and
shared with other threads again.
One might wonder whether we need
to worry about memory ordering
for threads accessing the data after-
wards.
However, that’s the responsibility of whatever mechanism is
used for sharing
the Arc (or a new clone of it) with another thread.

(For example, a mutex, a channel, or spawning a new thread.)

Weak Pointers

Reference counting can be very useful when representing
structures
in memory consisting of multiple objects.
For example, every node in
a tree structure could contain
an Arc to each of its child nodes.
That
way, when a node is dropped, its child nodes
that are no longer in use
are all (recursively) dropped as well.

This breaks down for cyclic structures, however.
If a child node also
contains an Arc to its parent node,
neither will be dropped since
there’s always at least one Arc that still refers to it.

The standard library’s Arc comes with a solution for that problem:

Weak<T> .
A Weak<T> , also called a weak pointer, behaves a bit
like an Arc<T> ,
but does not prevent an object from getting
dropped.
A T can be shared between several Arc<T> and
Weak<T> objects,
but when all Arc<T> objects are gone, the T is
dropped,
regardless of whether there are any Weak<T> objects left.

This means that a Weak<T> can exist without a T ,
and thus cannot
provide a &T unconditionally, like an Arc<T> can.
However, to ac-
cess the T given a Weak<T> , it can be upgraded to an Arc<T>

through its upgrade() method.
This method returns an
Option<Arc<T>> , returning None if the T has already been
dropped.

In an Arc -based structure, Weak can be used to break cycles.
For
example, child nodes in a tree structure could use Weak rather than
Arc for their parent node.
Then, dropping of a parent node is not
prevented through the existence of its child nodes.

Let’s implement this.

Just like before, when the number of Arc objects reaches zero, we
can drop the contained T object.
However, we can’t drop and de-
allocate the ArcData yet, since there might still be weak pointers
referencing it.
Only once the last Weak pointer is also gone can we
drop and deallocate the ArcData .

So, we’ll use two counters: one for “the number of things that refer-
ence the T ,”
and another for “the number of things that reference the
ArcData<T> .” In other words, the first counter is the same as be-
fore: it counts Arc objects,
while the second counter counts both
Arc and Weak objects.

We also need something that allows us to drop the contained object
(T)
while the ArcData<T> is still in use by the weak pointers.
We’ll
use an Option<T> so we can use None for when the data is
dropped,
and wrap that in an UnsafeCell for interior mutability
(“Interior Mutability”),
to allow that to happen when the ArcData<T>

isn’t exclusively owned:

struct ArcData<T> {

 /// Number of `Arc`s.

 data_ref_count: AtomicUsize,

 /// Number of `Arc`s and `Weak`s combined.

 alloc_ref_count: AtomicUsize,

 /// The data. `None` if there's only weak poi

 data: UnsafeCell<Option<T>>,

}

If we think of a Weak<T> as an object responsible for keeping an
ArcData<T> alive,
it can make sense to implement Arc<T> as a
struct containing a Weak<T> ,
since an Arc<T> needs to do the
same, and more.

pub struct Arc<T> {

 weak: Weak<T>,

}

pub struct Weak<T> {

 ptr: NonNull<ArcData<T>>,

}

unsafe impl<T: Sync + Send> Send for Weak<T> {}

unsafe impl<T: Sync + Send> Sync for Weak<T> {}

The new function is mostly the same as before, except it now
has
two counters to initialize at once:

impl<T> Arc<T> {

 pub fn new(data: T) -> Arc<T> {

 Arc {

 weak: Weak {

 ptr: NonNull::from(Box::leak(Box:

 alloc_ref_count: AtomicUsize:

 data_ref_count: AtomicUsize::

 data: UnsafeCell::new(Some(da

 }))),

 },

 }

 }

 …

}

Just like before, we assume that the ptr field
always points at a
valid ArcData<T> .
This time, we’ll encode that assumption
as a pri-
vate data() helper method on Weak<T> :

impl<T> Weak<T> {

 fn data(&self) -> &ArcData<T> {

 unsafe { self.ptr.as_ref() }

 }

 …

}

In the Deref implementation for Arc<T> ,
we now have to use
UnsafeCell::get() to get a pointer to the contents of the cell,
and use unsafe code to promise it can safely be shared at this point.
We also need as_ref().unwrap() to get a reference into the
Option<T> .
We don’t have to worry about this panicking,
since the
Option will only be None when there are no Arc objects left.

impl<T> Deref for Arc<T> {

 type Target = T;

 fn deref(&self) -> &T {

 let ptr = self.weak.data().data.get();

 // Safety: Since there's an Arc to the da

 // the data exists and may be shared.

 unsafe { (*ptr).as_ref().unwrap() }

 }

}

The Clone implementation for Weak<T> is quite straightforward;

it’s pretty much identical to our previous Clone implementation for

Arc<T> :

impl<T> Clone for Weak<T> {

 fn clone(&self) -> Self {

 if self.data().alloc_ref_count.fetch_add(

 std::process::abort();

 }

 Weak { ptr: self.ptr }

 }

}

In the Clone implementation for our new Arc<T> , we need to in-
crement both counters.
We’ll simply use self.weak.clone() to
reuse the code above for the first counter,
so we only have to manu-
ally increment the second counter:

impl<T> Clone for Arc<T> {

 fn clone(&self) -> Self {

 let weak = self.weak.clone();

 if weak.data().data_ref_count.fetch_add(1

 std::process::abort();

 }

 Arc { weak }

 }

}

Dropping a Weak should decrement its counter and drop and de-
allocate the ArcData when the counter goes from one to zero.
This
is identical to what the Drop implementation of our previous Arc

did.

impl<T> Drop for Weak<T> {

 fn drop(&mut self) {

 if self.data().alloc_ref_count.fetch_sub(

 fence(Acquire);

 unsafe {

 drop(Box::from_raw(self.ptr.as_pt

 }

 }

 }

}

Dropping an Arc should decrement both counters.
Note that one of
these is already automatically taken care of,
since every Arc con-
tains a Weak ,
such that dropping an Arc will also result in dropping
a Weak .
We only have to take care of the other counter:

impl<T> Drop for Arc<T> {

 fn drop(&mut self) {

 if self.weak.data().data_ref_count.fetch_

 fence(Acquire);

 let ptr = self.weak.data().data.get()

 // Safety: The data reference counter

 // so nothing will access it.

 unsafe {

 (*ptr) = None;

 }

 }

 }

}

NOTE

Dropping an object in Rust will first run its Drop::drop function (if it implements
Drop),
and then drop all of its fields, one by one, recursively.

The check in the get_mut method remains mostly unchanged, ex-
cept it now needs to take weak pointers
into account.
It might seem
like it could ignore weak pointers when checking for exclusivity,
but a
Weak<T> can be upgraded to an Arc<T> at any time.
So,

get_mut will have to check that there are no other Arc<T> or
Weak<T>
pointers before it can give out a &mut T :

impl<T> Arc<T> {

 …

 pub fn get_mut(arc: &mut Self) -> Option<&mut

 if arc.weak.data().alloc_ref_count.load(R

 fence(Acquire);

 // Safety: Nothing else can access th

 // there's only one Arc, to which we

 // and no Weak pointers.

 let arcdata = unsafe { arc.weak.ptr.a

 let option = arcdata.data.get_mut();

 // We know the data is still availabl

 // have an Arc to it, so this won't p

 let data = option.as_mut().unwrap();

 Some(data)

 } else {

 None

 }

 }

 …

}

Next up: upgrading a weak pointer.
Upgrading a Weak to an Arc is
only possible when the data still exists.
If there are only weak pointers
left, there’s no data left that can be shared through an Arc .
So, we’ll
have to increase the Arc counter, but can only do so if it isn’t al-
ready zero.
We’ll use a compare-and-exchange loop (“Compare-and-
Exchange Operations”) to do this.

Just like before, relaxed memory ordering is fine for incrementing a
reference counter.
There are no operations on other variables
that
need to strictly happen before or after this atomic operation.

impl<T> Weak<T> {

 …

 pub fn upgrade(&self) -> Option<Arc<T>> {

 let mut n = self.data().data_ref_count.lo

 loop {

 if n == 0 {

 return None;

 }

 assert!(n < usize::MAX);

 if let Err(e) =

 self.data()

 .data_ref_count

 .compare_exchange_weak(n, n +

 {

 n = e;

 continue;

 }

 return Some(Arc { weak: self.clone()

 }

 }

}

TIP

Note how this time we can check for n < usize::MAX ,
since that assertion
would panic before we modify data_ref_count .

The opposite, getting a Weak<T> from an Arc<T> , is much
simpler:

impl<T> Arc<T> {

 …

 pub fn downgrade(arc: &Self) -> Weak<T> {

 arc.weak.clone()

 }

}

Testing It

To quickly test our creation, we’ll modify our previous unit test to
use
weak pointers and verify that they can be upgraded when expected:

#[test]

fn test() {

 static NUM_DROPS: AtomicUsize = AtomicUsize::

 struct DetectDrop;

 impl Drop for DetectDrop {

 fn drop(&mut self) {

 NUM_DROPS.fetch_add(1, Relaxed);

 }

 }

 // Create an Arc with two weak pointers.

 let x = Arc::new(("hello", DetectDrop));

 let y = Arc::downgrade(&x);

 let z = Arc::downgrade(&x);

 let t = std::thread::spawn(move || {

 // Weak pointer should be upgradable at t

 let y = y.upgrade().unwrap();

 assert_eq!(y.0, "hello");

 });

 assert_eq!(x.0, "hello");

 t.join().unwrap();

 // The data shouldn't be dropped yet,

 // and the weak pointer should be upgradable.

 assert_eq!(NUM_DROPS.load(Relaxed), 0);

 assert!(z.upgrade().is_some());

 drop(x);

 // Now, the data should be dropped, and the

 // weak pointer should no longer be upgradabl

 assert_eq!(NUM_DROPS.load(Relaxed), 1);

 assert!(z.upgrade().is_none());

}

This also compiles and runs without problems,
which leaves us with a
very usable handmade Arc implementation.

Optimizing

While weak pointers can be useful,
the Arc type is often used with-
out any weak pointers.
A downside of our last implementation is that
cloning and dropping an Arc now both take two atomic operations
each,
as they have to increment or decrement both counters.
This
makes all Arc users “pay” for the cost of weak pointers,
even when
they are not using them.

It might seem like the solution is to count Arc<T> and Weak<T>

pointers separately,
but then we wouldn’t be able to atomically check
that both counters are zero.
To understand how that’s a problem,

imagine we have a
thread executing the following annoying function:

fn annoying(mut arc: Arc<Something>) {

 loop {

 let weak = Arc::downgrade(&arc);

 drop(arc);

 println!("I have no Arc!");

 arc = weak.upgrade().unwrap();

 drop(weak);

 println!("I have no Weak!");

 }

}

This thread continuously downgrades and upgrades an Arc ,
such
that it repeatedly cycles through moments where it holds no Arc (),

and moments where it holds no Weak ().
If we check both counters
to see if there are any threads still using
the allocation, this thread
might be able to hide its existence
if we are unlucky and check the
Arc counter during its first print statement (),
but check the Weak

counter during its second print statement ().

In our last implementation, we solved this
by counting every Arc

also as a Weak .
A more subtle way of solving this is to count all
Arc pointers combined as one single Weak pointer.
That way, the
weak pointer counter (alloc_ref_count) never reaches zero as
long as there is still at least one Arc object around, just like in our
last implementation,
but cloning an Arc doesn’t need to touch that

counter at all.
Only dropping the very last Arc will decrement the
weak pointer counter too.

Let’s try that.

This time, we can’t just implement Arc<T> as a wrapper around
Weak<T> ,
so both will wrap a non-null pointer to the allocation:

pub struct Arc<T> {

 ptr: NonNull<ArcData<T>>,

}

unsafe impl<T: Sync + Send> Send for Arc<T> {}

unsafe impl<T: Sync + Send> Sync for Arc<T> {}

pub struct Weak<T> {

 ptr: NonNull<ArcData<T>>,

}

unsafe impl<T: Sync + Send> Send for Weak<T> {}

unsafe impl<T: Sync + Send> Sync for Weak<T> {}

Since we’re optimizing our implementation,
we might as well make
ArcData<T> slightly smaller by using a
std::mem::ManuallyDrop<T>
instead of an Option<T> .
We
used an Option<T> to be able to replace a Some(T) by None

when dropping
the data, but we don’t actually need a separate None

state to tell us the data
is gone, since the existence or absence of
Arc<T> already tells us that.
A ManuallyDrop<T> takes the ex-
act same amount of space as a T ,
but allows us to manually drop it
at any point by using an
unsafe call to ManuallyDrop::drop() :

use std::mem::ManuallyDrop;

struct ArcData<T> {

 /// Number of `Arc`s.

 data_ref_count: AtomicUsize,

 /// Number of `Weak`s, plus one if there are

 alloc_ref_count: AtomicUsize,

 /// The data. Dropped if there are only weak

 data: UnsafeCell<ManuallyDrop<T>>,

}

The Arc::new function remains almost unchanged,
initializing both
counters at one like before,
but now using ManuallyDrop::new()

instead of Some() :

impl<T> Arc<T> {

 pub fn new(data: T) -> Arc<T> {

 Arc {

 ptr: NonNull::from(Box::leak(Box::new

 alloc_ref_count: AtomicUsize::new

 data_ref_count: AtomicUsize::new(

 data: UnsafeCell::new(ManuallyDro

 }))),

 }

 }

 …

}

The Deref implementation can no longer make use of the private
data method on
the Weak type, so we’ll add the same private
helper function on Arc<T> :

impl<T> Arc<T> {

 …

 fn data(&self) -> &ArcData<T> {

 unsafe { self.ptr.as_ref() }

 }

 …

}

impl<T> Deref for Arc<T> {

 type Target = T;

 fn deref(&self) -> &T {

 // Safety: Since there's an Arc to the da

 // the data exists and may be shared.

 unsafe { &*self.data().data.get() }

 }

}

The Clone and Drop implementations for Weak<T> remain ex-
actly the same as for our last implementation.
Here they are for com-
pleteness, including the private Weak::data helper function:

impl<T> Weak<T> {

 fn data(&self) -> &ArcData<T> {

 unsafe { self.ptr.as_ref() }

 }

 …

}

impl<T> Clone for Weak<T> {

 fn clone(&self) -> Self {

 if self.data().alloc_ref_count.fetch_add(

 std::process::abort();

 }

 Weak { ptr: self.ptr }

 }

}

impl<T> Drop for Weak<T> {

 fn drop(&mut self) {

 if self.data().alloc_ref_count.fetch_sub(

 fence(Acquire);

 unsafe {

 drop(Box::from_raw(self.ptr.as_pt

 }

 }

 }

}

And now we get to the part that this new optimized implementation
was all
about—cloning an Arc<T> now needs to touch only one
counter:

impl<T> Clone for Arc<T> {

 fn clone(&self) -> Self {

 if self.data().data_ref_count.fetch_add(1

 std::process::abort();

 }

 Arc { ptr: self.ptr }

 }

}

Similarly, dropping an Arc<T> now needs to decrement only one
counter,
except for the last drop that sees that counter go from one to
zero.
In that case, the weak pointer counter also needs to be decre-
mented,
such that it can reach zero once there are no weak pointers
left.
We do this by simply creating a Weak<T> out of thin air and im-
mediately dropping it:

impl<T> Drop for Arc<T> {

 fn drop(&mut self) {

 if self.data().data_ref_count.fetch_sub(1

 fence(Acquire);

 // Safety: The data reference counter

 // so nothing will access the data an

 unsafe {

 ManuallyDrop::drop(&mut *self.dat

 }

 // Now that there's no `Arc<T>`s left

 // drop the implicit weak pointer tha

 drop(Weak { ptr: self.ptr });

 }

 }

}

The upgrade method on Weak<T> remains mostly the same,
ex-
cept it no longer clones a weak pointer, since it doesn’t need to incre-
ment
the weak pointer counter anymore.
Upgrading only succeeds if

there is already at least one Arc<T> to the allocation,
which means
that Arc s are already accounted for in the weak pointer counter.

impl<T> Weak<T> {

 …

 pub fn upgrade(&self) -> Option<Arc<T>> {

 let mut n = self.data().data_ref_count.lo

 loop {

 if n == 0 {

 return None;

 }

 assert!(n < usize::MAX);

 if let Err(e) =

 self.data()

 .data_ref_count

 .compare_exchange_weak(n, n +

 {

 n = e;

 continue;

 }

 return Some(Arc { ptr: self.ptr });

 }

 }

}

So far the differences between this and our previous implementation
are very minimal.
Where things get tricky, though, is with the last two
methods we still need to implement:
 downgrade and get_mut .

Unlike before, the get_mut method now needs to check if both
counters are set to one
to be able to determine whether there’s only
one Arc<T> and no Weak<T> left,
since a weak pointer counter of
one can now represent multiple Arc<T> pointers.
Reading the
counters are two separate operations that happen at (slightly)
differ-
ent times, so we have to be very careful to not miss any concurrent
downgrades,
such as in the example case we saw at the start of “Op-
timizing”.

If we first check that data_ref_count is one, then
we could miss a
subsequent upgrade() before we check the other counter.
But, if
we first check that alloc_ref_count is one, then
we could miss a
subsequent downgrade() before we check the other counter.

A way out of this dilemma is to briefly block the downgrade() oper-
ation by “locking”
the weak pointer counter.
To do that, we don’t need
anything like a mutex.
We can use a special value, like
usize::MAX , to represent a special “locked” state
of the weak
pointer counter.
It’ll only be locked very briefly, only to load the other
counter,
so the downgrade method could just spin until it’s un-

locked,
in the unlikely situation it runs at the exact same moment as
get_mut .

So, in get_mut we’ll first have to check if alloc_ref_count is
one
and at the same time replace it by usize::MAX , if it was indeed
one.
That’s a job for compare_exchange .

Then we’ll have to check if the other counter is also one,
after which
we can immediately unlock the weak pointer counter.
If the second
counter is also one, we know we have exclusive access to the alloca-
tion
and the data, such that we can return a &mut T .

 pub fn get_mut(arc: &mut Self) -> Option<&mut

 // Acquire matches Weak::drop's Release d

 // upgraded pointers are visible in the n

 if arc.data().alloc_ref_count.compare_exc

 1, usize::MAX, Acquire, Relaxed

).is_err() {

 return None;

 }

 let is_unique = arc.data().data_ref_count

 // Release matches Acquire increment in `

 // changes to the data_ref_count that com

 // change the is_unique result above.

 arc.data().alloc_ref_count.store(1, Relea

 if !is_unique {

 return None;

 return None;

 }

 // Acquire to match Arc::drop's Release d

 // else is accessing the data.

 fence(Acquire);

 unsafe { Some(&mut *arc.data().data.get()

 }

As you might have expected,
the locking operation (the
compare_exchange) will have to use Acquire memory ordering,

and the unlocking operation (the store) will have to use Release

memory ordering.

If we had used Relaxed for the compare_exchange instead,
it
would have been possible for the subsequent load from
data_ref_count
to not see the new value of a freshly upgraded
Weak pointer, even though the compare_exchange had already
confirmed that every Weak pointer had been dropped.

If we had used Relaxed for the store , it would have been possi-
ble for the preceding load to
observe the result of a future
Arc::drop for an Arc that can still be downgraded.

The acquire fence is the same as before: it synchronizes with the re-
lease-decrement operation
in Arc::Drop to make sure every ac-

cess through former Arc clones has happened before the new ex-
clusive access.

The last piece of the puzzle is the downgrade method,
which will
have to check for the special usize::MAX value to see
if the weak
pointer counter is locked, and spin until it is unlocked.
Just like in the
upgrade implementation,
we’ll use a compare-and-exchange loop
to
check for the special value and overflow before incrementing the
counter:

 pub fn downgrade(arc: &Self) -> Weak<T> {

 let mut n = arc.data().alloc_ref_count.lo

 loop {

 if n == usize::MAX {

 std::hint::spin_loop();

 n = arc.data().alloc_ref_count.lo

 continue;

 }

 assert!(n < usize::MAX - 1);

 // Acquire synchronises with get_mut

 if let Err(e) =

 arc.data()

 .alloc_ref_count

 .compare_exchange_weak(n, n +

 {

 n = e;

 continue;

;

 }

 return Weak { ptr: arc.ptr };

 }

 }

We use acquire memory ordering for compare_exchange_weak ,

which synchronizes with the release-store in the get_mut function.

Otherwise, it would be possible for the effect of a subsequent
Arc::drop
to be visible to a thread running get_mut before it un-
locks the counter.

In other words, the acquire compare-and-exchange operation here
effectively “locks” get_mut , preventing it from succeeding.
It can be
“unlocked” again by a later Weak::drop that decrements the
counter back to one, using release memory ordering.

NOTE

The optimized implementation of Arc<T> and Weak<T> that we just made
is
nearly identical to the one included in the Rust standard library.

If we run the exact same test as before (“Testing It”),
we see that this
optimized implementation also compiles and passes our tests.

TIP

If you feel that getting the memory ordering decisions right for this optimized imple-
mentation was difficult, don’t worry.
Many concurrent data structures are simpler to
implement correctly than this one.
This Arc implementation is included in this
chapter specifically because of its tricky subtleties around memory ordering.

Summary

Arc<T> provides shared ownership of a reference-counted
allocation.

By checking if the reference counter is exactly one, an Arc<T>

can conditionally
provide exclusive access (&mut T).

Incrementing the atomic reference counter can be done using a
relaxed operation,
but the final decrement must synchronize with
all previous decrements.

A weak pointer (Weak<T>) can be used to avoid cycles.

The NonNull<T> type represents a pointer to T that is never
null.
The ManuallyDrop<T> type can be used to manually decide,

using unsafe code, when to drop a T .

As soon as more than one atomic variable is involved, things get
more complicated.

Implementing an ad hoc (spin) lock can sometimes be a valid
strategy for
operating on multiple atomic variables at once.

Chapter 7. Understanding the
Processor

While the theory from Chapters 2 and 3
is all we need to write correct
concurrent code,
it can additionally be very useful to develop an ap-
proximate understanding of
what goes on in practice at the processor
level.
In this chapter, we’ll explore the machine instructions that
atom-
ic operations compile down to, how different processor architectures
differ,
why a weak version of compare_exchange exists,
what
memory ordering means at the lowest level of individual instructions,

and how caching relates to it all.

The goal of this chapter is not to understand every relevant detail of
every
single processor architecture.
That would take many book-
shelves full of books,
many of which have probably not been written
or are not publicly available.
Instead, the goal of this chapter is to de-
velop a general idea of how
atomics work at the processor level,
to be
able to make more informed decisions when implementing and opti-
mizing
code involving atomics.
And, of course, to simply satisfy our
curiosity about what goes on behind the scenes—taking a break from
all the abstract theory.

To make things as concrete as possible,
we’ll focus on two specific
processor architectures:

x86-64:

The 64-bit version of the x86 architecture implemented by Intel
and AMD processors
used in the majority of laptops, desktops,

servers, and some game consoles.
While the originally 16-bit
x86 architecture and its very popular 32-bit extension
were de-
veloped by Intel, the 64-bit version that we now call x86-64
was
initially an extension developed by AMD, often referred to as
AMD64.
Intel also developed its own 64-bit architecture, IA-64,

but ended up adopting AMD’s more popular x86 extension in-
stead
(under the names IA-32e, EM64T, and later Intel 64).

ARM64:

The 64-bit version of the ARM architecture used by nearly all
modern mobile devices,
high performance embedded systems,

and also increasingly in recent laptops and desktops.
It is also
known as AArch64 and was introduced as part of ARMv8.
Earli-
er (32-bit) versions of ARM, which are similar in many ways, are
used
in an even wider variety of applications.
Many popular mi-
crocontrollers in every kind of embedded system imaginable,

from cars to electronic COVID tests, are based on ARMv6 and
ARMv7.

These two architectures are unalike in many ways.
Most importantly,

they take different approaches to atomics.
Understanding how atom-

ics work on both of them provides us with a
more general under-
standing that is transferable to many other architectures.

Processor Instructions

We can develop an approximate understanding of how things work at
the processor level by
taking a close look at the output of the compil-
er, the exact instructions that the processor will execute.

BRIEF INTRODUCTION TO ASSEMBLY

When compiling software written in any compiled language like Rust
or C,
your code gets translated into machine instructions that can be
executed by the
processor that will eventually run your program.

These instructions are highly specific to the processor architecture
you’re compiling your program for.

These instructions, also called machine code, are encoded in binary
form,
which is quite unreadable to us humans.
Assembly is the hu-
man-readable representation of these instructions.
Every instruction
is represented by one line of text,
usually starting with a single word
or acronym to identify the instruction,
followed by its arguments or op-
erands.
An assembler converts the text representation to binary rep-
resentation,
and a disassembler does the opposite.

After compiling from a language like Rust, most of the structure of the
original source code is gone.
Depending on optimization level, func-
tions and function calls might still be recognizable.
However, types
such as structs or enums have been reduced to bytes and addresses,

and loops and conditionals have been reduced to a flat structure with
basic jump or branch instructions.

Here’s an example of what a snippet of assembly for a small part of a
program might look like,
for some made-up architecture:

ldr x, 1234 // load from memory address 1234 into

li y, 0 // set y to zero

inc x // increment x

add y, x // add x to y

mul x, 3 // multiply x by 3

cmp y, 10 // compare y to 10

jne -5 // jump five instructions back if not

str 1234, x // store x to memory address 1234

In this example, x and y are names of registers.
Registers are part
of the processor, not of the main memory,
and usually hold a single
integer or memory address.
On 64-bit architectures, they are general-
ly 64 bits in size.
The number of registers varies per architecture,
but
is usually very limited.
Registers are basically used as a temporary
scratchpad in calculations, a place to keep intermediary results be-
fore storing things back to memory.

Constants that refer to specific memory addresses,
such as 1234

and -5 in the example above,
are often replaced with more human-
readable labels.
The assembler will automatically replace them with
the actual address
when converting assembly to binary machine
code.

Using labels, the previous example might look like this instead:

 ldr x, SOME_VAR

 li y, 0

my_loop: inc x

 add y, x

 mul x, 3

 cmp y, 10

 jne my_loop

 str SOME_VAR, x

Since the names of the labels are only part of the assembly, but not
of the binary machine code,
a disassembler will not know what labels
were originally used and will most likely just use meaningless gener-
ated names like label1 and var2 .

A full course on assembly for all the different architectures falls out-
side the scope of this book,
but is not a prerequisite for reading this
chapter.
A very general understanding is more than enough to under-
stand the examples,
as we’ll only be reading assembly, not writing it.
The relevant instructions in each example will be explained in enough
detail to
be able to follow along with no prior experience with
assembly.

To look at the exact machine code that the Rust compiler produces,

we have several options.
We could compile our code as usual, and

then use a disassembler (such as objdump)
to turn the produced
binary file back into assembly.
Using the debug information the com-
piler produces as part of the compilation process,
the disassembler
can produce labels that correspond to the original function names
of
the Rust source code.
A downside of this method is that you need a
disassembler that supports the specific
processor architecture you’re
compiling for.
While the Rust compiler supports many architectures,

many disassemblers
only support the one architecture that they were
compiled for.

A more direct option is to ask the compiler to produce assembly in-
stead a binary by using the --emit=asm flag to rustc .
A down-
side of this method is that the produced output contains a lot of irrele-
vant lines,
containing information for the assembler and debug tools
that we don’t need.

There are great tools such as cargo-show-asm
that integrate with
cargo and automate the process of compiling your crate with the
right flags,
finding the relevant assembly for the function you’re inter-
ested in,
and highlighting the relevant lines containing the actual
instructions.

For relatively small snippets, the easiest and most recommended
way is to use a
web service like the excellent Compiler Explorer by
Matt Godbolt.
This website allows you to write code in a number of

https://oreil.ly/ePDzj
https://godbolt.org/

languages, including Rust,
and directly see corresponding compiled
assembly using the selected compiler version.
It even uses coloring
to show which lines of Rust correspond to which
lines of assembly, as
far as such a correspondence still exists after optimization.

Since we want to look at the assembly for different architectures,
we’ll
need to specify an exact target for the Rust compiler to compile to.

We’ll use x86_64-unknown-linux-musl for x86-64 and
aarch64-unknown-linux-musl for ARM64.
These are already
supported directly in Compiler Explorer.
If you’re compiling locally, for
example using cargo-show-asm or the other methods mentioned
above,
you’ll need to make sure you’ve installed the Rust standard
library for these targets,
which is usually done using rustup

target add .

In all cases, the target to compile for is selected using the --

target compiler flag.
For example, --target=aarch64-

unknown-linux-musl .
If you don’t specify any target, it’ll automati-
cally pick the platform you’re currently on.
(Or, in the case of Compiler
Explorer, the platform that it is hosted on,
which is currently
x86_64-unknown-linux-gnu .)

In addition, it’s advisable to enable the -O flag to enable optimization
(or --release when using Cargo),
as that will enable optimization
and disable overflow checking,
which can significantly reduce the

amount of produced
assembly for the small functions we’ll be looking
at.

To try it out, let’s look at the assembly for x86-64 and ARM64 for the
following function:

pub fn add_ten(num: &mut i32) {

 *num += 10;

}

Using -O --target=aarch64-unknown-linux-musl as the
compiler flags with any of
the methods described above, we’ll get
something like the following assembly output for ARM64:

add_ten:

 ldr w8, [x0]

 add w8, w8, #10

 str w8, [x0]

 ret

The x0 register contains the argument to our function, num , the ad-
dress of the i32 to increment by ten.
First, the ldr instruction
loads the 32-bit value from that memory address into the w8 register.
Then, the add instruction adds ten to w8 and stores the result back
into w8 .
And afterwards, the str instruction stores the w8 register

back into the same memory address.
Finally, the ret instruction
marks the end of the function and causes the processor to jump back
and continue with the function that called add_ten .

If we compile the exact same code for x86_64-unknown-linux-
musl , we’ll get something like this instead:

add_ten:

 add dword ptr [rdi], 10

 ret

This time, a register called rdi is used for the num argument.
More
interestingly, on x86-64, a single add instruction can do what takes
three instructions on ARM64:
loading, incrementing, and storing a
value.

This is usually the case on a complex instruction set computer (CISC)

architecture, such as x86.
Instructions on such an architecture often
have many variants,
for example to operate on a register or to directly
operate on memory of certain size.
(The dword in the assembly
specifies a 32-bit operation.)

In contrast, a reduced instruction set computer (RISC) architecture,

like ARM,
usually has a simpler set of instructions with very few vari-
ants.
Most instructions can only operate on registers,
and loading and

storing to memory takes a separate instruction.
This allows for a sim-
pler processor, which can result in a reduction in cost or
sometimes
higher performance.

This difference is especially relevant for atomic fetch-and-modify in-
structions,
as we’ll see momentarily.

NOTE

While compilers are generally pretty smart, they don’t always generate the most op-
timal assembly,
especially when atomic operations are involved.
If you’re experi-
menting and find cases where you feel confused by a seemingly needless complex-
ity in the assembly,
that often just means there’s more optimization opportunities for

a future version of the compiler.

Load and Store

Before we dive into anything more advanced,
let’s first look at the in-
structions used for the most basic atomic operations: load and store.

A regular non-atomic store through a &mut i32 takes just a single
instruction
on both x86-64 and ARM64, as shown below:

Rust source Compiled x86-64

pub fn a(x: &mut i32) {

 *x = 0;

}

a:

 mov dword pt

 ret

On x86-64, the very versatile mov instruction is used to copy
(“move”) data
from one place to another; in this case, from a zero
constant to memory.
On ARM64, the str (store register) instruction
is used to store a 32-bit register into memory.
In this case, the special
wzr register is used, which always contains zero.

If we change the code to instead
use a relaxed atomic store to an
AtomicI32 , we get:

Rust source Compiled x86-64

pub fn a(x: &AtomicI32) {

 x.store(0, Relaxed);

}

a:

 mov dword

 ret

Perhaps somewhat surprisingly, the assembly is identical to the non-
atomic version.
As it turns out, the mov and str instructions were
already atomic.
They either happened, or they didn’t happen at all.
Apparently, any difference between &mut i32 and &AtomicI32

here is only relevant
for the compiler checks and optimizations,
but is
meaningless for the processor—at least for relaxed store operations
on these two architectures.

The same thing happens when we look at relaxed load operations:

Rust source Compiled x8

pub fn a(x: &i32) -> i32 {

 *x

}

a:

 mov

 ret

pub fn a(x: &AtomicI32) -> i32 {

 x.load(Relaxed)

}

a:

 mov

 ret

On x86-64 the mov instruction is used again,
this time to copy from
memory into the 32-bit eax register.
On ARM64, the ldr (load reg-
ister) instruction is used to load the value from memory into the w0

register.

NOTE

The 32-bit eax and w0 registers are used for passing back a 32-bit return value of
a function.
(For 64-bit values, the 64-bit rax and x0 registers are used.)

While the processor apparently does not differentiate between atomic
and non-atomic stores and loads,
we cannot safely ignore the differ-
ence in our Rust code.
If we use a &mut i32 , the Rust compiler
may assume that no other thread can concurrently
access the same
i32 , and might decide to transform or optimize the code in such a
way
that a store operation no longer results in a single corresponding
store instruction.
For example, it would be perfectly correct, although
somewhat unusual,
for a non-atomic 32-bit load or store to happen
with two separate 16-bit instructions.

Read-Modify-Write Operations

Things get far more interesting for read-modify-write operations such
as addition.
As discussed earlier in this chapter, a non-atomic read-
modify-write operation
usually compiles to three separate instructions
(read, modify, and write) on a RISC architecture like ARM64,
but can
often be done in a single instruction on a CISC architecture like x86-
64.
This short example demonstrates that:

Rust source Compiled x86-64

pub fn a(x: &mut i32) {

 *x += 10;

}

a:

 add dword pt

 ret

Before we even look at the corresponding atomic operation,
we can
reasonably assume that this time we will see a difference between
the non-atomic and atomic versions.
The ARM64 version here is
clearly not atomic, as loading and storing happens in separate steps.

While not directly obvious from the assembly itself, the x86-64 version
is not atomic.
The add instruction will be split by the processor into
several microinstructions behind the scenes,
with separate steps for
loading the value and storing the result.
This would be irrelevant on a
single-core computer, as switching a processor
core between threads
generally only happens between instructions.
However, when multi-
ple cores are executing instructions in parallel,
we can no longer as-
sume instructions all happen atomically without considering the
multi-
ple steps involved in executing a single instruction.

x86 lock prefix

To support multi-core systems, Intel introduced an instruction prefix
called lock .
It is used as a modifier to instructions like add to
make their operation atomic.

The lock prefix originally caused the processor to temporarily block
all other cores
from accessing memory for the duration of the instruc-
tion.
While this is a simple and effective way to make something ap-
pear as atomic
to the other cores, it can be quite inefficient to stop the
world for every atomic operation.
Newer processors have a much
more advanced implementation of the lock prefix,
which doesn’t
stop other cores from operating on unrelated memory,
and allows
cores to do useful things while waiting for a certain piece of memory
to become available.

The lock prefix can only be applied to a very limited number of in-
structions,
including add , sub , and , not , or , and xor , which
are all very
useful operations to be able to do atomically.
The xchg

(exchange) instruction, which corresponds to the atomic swap opera-
tion,
has an implicit lock prefix: it behaves like lock xchg regard-
less of the lock prefix.

Let’s see lock add in action by changing our last example to oper-
ate on an AtomicI32 :

Rust source Compiled x86-64

pub fn a(x: &AtomicI32) {

 x.fetch_add(10, Relaxed);

}

a:

 lock a

 ret

As expected, the only difference with the non-atomic version is the
lock prefix.

In the example above, we ignore the return value from fetch_add ,

the value of x before the operation.
However, if we use that value,

the add instruction no longer suffices.
The add instruction can pro-
vide a little bit of useful information to next instructions,
such as
whether the updated value was zero or negative,
but it does not pro-
vide the full (original or updated) value.
Instead, another instruction
can be used: xadd (“exchange and add”),
which puts the originally
loaded value into a register.

We can see it in action by making a
small modification to our code to
return the value that fetch_add returns:

Rust source Compiled x8

pub fn a(x: &AtomicI32) -> i32 {

 x.fetch_add(10, Relaxed)

}

a:

 mov

 loc

 ret

Instead of a constant 10, a register containing the value 10 is now
used instead.
The xadd instruction will reuse that register to store
the old value.

Unfortunately, other than xadd and xchg ,
none of the other lock-
prefixable instructions, like sub , and , and or ,
have such a variant.
For example, there is no xsub instruction.
For subtraction that’s no
issue, as xadd can be used with a negative value.
For and and
or , however, there’s no such alternative.

For and , or , and xor operations that affect only a single bit,
such
as fetch_or(1) or fetch_and(!1) , it’s be possible to use
the
bts (bit test and set), btr (bit test and reset), and btc (bit test
and complement) instructions.
These instructions also allow a lock

prefix, change only a single bit,
and make the previous value of that

one bit available for an instruction that follows,
such as a conditional
jump.

When these operations affect more than one bit, they cannot be rep-
resented by a single x86-64 instruction.
Similarly, the fetch_max

and fetch_min operations also have no corresponding x86-64 in-
struction.
For these operations, we need a different strategy than a
simple lock prefix.

x86 compare-and-exchange instruction

In “Compare-and-Exchange Operations”, we saw how any atomic
fetch-and-modify operation can be implemented
as a compare-and-
exchange loop.
This is exactly what the compiler will use for opera-
tions that
cannot be represented by a single x86-64 instruction,
since
this architecture does include a (lock-prefixable) cmpxchg (compare
and exchange) instruction.

We can see this in action by changing our last example from
fetch_add to fetch_or :

Rust source Compiled x8

pub fn a(x: &AtomicI32) -> i32 {

 x.fetch_or(10, Relaxed)

}

a:

 mov

.L1:

 mov

 or

 loc

 jne

 ret

The first mov instruction loads the value from the atomic variable
into the eax register.
The following mov and or instructions copy
that value into ecx and apply the binary or operation,
such that
eax contains the old value and ecx the new value.
The cmpxchg

instruction afterwards behaves exactly like the
compare_exchange method in Rust.
Its first argument is the mem-
ory address on which to operate (the atomic variable),
the second ar-
gument (ecx) is the new value, the expected value is implicitly taken
from eax ,
and the return value is implicitly stored in eax .
It also
sets a status flag that a subsequent instruction
can use to condition-
ally branch based on whether the operation succeeded or not.
In this

case, a jne (jump if not equal) instruction is used to jump back to
the .L1 label
to try again on failure.

Here’s what the equivalent compare-and-exchange loop looks like in
Rust, just like we saw in “Compare-and-Exchange Operations”:

pub fn a(x: &AtomicI32) -> i32 {

 let mut current = x.load(Relaxed);

 loop {

 let new = current | 10;

 match x.compare_exchange(current, new, Re

 Ok(v) => return v,

 Err(v) => current = v,

 }

 }

}

Compiling this code results in the exact same assembly as the
fetch_or version.
This shows that, at least on x86-64, they are in-
deed equivalent in every way.

NOTE

On x86-64, there is no difference between compare_exchange and
compare_exchange_weak . Both compile down to a lock cmpxchg instruc-
tion.

Load-Linked and Store-Conditional Instructions

The closest thing to a compare-and-exchange loop on a RISC archi-
tecture is a load-linked/store-conditional (LL/SC) loop.
It involves two
special instructions that come in a pair:
a load-linked instruction,

which mostly behaves like a regular load instruction,
and a store-con-
ditional instruction, which mostly behaves like a regular store instruc-
tion.
They are used in a pair, with both instructions targeting the same
memory address.
The key difference to the regular load and store in-
structions is that the store is conditional: it refuses to store to memory
if any other thread has overwritten that memory since the load-linked
instruction.

These two instructions allow us to load a value from memory, modify
it, and store the new value back only if
nobody has overwritten the
value since we loaded it.
If that fails, we can simply retry.
Once it suc-
ceeds, we can safely pretend the whole operation was atomic, since
it didn’t get disrupted.

The key to making these instructions feasible and efficient to imple-
ment is twofold:
(1) only one memory address (per core) can be
tracked at a time, and (2) the store-conditional is allowed to have
false negatives,
meaning that it may fail to store even though nothing
has changed that particular piece of memory.

This makes it possible to be less precise when tracking changes to
memory,
at the cost of perhaps a few extra cycles through an LL/SC
loop.
Access to memory could be tracked not per byte, but per chunk
of 64 bytes, or per kilobyte, or even the entire memory as a whole.

Less accurate memory tracking results in more unnecessary cycles
through LL/SC loops, significantly reducing performance,
but also re-
ducing implementation complexity.

Taking things to the extreme, a basic, hypothetical single-core system
could use a strategy
where it does not track writes to memory at all.
Instead, it could track interrupts or context switches, the events that
can cause the processor to switch to another thread.
If, in a system
without any parallelism, no such event happened,
it could safely as-
sume no other thread could have touched the memory.
If any such
event happened, it could just assume the worst, refuse the store,
and
hope for better luck in the next iteration of the loop.

ARM load-exclusive and store-exclusive

On ARM64, or at least in the first version of ARMv8, no atomic fetch-
and-modify
or compare-and-exchange operation can be represented
by a single instruction.
True to its RISC nature, the load and store
steps are separate from the calculation and comparison.

ARM64’s load-linked and store-conditional instructions
are called
ldxr (load exclusive register) and stxr (store exclusive register).
In addition, the clrex (clear exclusive) instruction can be used as
an alternative to stxr
to stop tracking writes to memory without
storing anything.

To see them in action, let’s see what happens when we do an atomic
addition on ARM64:

Rust source Compiled ARM6

pub fn a(x: &AtomicI32) {

 x.fetch_add(10, Relaxed);

}

a:

.L1:

 ldxr w

 add w9

 stxr w

 cbnz w

 ret

We get something that looks quite similar to the non-atomic version
we got before (in “Read-Modify-Write Operations”):
a load instruction,

an add instruction, and a store instruction.
The load and store instruc-
tions have been replaced by their “exclusive” LL/SC version,
and a

new cbnz (compare and branch on nonzero) instruction appeared.

The stxr instruction stores a zero in w10 if it succeeded, or a one
if it didn’t.
The cbnz instruction uses this to restart the whole opera-
tion if it failed.

Note that unlike with lock add on x86-64, we don’t need to do any-
thing special to retrieve the old value.
In the example above, the old
value will still be available in register w8 after the operation suc-
ceeds,
so there’s no need for a specialized instruction like xadd .

This LL/SC pattern is quite flexible: it doesn’t just work for a limited
set of operations like add and or ,
but for virtually any operation.

We can just as easily implement an atomic fetch_divide or
fetch_shift_left by putting the corresponding
instruction(s)

between the ldxr and stxr instructions.
However, if there are too
many instructions between them, there’s an increasingly high chance
of disruption resulting in extra cycles.
Generally, the compiler will at-
tempt to keep the number of instructions in an LL/SC pattern as small
as possible,
to avoid LL/SC loops that would rarely—or even never—
succeed and thus could spin forever.

ARMV8.1 ATOMIC INSTRUCTIONS

A later version of ARM64, part of ARMv8.1, also includes new CISC
style instructions for common atomic operations.
For example, the
new ldadd (load and add) instruction is equivalent to an atomic
fetch_add operation,
without the need for an LL/SC loop.
It even
includes instructions for operations like fetch_max , which don’t ex-
ist on x86-64.

It also includes a cas (compare and swap) instruction correspond-
ing to com⁠pare_​exchange .
When this instruction is used, there’s
no difference between compare_exchange and
compare_exchange_weak ,
just like on x86-64.

While the LL/SC pattern is quite flexible and nicely fits the general
RISC pattern,
these new instructions can be more performant, as
they can be easier to optimize for with specialized hardware.

Compare-and-exchange on ARM

The compare_exchange operation maps quite nicely
onto this
LL/SC pattern by using a conditional branch instruction
to skip the
store instruction if the comparison failed.
Let’s look at the generated
assembly:

Rust source

pub fn a(x: &AtomicI32) {

 x.compare_exchange_weak(5, 6, Relaxed, Rela

}

NOTE

Note that a compare_exchange_weak operation is normally used in a loop
that
repeats if the comparison fails.
For this example, however, we only call it once and
ignore its return value,
which shows us the relevant assembly without distractions.

The ldxr instruction loads the value, which is then immediately
compared with the cmp (compare) instruction
to the expected value
of 5.
The b.ne (branch if not equal) instruction will cause a jump to

the .L1 label if the value was not as expected,
at which point the
clrex instruction is used to abort the LL/SC pattern.
If the value
was five, the flow continues through the mov and stxr instructions
to store the new value of six in memory, but only if nothing has over-
written the five in the meantime.

Remember that stxr is allowed to have false negatives; it might fail
here even if the five wasn’t overwritten.
That’s okay, because we’re
using compare_exchange_weak , which is allowed to have false
negatives too.
In fact, this is the reason why a weak version of
compare_exchange exists.

If we replace compare_exchange_weak with
compare_exchange , we get
nearly identical assembly, except for
an extra branch to restart the operation if it failed:

Rust source

pub fn a(x: &AtomicI32) {

 x.compare_exchange(5, 6, Relaxed, Relaxed);

}

As expected, there’s now an extra cbnz (compare and branch on
nonzero) instruction to
restart the LL/SC loop on failure.
Additionally,

the mov instruction has been moved out of the loop, to keep the loop
as short as possible.

OPTIMIZATION OF COMPARE-AND-EXCHANGE LOOPS

As we saw in “x86 compare-and-exchange instruction”, a fetch_or

operation and the equivalent compare_exchange loop
compile
down to the exact same instructions on x86-64.
One might expect the
same to happen on ARM, at least with
 compare_exchange_weak ,

as the load and weak compare-and-exchange operations
could di-
rectly be mapped to the LL/SC instructions.

Unfortunately, this is currently (as of Rust 1.66.0) not what happens.

While this might change in the future as the compiler is always im-
proving,
it’s quite hard for a compiler to safely turn a manually written
compare-and-exchange loop into the corresponding LL/SC loop.
One
of the reasons is that there’s a limit on the number and type of in-
structions that can
be put between the stxr and ldxr instructions,

which is not something that
the compiler is designed to keep in mind
while applying other optimizations.
At the time where patterns like a
compare-and-exchange loop are still recognizable,
the exact instruc-
tions that an expression will compile down to are not known yet,
mak-
ing this a very tricky optimization to implement for the general case.

So, at least until we get even smarter compilers, it’s advisable to use
the dedicated fetch-and-modify methods rather than a compare-and-
exchange loop,
if possible.

Caching

Reading and writing memory is slow, and can easily cost as much
time as executing tens or hundreds of instructions.
This is why all per-
formant processors implement caching, to avoid interacting
with the
relatively slow memory as much as possible.
The exact implementa-
tion details of memory caches in modern processors are complex,

partially proprietary,
and, most importantly, mostly irrelevant to us
when writing software.
After all, the name cache comes from the
French word caché, meaning hidden.
Nevertheless, understanding
the basic principles behind how most processors implement caching
can be extremely useful when optimizing software for performance.

(Not that we need an excuse to learn more about an interesting topic,

of course.)

Except for very small microcontrollers, virtually all modern processors
use caching.
Such a processor never interacts directly with main
memory,
but instead routes every single read and write request
through its cache.
If an instruction needs to read something from
memory,
the processor will ask its cache for that data.
If it is already
cached, the cache will quickly respond with the cached data, avoiding
interacting with main memory.
Otherwise, it’ll have to take the slow
path, where the cache might have to ask the main memory for a copy
of the relevant data.
Once the main memory responds, not only will

the cache finally respond to the original read request,
but it will also
remember the data, such that it can respond more quickly the next
time this data is requested.
If the cache becomes full, it makes space
by dropping some old data it deems least likely to be useful.

When an instruction wants to write something to memory,
the cache
could decide to hold on to the modified data without writing it to main
memory.
Any subsequent read requests for the same memory ad-
dress will then get a copy of the modified data,
ignoring the outdated
data in main memory.
It would only actually write the data back to
main memory
when the modified data needs to be dropped from the
cache to make space.

In most processor architectures, the cache reads and writes memory
in blocks of 64 bytes,
even if only a single byte was requested.
These
blocks are often called cache lines.
By caching the entire 64-byte
block that surrounds the requested byte,
any subsequent instructions
that need to access any of the other bytes in that block will not have
to wait for main memory.

Cache Coherence

In modern processors, there is usually more than one layer of
caching.
The first cache, or level one (L1) cache is the smallest and
fastest.
Instead of talking to the main memory, it talks to the level two

(L2) cache,
which is much larger, but slower.
The L2 cache might be
the one to talk to main memory, or there might be yet another, larger
and slower, L3 cache—perhaps even an L4 cache.

Adding extra layers doesn’t change much about how they work; each
layer can operate independently.
Where things get interesting, how-
ever, is when there are multiple processor cores that each have their
own cache.
In a multi-core system, each processor core usually has
its own L1 cache, while
the L2 or L3 caches are often shared with
some or all of the other cores.

A naive caching implementation would break down under these con-
ditions,
as the cache can no longer assume it controls all interactions
with the next layer.
If one cache would accept a write and mark some
cache line as modified without informing the other caches,
the state
of the caches could become inconsistent.
Not only would the modi-
fied data not be available to the other cores
until the cache writes the
data down to the next level(s),
it could end up conflicting with different
modifications cached in other caches.

To solve this problem, a cache coherence protocol is used.
Such a
protocol defines how exactly the caches operate and communicate
with each other
to keep everything in a consistent state.
The exact
protocol used varies per architecture, processor model, and even per
cache level.

We’ll discuss two basic cache coherence protocols. Modern proces-
sors use many variations of these.

The write-through protocol

In caches that implement the write-through cache coherence
protocol,
writes are not cached but immediately sent through to the
next layer.
The other caches are connected to the next layer through
the same shared communication channel,
which means that they can
observe the other caches’ communications to the next layer.
When a
cache observes a write for an address it currently has cached,
it im-
mediately either drops or updates its own cache line to keep every-
thing consistent.

Using this protocol, caches never contain any cache lines in a modi-
fied state. While this simplifies things significantly, it nullifies any ben-
efits of caching for writes.
When optimizing just for reading, this can
be a great choice.

The MESI protocol

The MESI cache coherence protocol is named after the four possible
states it defines for cache line:
modified, exclusive, shared and in-
valid.
Modified (M) is used for cache lines that contain data that has
been modified but not yet written
to memory (or the next level cache).

Exclusive (E) is used for cache lines that contain unmodified data
that’s not cached in any other cache (at the same level).
Shared (S) is
used for unmodified cache lines that might also appear in one or
more of the other (same level) caches.
Invalid (I) is used for unused
(empty or dropped) cache lines, which do not contain any useful data.

Caches that use this protocol communicate with all the other caches
at the same level.
They send each other updates and requests to
make it possible for them to stay consistent with each other.

When a cache gets a request for an address it has not yet cached,

also called a cache miss,
it does not immediately request it from the
next layer.
Instead, it first asks the other caches (at the same level) if
any of them have this cache line available.
If none of them have it, the
cache will continue to request the address from the (slower) next lay-
er,
and mark the resulting new cache line as exclusive (E).
When this
cache line is then modified by a write operation, the cache can
change the state to modified (M)
without informing the others, since it
knows none of the others have the same cache line cached.

When requesting a cache line that’s already available in any of the
other caches,
the result is a shared (S) cache line, obtained directly
from the other cache(s).
If the cache line was in the modified (M)

state, it’ll first be written (or flushed) to the next layer,
before changing

it to shared (S) and sharing it.
If it was in the exclusive (E) state, it’ll
be changed to shared (S) immediately.

If the cache wants exclusive rather than shared access
(for example,

because it is going to modify the data right after),
the other cache(s)

will not keep the cache line in shared (S) state,
but instead drop it en-
tirely by changing it to invalid (I).
In this case, the result is an exclu-
sive (E) cache line.

If a cache needs exclusive access to a cache line it already has avail-
able in the shared (S) state,
it simply tells the others to drop the
cache line before upgrading it to exclusive (E).

There are several variations of this protocol.
For example, the MOESI
protcol adds an extra state to allow sharing
of modified data without
immediately writing it to the next layer,
and the MESIF protcol uses
an extra state to decide which cache responds to a
request for a
shared cache line that’s available in multiple caches.
Modern proces-
sors often use more elaborate and proprietary cache coherence pro-
tocols.

Impact on Performance

While caching is mostly hidden from us, caching behavior can have
significant
effects on the performance of our atomic operations.
Let’s

try to measure some of those effects.

Measuring the speed of a single atomic operation is very tricky, since
they are extremely fast.
To be able to get some useful numbers, we’ll
have to repeat an operation, say, a billion times,
and measure how
long that takes in total.
For example, we could try to measure the time
it takes for a billion load operations like this:

static A: AtomicU64 = AtomicU64::new(0);

fn main() {

 let start = Instant::now();

 for _ in 0..1_000_000_000 {

 A.load(Relaxed);

 }

 println!("{:?}", start.elapsed());

}

Unfortunately, this does not work as expected.

When running this with optimizations turned on (e.g., with cargo

run --release or rustc -O),
we’ll see an unreasonably low
measured time.
What happened is that the compiler was smart
enough to understand that we’re not using the loaded values,
so it
decided to completely optimize the “unnecessary” loop away.

To avoid this, we can use the special std::hint::black_box
function.
This function takes an argument of any type, which it just re-
turns without doing anything.
What makes this function special is that
the compiler will try its best not to assume anything
about what the
function does; it treats it like a “black box” that could do anything.

We can use this to avoid certain optimizations that would render a
benchmark useless.
In this case, we can pass the result of the load
operation to black_box() to
stop any optimizations that assume
we don’t actually need the loaded values.
That’s not enough, though,

since the compiler could still assume that A is always zero,
making
the load operations unnecessary.
To avoid that, we can pass a refer-
ence to A to black_box() at the start,
such that the compiler may
no longer assume there’s only one thread that accesses A .
After all,
it must assume that black_box(&A) might have spawned an extra
thread that interacts with A .

Let’s try that out:

use std::hint::black_box;

static A: AtomicU64 = AtomicU64::new(0);

fn main() {

 black_box(&A); // New!

 let start = Instant::now();

 for _ in 0..1_000_000_000 {

 black_box(A.load(Relaxed)); // New!

 }

 println!("{:?}", start.elapsed());

}

The output fluctuates a bit when running this multiple times,
but on a
not-so-recent x86-64 computer, it seems to give a result of about 300

milliseconds.

To see any caching effects, we’ll spawn a background thread that in-
teracts with the atomic variable.
That way, we can see if it affects the
load operations of the main thread or not.

First, let’s try that with just load operations on the background thread,

as follows:

static A: AtomicU64 = AtomicU64::new(0);

fn main() {

 black_box(&A);

 thread::spawn(|| { // New!

 loop {

 black_box(A.load(Relaxed));

 }

 });

 let start = Instant::now();

 for _ in 0..1_000_000_000 {

 black_box(A.load(Relaxed));

 }

 println!("{:?}", start.elapsed());

}

Note that we’re not measuring the performance of the operations on
the background thread.
We’re still only measuring how long it takes
for the main thread to perform a billion load operations.

Running this program results in similar measurements as before: it
fluctuates a bit around 300 milliseconds
when tested on the same
x86-64 computer.
The background thread has no significant effect on
the main thread.
They presumably each run on a separate processor
core, but the caches of both cores
contain a copy of A , allowing for
very fast access.

Now let’s change the background thread to perform store operations
instead:

static A: AtomicU64 = AtomicU64::new(0);

fn main() {

 black_box(&A);

 thread::spawn(|| {

 loop {

 A.store(0, Relaxed); // New!

 }

 });

 let start = Instant::now();

 for _ in 0..1_000_000_000 {

 black_box(A.load(Relaxed));

 }

 println!("{:?}", start.elapsed());

}

This time, we do see a significant difference.
Running this program on
the same x86-64 machine now results in an output that fluctuates
around
three whole seconds, almost ten times as much as before.

More recent computers will show a less significant but still very mea-
surable difference.
For example, it went from 350 milliseconds to 500

milliseconds on a recent Apple M1 processor,
and from 250 millisec-
onds to 650 milliseconds on a very recent x86-64 AMD processor.

This behavior matches our understanding of cache coherence proto-
cols:
a store operation requires exclusive access to a cache line,

which slows down
subsequent load operations on other cores that no
longer share the cache line.

FAILING COMPARE-AND-EXCHANGE OPERATIONS

Interestingly, on most processor architectures, the same effect we
saw with store operations also happens
when the background thread
performs only compare-and-exchange operations, even if they all fail.

To try that out, we can replace the store operation (of the background
thread) with a call to compare_exchange
that will never succeed:

 …

 loop {

 // Never succeeds, because A is never

 black_box(A.compare_exchange(10, 20,

 }

 …

Because A is always zero, this compare_exchange operation will
never succeed.
It’ll load the current value of A , but never update it to
a new value.

One might reasonably expect this to behave the same as a load oper-
ation, since
it does not modify the atomic variable.
However, on most
processor architectures, the instruction(s) of compare_exchange
will claim
exclusive access of the relevant cache line regardless of
whether the comparison succeeds or not.

This means that it can be beneficial to not use compare_exchange

(or swap) in a spin loop
like we did for our SpinLock in Chapter 4,

but instead use a load operation
first to check if the lock has been
unlocked.
That way, we avoid unnecessarily claiming exclusive ac-
cess to the relevant cache line.

Since caching happens per cache line, not per individual byte or vari-
able,
we should be able to see the same effect using adjacent vari-
ables rather than the same one.
To try this out, let’s use three atomic
variables instead of one,
have the main thread use only the middle
variable, and make the background thread use only the other two, as
follows:

static A: [AtomicU64; 3] = [

 AtomicU64::new(0),

 AtomicU64::new(0),

 AtomicU64::new(0),

];

fn main() {

 black_box(&A);

 thread::spawn(|| {

 loop {

 A[0].store(0, Relaxed);

 A[2].store(0, Relaxed);

 }

 });

 let start = Instant::now();

 for _ in 0..1_000_000_000 {

 black_box(A[1].load(Relaxed));

 }

 println!("{:?}", start.elapsed());

}

Running this produces similar results as before: it takes several sec-
onds on that same x86-64 computer.
Even though A[0] , A[1] , and
A[2] are each used by only one thread,
we still see the same ef-
fects as if we’re using the same variable on both threads.
The reason
is that A[1] shares a cache line with either or both of the others.

The processor core running the background thread repeatedly claims
exclusive access
to the cache line(s) containing A[0] and A[2] ,

which also contains A[1] ,
slowing down “unrelated” operations on
A[1] .
This effect is called false sharing.

We can avoid this by spacing the atomic variables further apart, so
they each get their own cache line.
As mentioned before, 64 bytes is
a reasonable guess for the size of a cache line,
so let’s try wrapping
our atomics in a 64-byte aligned struct, as follows:

#[repr(align(64))] // This struct must be 64-byte

struct Aligned(AtomicU64);

static A: [Aligned; 3] = [

 Aligned(AtomicU64::new(0)),

 Aligned(AtomicU64::new(0)),

 Aligned(AtomicU64::new(0)),

];

fn main() {

 black_box(&A);

 thread::spawn(|| {

 loop {

 A[0].0.store(1, Relaxed);

 A[2].0.store(1, Relaxed);

 }

 });

 let start = Instant::now();

 for _ in 0..1_000_000_000 {

 black_box(A[1].0.load(Relaxed));

 }

 println!("{:?}", start.elapsed());

}

The #[repr(align)] attribute enables us to tell the compiler
the
(minimal) alignment of our type, in bytes.
Since an AtomicU64 is
only 8 bytes, this will add 56 bytes of padding to our Aligned struct.

Running this program no longer gives slow results.
Instead, we get
the same results as when we had no background thread at all:
about
300 milliseconds when run on the same x86-64 computer as before.

TIP

Depending on the type of processor you’re trying this on, you might need
to use
128-byte alignment to see the same effect.

The experiment above shows that it can be advisable not to
put unre-
lated atomic variables close to each other.
For example, a dense ar-
ray of small mutexes might not always perform as well as
an alterna-
tive structure that keeps the mutexes are spaced further apart.

On the other hand, when multiple (atomic) variables are related and
often accessed in quick succession,
it can be good to put them close
together.
For example, our SpinLock<T> from Chapter 4 stores the
T right next to the AtomicBool ,
which means it’s likely that the
cache line containing the AtomicBool will also contain the T ,
such
that a claim for (exclusive) access to one also includes the other.
Whether this is beneficial depends entirely on the situation.

Reordering

Consistent caching, for example through the MESI protocol we ex-
plored earlier in this chapter,
generally does not affect correctness of
a program, even when multiple threads are involved.
The only ob-
servable differences caused by consistent caching come down to dif-
ferences in timing.
However, modern processors implement many
more optimizations that can have a big impact on correctness,
at
least when multiple threads are involved.

At the start of Chapter 3, we briefly discussed instruction reordering,

how both the compiler and the processor can change the order of in-
structions.
Focusing just on the processor, here are some examples
of various ways in which instructions, or their effects,
might happen
out of order:

Store buffers

Since writes can be slow, even with caching, processor cores
often include a store buffer.
Write operations to memory can be
stored in this store buffer, which is very quick, to allow the pro-
cessor
to immediately continue with the instructions that follow.

Then, in the background, the write operation is completed by
writing to the (L1) cache,
which can be significantly slower.
This
way, the processor does not have to wait while the cache co-
herence protocol jumps into action
to get exclusive access to
the relevant cache line.

As long as special care is taken to handle subsequent read op-
erations from the same memory address,
this is entirely invisi-
ble for instructions running as part of the same thread, on the
same processor core.
However, for a brief moment, the write
operation is not yet visible to the other cores,
resulting in an in-
consistent view of what the memory looks like from different
threads running on different cores.

Invalidation queues

Regardless of the exact coherency protocol, caches that oper-
ate in parallel need to process invalidation requests:
instruc-
tions to drop a specific cache line because it’s about to be mod-
ified and become invalid.
As a performance optimization, it’s
common for such requests not to be
processed immediately,

but to be queued for (slightly) later processing instead.
When
such invalidation queues are in use, the caches are no longer
always consistent,
as cache lines might be briefly outdated be-
fore they are dropped.
However, this has no impact on a single
threaded program, other than speeding it up.
The only impact is
the visibility of write operations from other cores,
which might
now appear as (very slightly) delayed.

Pipelining

Another very common processor feature that significantly im-
proves performance is pipelining:
executing consecutive in-
structions in parallel, if possible.
Before an instruction finishes
executing,
the processor might already start executing the next
one.
Modern processors can often start the execution of quite a
few instructions in
series while the first one is still in progress.

If each instruction operates on the result from the previous one,

this doesn’t help much;
they each still need to wait on the result
of the one before it.
But when an instruction can be executed
independently of the previous one, it might even finish first.
For
example, an instruction that just increments a register might fin-
ish very quickly,
while a previously started instruction might still
be waiting on reading something from memory,
or some other
slow operation.

While this doesn’t affect a single threaded program (other than
speed),
interaction with other cores might happen out of order
when an instruction that operates on memory
finishes execut-
ing before a preceding one does.

There are many ways in which a modern processor might end up ex-
ecuting
instructions in an entirely different order than expected.
There
are many proprietary techniques involved,
some of which become
public only when a subtle mistake is found that can be exploited by

malicious software.
When they work as expected, however, they all
have one thing in common:
they do not affect single threaded pro-
grams, other than timing, but can cause interaction with
other cores
to appear to happen in an inconsistent order.

Processor architectures that allow for memory operations to be re-
ordered
also provide a way to prevent this through special instruc-
tions.
These instructions might, for example, force the processor to
flush its store buffer,
or to finish any pipelined instructions, before
continuing.
Sometimes, these instructions only prevent a certain type
of reordering.
For example, there might be an instruction to prevent
store operations from
being reordered with respect to each other,
while still allowing load operations to be reordered.
Which types of re-
ordering might happen, and how they can be prevented, depends on
the processor architecture.

Memory Ordering

When performing any atomic operation in a language like Rust or C,

we specify a memory ordering
to inform the compiler of our ordering
requirements.
The compiler will generate the right instructions for the
processor to prevent it from
reordering instructions in ways that would
break the rules.

Which types of instruction reordering are allowed depends on the
kind of memory operation.
For non-atomic and relaxed atomic opera-
tions, any type of reordering is acceptable.
At the other extreme, se-
quentially consistent atomic operations don’t allow for any type of re-
ordering at all.

An acquire operation may not get reordered with any memory opera-
tions that follow,
while a release operation may not be reordered with
any memory operations that precede it.
Otherwise, some mutex-pro-
tected data might be accessed before acquiring—​or after releasing—​

its mutex, resulting in a data race.

OTHER-MULTI-COPY ATOMICITY

The ways in which the order of memory operations is affected on
some processor architectures,
such as those one might find in graph-
ics cards,
cannot always be explained by instruction reordering.
The
effect of two consecutive store operations on one core
might become
visible in the same order on a second core,
but in opposite order on a
third core.
This could happen, for example, because of inconsistent
caching or shared store buffers.
This effect can’t be explained by the
instructions on the first core being reordered,
as that doesn’t explain
the inconsistency between the second and third core’s observations.

The theoretical memory model we discussed in Chapter 3 leaves
space for such processor architectures by not requiring a globally
consistent order for anything but sequentially consistent atomic oper-
ations.

The architectures we’re focusing on in this chapter, x86-64 and AR-
M64, are other-multi-copy atomic, which means that write operations,

once they are visible to any core, become visible to all cores at the
same time.
For other-multi-copy atomic architectures, memory order-
ing is only a matter of instruction reordering.

Some architectures, such as ARM64, are called weakly ordered,
as
they allow the processor to freely reorder any memory operation.
On

the other hand, strongly ordered architectures, such as x86-64, are
very
restrictive about which memory operations may be reordered.

x86-64: Strongly Ordered

On an x86-64 processor, a load operation will never appear to have
happened after a memory operation that follows.
Similarly, this archi-
tecture doesn’t allow for a store operation to appear to have hap-
pened before a preceding
memory operation.
The only kind of re-
ordering you might see on x86-64
is a store operation getting delayed
until after a later load operation.

NOTE

Because of the reordering restrictions of the x86-64 architecture,
it is often de-
scribed as a strongly ordered architecture,
although some prefer to reserve this
term for architectures that preserve the order of all memory operations.

These restrictions satisfy all the needs of acquire-loads (because a
load is never reordered with a later operation),
and of release-stores
(because a store is never reordered with an earlier operation).
This
means that on x86-64, we get release and acquire semantics “for
free”:
release and acquire operations are identical to relaxed
operations.

We can verify this by seeing what happens to a few of the snippets
from “Load and Store” and “x86 lock prefix”
when we change
Relaxed to Release , Acquire , or AcqRel :

Rust source Compiled x8

pub fn a(x: &AtomicI32) {

 x.store(0, Release);

}

a:

 mov

 ret

pub fn a(x: &AtomicI32) -> i32 {

 x.load(Acquire)

}

a:

 mov

 ret

pub fn a(x: &AtomicI32) {

 x.fetch_add(10, AcqRel);

}

a:

 loc

 ret

As expected, the assembly is identical, even though we specified a
stronger memory ordering.

We can conclude that on x86-64, ignoring potential compiler optimiza-
tions,
acquire and release operations are just as cheap as relaxed
operations.
Or, perhaps more accurately, that relaxed operations are
just as expensive as acquire and release operations.

Let’s check out what happens for SeqCst :

Rust source Compiled x8

pub fn a(x: &AtomicI32) {

 x.store(0, SeqCst);

}

a:

 xor

 xch

 ret

pub fn a(x: &AtomicI32) -> i32 {

 x.load(SeqCst)

}

a:

 mov

 ret

pub fn a(x: &AtomicI32) {

 x.fetch_add(10, SeqCst);

}

a:

 loc

 ret

The load and fetch_add operations still result in the same as-
sembly as before,
but assembly for store changed completely.
The
xor instruction looks a bit out of place, but is just a common way to

set the eax register to zero
by xor ‘ing it with itself, which always
results in zero.
A mov eax, 0 instruction would’ve worked as well,
but takes a bit more space.

The interesting part is the xchg instruction, which is normally used
for a swap operation:
a store operation that also retrieves the old val-
ue.

A regular mov instruction like before wouldn’t suffice for a SeqCst

store, because it would allow reordering it with a later load operation,

breaking the globally consistent order.
By changing it to an operation
that also performs a load, even though we don’t care about the value
it loads,
we get the additional guarantee of our instruction not getting
reordered with later memory operations,
solving the issue.

NOTE

A SeqCst load operation can still be a regular mov , exactly because SeqCst

stores are upgraded to xchg .
 SeqCst operations guarantee a globally consistent
order only with other SeqCst operations.
The mov from a SeqCst load might
still be reordered with the mov of an earlier non- SeqCst store operation,
but

that’s perfectly fine.

On x86-64, a store operation is the only atomic operation for which
there’s a difference between SeqCst and
weaker memory ordering.

In other words, x86-64 SeqCst operations other than stores are just

as cheap
as Release , Acquire , AcqRel , and even Relaxed

operations.
Or, if you prefer, x86-64 makes Relaxed operations oth-
er than stores as
expensive as SeqCst operations.

ARM64: Weakly Ordered

On a weakly ordered architecture such as ARM64,
all memory opera-
tions can potentially be reordered with each other.
This means that
unlike x86-64, acquire and release operations will not be identical to
relaxed operations.

Let’s take a look at what happens on ARM64 for Release ,

Acquire , and AcqRel :

Rust source Compiled AR

pub fn a(x: &AtomicI32) {

 x.store(0, Release);

}

a:

 stl

 ret

pub fn a(x: &AtomicI32) -> i32 {

 x.load(Acquire)

}

a:

 lda

 ret

Rust source Compiled AR

pub fn a(x: &AtomicI32) {

 x.fetch_add(10, AcqRel);

}

a:

.L1:

 lda

 add

 stl

 cbn

 ret

The changes, compared to the Relaxed versions we saw earlier,
are very subtle:

 str (store register) is now stlr (store-release register).

 ldr (load register) is now ldar (load-acquire register).

 ldxr (load exclusive register) is now ldaxr (load-acquire exclu-
sive register).

https://calibre-pdf-anchor.a/#a987
https://calibre-pdf-anchor.a/#a988
https://calibre-pdf-anchor.a/#a989

 stxr (store exclusive register) is now stlxr (store-release ex-
clusive register).

As this shows, ARM64 has special versions of its load and store in-
structions for acquire and release ordering.
Unlike an ldr or ldxr
instruction, an ldar or ldxar instruction will
never be reordered
with any later memory operation.
Similarly, unlike an str or stxr
instruction, an stlr or stxlr
instruction will never be reordered
with any earlier memory operation.

NOTE

A fetch-and-modify operation using only Release or Acquire ordering instead
of AcqRel
uses only one of the stlxr and ldxar instructions, respectively,

paired with a regular ldxr or stxr instruction.

In addition to the restrictions required for release and acquire seman-
tics,
none of the special acquire and release instructions is ever re-
ordered
with any other of these special instructions, making them
also suitable for SeqCst .

As demonstrated below, upgrading to SeqCst results in the exact
same assembly as before:

https://calibre-pdf-anchor.a/#a990

Rust source Compiled AR

pub fn a(x: &AtomicI32) {

 x.store(0, SeqCst);

}

a:

 stl

 ret

pub fn a(x: &AtomicI32) -> i32 {

 x.load(SeqCst)

}

a:

 lda

 ret

pub fn a(x: &AtomicI32) {

 x.fetch_add(10, SeqCst);

}

a:

.L1:

 lda

 add

 stl

 cbn

 ret

This means that on ARM64, sequentially consistent operations are
exactly as cheap as acquire and release operations.
Or, rather, that
ARM64 Acquire , Release , and AcqRel operations are as ex-
pensive as SeqCst .
Unlike x86-64, however, Relaxed operations
are relatively cheap, as they don’t result in
stronger ordering guaran-
tees than necessary.

ARMV8.1 ATOMIC RELEASE AND ACQUIRE INSTRUCTIONS

As discussed in “ARMv8.1 Atomic Instructions”, the ARMv8.1 version
of ARM64 includes CISC style instructions for atomic operations such
as ldadd (load and add) as an alternative to an ldxr / stxr loop.

Just like the load and store operations have special versions with ac-
quire and release semantics, these instructions also have variants for
stronger memory ordering. Because these instructions involve both a
load and a store, they each have three additional variants: one for re-
lease (-l), one for acquire (-a), and one for combined release and
acquire (-al) semantics.

For example, for ldadd , there is also ldaddl , ldadda , and
ldaddal .
Similarly, the cas instruction comes with the casl ,

casa , and casal variants.

Just like for the load and store instructions, the combined release and
acquire (-al) variants also suffice for SeqCst operations.

An Experiment

An unfortunate consequence of the popularity of strongly ordered ar-
chitectures is that certain classes of memory ordering bugs can easily
stay undiscovered.
Using Relaxed where Acquire or Release

is necessary is incorrect,
but could accidentally end up working just
fine in practice on x86-64,
assuming the compiler doesn’t reorder your
atomic operations.

CAUTION

Remember that it’s not only the processor that can cause things to happen out of
order.
The compiler is also allowed to reorder the instructions it produces, as long
as it takes
the memory ordering constraints into account.

In practice, compilers tend to be very conservative about optimizations involving

atomic operations,
but that might very well change in the future.

This means one can easily write incorrect concurrent code that (acci-
dentally) works perfectly fine on x86-64,
but might break down when
compiled for and run on an ARM64 processor.

Let’s try to do exactly that.

We’ll create a spin lock–protected counter, but change all the memo-
ry orderings to Relaxed .
Let’s not bother with creating a custom
type or unsafe code. Instead, let’s just use an AtomicBool for the
lock and an AtomicUsize for the counter.

To be sure the compiler won’t be the one to reorder our operations,

we’ll use the std::sync::compiler_fence() function to inform

the compiler
of the operations that should have been Acquire or
Release ,
without telling the processor.

We’ll make four threads repeatedly lock, increment the counter, and
unlock—a million times each. Putting that all together, we end up with
the following code:

fn main() {

 let locked = AtomicBool::new(false);

 let counter = AtomicUsize::new(0);

 thread::scope(|s| {

 // Spawn four threads, that each iterate

 for _ in 0..4 {

 s.spawn(|| for _ in 0..1_000_000 {

 // Acquire the lock, using the wr

 while locked.swap(true, Relaxed)

 compiler_fence(Acquire);

 // Non-atomically increment the c

 let old = counter.load(Relaxed);

 let new = old + 1;

 counter.store(new, Relaxed);

 // Release the lock, using the wr

 compiler_fence(Release);

 locked.store(false, Relaxed);

 });

 }

 });

 println!("{}", counter.into_inner());

}

If the lock works properly, we’d expect the final value of the counter to
be exactly four million.
Note how incrementing the counter happens
in a non-atomic way, with a separate load and store
rather than
a single fetch_add , to make sure that any problems with the spin
lock
could result in missed increments and thus a lower total value of
the counter.

Running this program a few times on a computer with an x86-64 pro-
cessor gives:

4000000

4000000

4000000

As expected, we get release and acquire semantics for “free,” and
our mistake does not cause any issues.

Trying this on an Android phone from 2021 and a Raspberry Pi 3 mod-
el B, which both use an ARM64 processor,
results in the same output:

4000000

4000000

4000000

This suggests that not all ARM64 processors make use of all forms of
their instruction reordering,
although we can’t assume much based
on this experiment.

When trying this out on an 2021 Apple iMac, which contains an AR-
M64-based Apple M1 processor, we get something different:

3988255

3982153

3984205

Our previously hidden mistake suddenly turned into an actual issue—
an issue that is only visible on a weakly ordered system.
The counter
is only off by about 0.4%, showing how subtle such an issue can be.

In a real-life scenario, an issue like this might stay undiscovered for a
very long time.

TIP

Don’t forget to enable optimization (with cargo run --release or rustc -O)

when trying to replicate the results above.
Without optimization, the same code of-
ten results in many more instructions,
which can hide the subtle effects of instruc-
tion reordering.

Memory Fences

There is one type of memory ordering related instruction we haven’t
seen yet: memory fences.
A memory fence or memory barrier instruc-
tion is used to represent a std::sync::atomic::fence ,
which
we discussed in “Fences”.

As we’ve seen before, memory ordering on x86-64 and ARM64 is all
about instruction reordering.
A fence instruction prevents certain
types of instructions from being reordered past it.

An acquire fence must prevent preceding load operations from get-
ting reordered
with any memory operations that follow.
Similarly, a re-
lease fence must prevent subsequent store operations from getting
reordered with any preceding memory operations.
A sequentially
consistent fence must prevent all memory operations that precede it
from being reordered
with memory operations after the fence.

On x86-64, the basic memory ordering semantics already satisfy the
needs of acquire and release fences.
This architecture doesn’t allow
the types of reordering that these fences prevent, regardless.

Let’s dive right in and see what instructions the four different fences
compile to on both x86-64 and ARM64:

Rust source Compiled x86-64 Comp

pub fn a() {

 fence(Acquire);

}

a:

 ret

a:

pub fn a() {

 fence(Release);

}

a:

 ret

a:

pub fn a() {

 fence(AcqRel);

}

a:

 ret

a:

Rust source Compiled x86-64 Comp

pub fn a() {

 fence(SeqCst);

}

a:

 mfence

 ret

a:

Unsurprisingly, release and acquire fences on x86-64 do not result in
any instruction.
We get release and acquire semantics “for free” on
this architecture.
Only a SeqCst fence results in an mfence (mem-
ory fence) instruction.
This instruction makes sure that all memory
operations before it have been completed before continuing.

On ARM64, the equivalent instruction is dmb ish (data memory
barrier, inner shared domain).
Unlike on x86-64, it is used for
Release and AcqRel as well, since this architecture doesn’t im-
plicitly
provide acquire and release semantics.
For Acquire , a
slightly less impactful variant is used: dmb ishld .
This variant only
waits for load operations to complete, but freely allows
preceding
store operations to be reordered past it.

Similar to what we saw before with the atomic operations,
we see that
x86-64 gives us release and acquire fences “for free,” while on AR-

M64, sequentially consistent fences come at the same cost as re-
lease fences.

Summary

On x86-64 and ARM64, relaxed load and store operations are
identical to their non-atomic equivalents.

The common atomic fetch-and-modify and compare-and-ex-
change operations
on x86-64 (and ARM64 since ARMv8.1) have
their own instructions.

On x86-64, an atomic operation for which there is no equivalent
instruction compiles down to
a compare-and-exchange loop.

On ARM64, any atomic operation can be represented by a load-
linked/store-conditional loop:
a loop that automatically restarts if
the attempted memory operation was disrupted.

Caches operate on cache lines, which are often 64 bytes in size.

Caches are kept consistent with a cache coherence protocol,
such as write-through or MESI.
Padding, for example through #[repr(align(64)] , can be
useful
for improving performance by preventing false sharing.

A load operation can be significantly cheaper than a failed com-
pare-and-exchange operation,
in part because the latter often
demands exclusive access to a cache line.

Instruction reordering is invisible within a single threaded
program.

On most architectures, including x86-64 and ARM64,
memory or-
dering is about preventing certain types of instruction reordering.

On x86-64, every memory operation has acquire and release se-
mantics, making it
exactly as cheap or expensive as a relaxed
operation.
Everything other than stores and fences also has se-
quentially consistent semantics
at no extra cost.
On ARM64, acquire and release semantics are not as cheap as
relaxed operations,
but do include sequentially consistent se-
mantics at no extra cost.

A summary of the assembly instructions we’ve seen in this chapter
can be found in Figure 7-1.

Figure 7-1. An overview of the instructions that the various atomic operations compile down
to on ARM64 and x86-64 for each memory ordering

https://marabos.nl/atomics/alt/7-1.html

Chapter 8. Operating System
Primitives

So far, we’ve mostly focused on non-blocking operations.
If we want
to implement something like a mutex or condition variable,
something
that can wait for another thread to unlock or notify it,
we need a way
to efficiently block the current thread.

As we saw in Chapter 4,
we can do this ourselves without the help of
the operating system by
spinning, repeatedly trying something over
and over again,
which can easily waste a lot of processor time.
If we
want to block efficiently, however,
we need the help of the operating
system’s kernel.

The kernel, or more specifically the scheduler part of it,
is responsible
for deciding which process or thread gets to run when,
for how long,

and on which processor core.
While a thread is waiting for something
to happen,
the kernel can stop giving it any processor time,
prioritiz-
ing other threads that can make better use of this scarce resource.

We’ll need a way to inform the kernel that we’re waiting for something
and ask it to put our thread to sleep until something relevant
happens.

Interfacing with the Kernel

The way things are communicated with the kernel depends heavily
on the
operating system, and often even its version.
Usually, the de-
tails of how this works are hidden behind one or more libraries
that
handle this for us. For example, using the Rust standard library,
we
can just call File::open() to open a file, without having to know
any
details about the operating system’s kernel interface.
Similarly,

using the C standard library, libc ,
one can call the standard
fopen() function to open a file.
Calling such a function will eventu-
ally result in a call into the operating system’s kernel, also known as a
syscall,
which is usually done through a specialized processor in-
struction.
(On some architectures, that instruction is literally called
syscall .)

Programs are generally expected, sometimes even required, to not
make any
syscalls directly, but to make use of higher level libraries
that shipped with the operating system.
On Unix systems, such as
those based on Linux, libc takes this special role of providing the
standard interface to the kernel.

The “Portable Operating System Interface” standard, more commonly
known as the POSIX standard,
includes additional requirements for
libc on Unix systems.
For example, next to the fopen() function

from the C standard,
POSIX additionally requires the existence of the
lower-level open() and openat()
functions for opening files,

which often correspond directly with a syscall.
Because of the special
status of libc on Unix systems,
programs written in languages oth-
er than C usually still use libc for all their interactions with the
kernel.

Rust software, including the standard library, often makes use of
libc through the identically named libc crate.

For Linux specifically, the syscall interface is guaranteed to be stable,

allowing us to make syscalls directly, without using libc .
While
that’s not the most common or most advised route, it is slowly becom-
ing more popular.

However, on macOS, also a Unix operating system that follows the
POSIX standard,
the syscall interface of the kernel is not stable, and
we’re not supposed to use it directly.
The only stable interfaces that
programs are allowed to use are provided through the libraries
that
ship with the system, such as libc , libc++ , and various other li-
braries for
C, C++, Objective-C, and Swift, Apple’s programming lan-
guages of choice.

Windows does not follow the POSIX standard.
It does not ship with
an extended libc that serves as the main interface to the kernel,

but instead ships with a separate set of libraries, such as
kernel32.dll ,
that provide Windows-specific functions, such as
CreateFileW for opening files.
Just like on macOS, we’re not sup-
posed to make use of undocumented lower-level
functions or make
syscalls directly.

Through their libraries, operating systems provide us with synchro-
nization
primitives that need to interact with the kernel, such as mu-
texes and condition variables.
Which part of their implementation is
part of such a library or part of the kernel varies heavily per operating
system.
For example, sometimes the mutex lock and unlock opera-
tions correspond directly with a kernel syscall,
whereas on other sys-
tems, the library handles most of the operations and will only perform
a syscall when a thread needs to be blocked or woken up.
(The latter
tends to be more efficient, as making a syscall can be slow.)

POSIX

As part of the POSIX Threads extensions, better known as pthreads,

POSIX specifies data types and functions for concurrency.
While
technically specified as part of a separate system library,

libpthread ,
this functionality is nowadays often included in libc

directly.

Next to functionality like spawning and joining threads
(pthread_create and pthread_join),
pthread provides the
most common synchronization primitives:
mutexes
(pthread_mutex_t),
reader-writer locks (pthread_rwlock_t),

and condition variables (pthread_cond_t).

pthread_mutex_t

Pthread’s mutex must be initialized by calling
pthread_mutex_init() and destroyed with
pthread_mutex_destroy() .
The initialization function
takes an argument of type pthread_mutexattr_t that can
be used to configure
some of the properties of the mutex.

One of those properties is its behavior on recursive locking,

which happens when the same thread that already holds a
lock,
attempts to lock it again.
This results in undefined behav-
ior when using the default setting
(PTHREAD_MUTEX_DEFAULT),
but it can also be configured to
result in an error (PTHREAD_MUTEX_ERRORCHECK),
in a
deadlock (PTHREAD_MUTEX_NORMAL),
or in a successful sec-
ond lock (PTHREAD_MUTEX_RECURSIVE).

These mutexes are locked through
pthread_mutex_lock() or
pthread_mutex_trylock() , and unlocked through

pthread_mutex_unlock() .
Additionally, unlike Rust’s
standard mutex, they also support locking with a time limit,
through pthread_mutex_timedlock() .

A pthread_mutex_t can be statically initialized without a
call to pthread_mutex_init()
by assigning it the value
PTHREAD_MUTEX_INITIALIZER .
However, this is only pos-
sible for a mutex with default settings.

pthread_rwlock_t

Pthread’s reader-writer lock is initialized and destroyed through
pthread_rwlock_init() and
pthread_rwlock_destroy() .
Similar to a mutex, a default
pthread_rwlock_t can also be initialized statically
with
PTHREAD_RWLOCK_INITIALIZER .

A pthread reader-writer lock has significantly fewer properties
that can be configured
through its initialization function, com-
pared to a pthread mutex.
Most notably, attempting to recur-
sively write-lock it will always result in a deadlock.

Attempts to recursively acquire additional read locks, however,
are guaranteed to succeed,
even if there are writers waiting.

This effectively rules out any efficient implementation that prior-

itizes writers over readers,
which is why most pthread imple-
mentations prioritize readers.

Its interface is nearly identical to that of pthread_mutex_t ,

including support for time limits, except each locking function
comes in two variants:
one for readers
(pthread_rwlock_rdlock), and one for writers
(pthread_rwlock_wrlock).
Perhaps surprisingly, there is
only one unlock function (pthread_rwlock_unlock)
that’s
used for unlocking a lock of either kind.

pthread_cond_t

A pthread condition variable is used together with a pthread
mutex.
It is initialized and destroyed through
pthread_cond_init and pthread_cond_destroy ,
and
has a few attributes that can be configured.
Most notably, we
can configure whether time limits will use a monotonic clock
(like Rust’s Instant)
or real-time clock (like Rust’s
SystemTime , somtimes called “wall-clock time”).
A condition
variable with default settings, such as one statically
initialized
by PTHREAD_COND_INITIALIZER , uses the real-time clock.

Waiting for such a condition variable, optionally with a time lim-
it,
is done through pthread_cond_timedwait() .
Waking
up a waiting thread is done by calling

pthread_cond_signal() ,
or, to wake all waiting threads at
once, pthread_cond_broadcast() .

The remaining synchronization primitives provided by pthread are
barriers (pthread_barrier_t), spin locks
(pthread_spinlock_t), and
one-time initialization
(pthread_once_t), which we will not discuss.

Wrapping in Rust

It might seem like we could easily expose these pthread synchroniza-
tion primitives
to Rust by conveniently wrapping their C type (through
the libc crate)
in a Rust struct, like this:

pub struct Mutex {

 m: libc::pthread_mutex_t,

}

However, there are a few issues with that, as this pthread type was
designed for C, not for Rust.

First of all, Rust has rules about mutability and borrowing,
which nor-
mally don’t allow for mutations to something when shared.
Since
functions like pthread_mutex_lock will most likely mutate the
mutex,
we’ll need interior mutability to make sure that’s acceptable.

So, we’ll have to wrap it in an UnsafeCell :

pub struct Mutex {

 m: UnsafeCell<libc::pthread_mutex_t>,

}

A much bigger problem is related to moving.

In Rust, we move objects around all the time.
For example, by return-
ing an object from a function,
passing it as an argument, or simply as-
signing it to a new place.
Everything that we own (and that isn’t bor-
rowed by anything else),
we can freely move into a new place.

In C, however, that’s not universally true.
It’s quite common for a type
in C to depend on its memory address staying constant.
For example,

it might contain a pointer that points into itself,
or store a pointer to it-
self in some global data structure.
In that case, moving it to a new
place could result in undefined behavior.

The pthread types we discussed do not guarantee they are movable,

which becomes quite a problem in Rust.
Even a simple idiomatic
Mutex::new() function is a problem:
it would return a mutex ob-
ject, which would move it into a new place in memory.

Since a user could always move around any mutex object they own,

we either need to make them promise they won’t do that, by making
the interface unsafe ;
or we need to take away their ownership and

hide everything behind a wrapper (something that std::pin::Pin
can be used for).
Neither of these are good solutions, as they impact
the interface of our mutex type,
making it very error-prone and/or in-
convenient to use.

A solution to this problem is to wrap the mutex in a Box .
By putting
the pthread mutex in its own allocation,
it stays in the same location in
memory, even if its owner is moved around.

pub struct Mutex {

 m: Box<UnsafeCell<libc::pthread_mutex_t>>,

}

NOTE

This is how std::sync::Mutex was implemented on all Unix platforms before
Rust 1.62.

The downside of this approach is the overhead: every mutex now
gets its own allocation,
adding significant overhead to creating, de-
stroying, and using the mutex.
Another downside is that it prevents
the new function from being const ,
which gets in the way of hav-
ing a static mutex.

Even if pthread_mutex_t was movable, a const fn new could
only initialize
it with default settings, which results in undefined be-
havior when locking recursively.
There is no way to design a safe in-
terface that prevents locking recursively,
so this means we’d need to
make the lock function unsafe to make the user promise they
won’t do that.

A problem that remains with our Box approach occurs when drop-
ping a locked mutex.
It might seem that, with the right design, it would
not be possible to drop a
 Mutex while locked, since it’s impossible
to drop it while it’s still borrowed by a MutexGuard .
The
MutexGuard would have to be dropped first, unlocking the Mutex .

However, in Rust, it’s safe to forget (or leak) an object, without drop-
ping it.
This means one could write something like this:

fn main() {

 let m = Mutex::new(..);

 let guard = m.lock(); // Lock it ..

 std::mem::forget(guard); // .. but don't unlo

}

In the example above, m will be dropped at the end of the scope
while it is still locked.
This is fine, according to the Rust compiler, be-

cause the guard has been leaked
and can’t be used anymore.

However, pthread specifies that calling
pthread_mutex_destroy() on a locked mutex
is not guaranteed
to work and might result in undefined behavior.
One work-around is to
first attempt to lock (and unlock) the pthread mutex
when dropping
our Mutex , and panic (or leak the Box) when it is already
locked,

but that adds even more overhead.

These issues don’t just apply to pthread_mutex_t , but to the oth-
er types we discussed as well.
Overall, the design of the pthread syn-
chronization primitives is fine for C,
but just not a great fit for Rust.

Linux

On Linux systems, the pthread synchronization primitives are all im-
plemented using
the futex syscall.
Its name comes from “fast user-
space mutex,” as the original motivation for
adding this syscall was to
allow libraries (like pthread implementations) to
include a fast and ef-
ficient mutex implementation.
It’s much more flexible than that though
and can be used to build many
different synchronization tools.

The futex syscall was added to the Linux kernel in 2003 and has seen
several improvements and extensions since then.
Some other oper-
ating systems have since also added similar
functionality, most no-

tably Windows 8 in 2012
with the addition of WaitOnAddress
(which we’ll discuss a bit later, in “Windows”).
In 2020, the C++ lan-
guage even added support for basic futex-like operations to
its stan-
dard library, with the addition of the atomic_wait and
atomic_notify functions.

Futex

On Linux, SYS_futex is a syscall that implements various opera-
tions
that all operate on a 32-bit atomic integer.
The main two opera-
tions are FUTEX_WAIT and FUTEX_WAKE .
The wait operation puts
a thread to sleep,
and a wake operation on the same atomic variable
wakes the thread up again.

These operations don’t store anything in the atomic integer.
Instead,

the kernel remembers which threads are waiting on which memory
address to allow a wake operation to wake up the right threads.

In “Waiting: Parking and Condition Variables”, we saw how other
mechanisms for blocking and waking up threads
need a way to make
sure that wake operations don’t get lost in a race.
For thread parking,

that issue is solved by making the unpark() operation also apply
to future park() operations as well.
And for condition variables,

that’s taken care of by the mutex that is used
together with the condi-
tion variable.

For the futex wait and wake operations, another mechanism is used.

The wait operation takes an argument which specifies the value we
expect the atomic variable to have and will refuse to block if it doesn’t
match.
The wait operation behaves atomically with respect to the
wake operation,
meaning that no wake signal can get lost between
the check of the expected value and the moment it actually goes to
sleep.

If we make sure that the value of the atomic variable is changed right
before
a wake operation, we can be sure that a thread that’s about to
start waiting will
not go to sleep, such that potentially missing the fu-
tex wake operation no longer matters.

Let’s go over a minimal example to see this in practice.

First, we need to be able to invoke these syscalls.
We can use the
syscall function from the libc crate to do so,
and wrap each of
them in a convenient Rust function, as follows:

#[cfg(not(target_os = "linux"))]

compile_error!("Linux only. Sorry!");

pub fn wait(a: &AtomicU32, expected: u32) {

 // Refer to the futex (2) man page for the sy

 unsafe {

 libc::syscall(

libc::SYS futex, // The futex syscall

 libc::SYS_futex, // The futex syscall

 a as *const AtomicU32, // The atomic

 libc::FUTEX_WAIT, // The futex operat

 expected, // The expected value.

 std::ptr::null::<libc::timespec>(), /

);

 }

}

pub fn wake_one(a: &AtomicU32) {

 // Refer to the futex (2) man page for the sy

 unsafe {

 libc::syscall(

 libc::SYS_futex, // The futex syscall

 a as *const AtomicU32, // The atomic

 libc::FUTEX_WAKE, // The futex operat

 1, // The number of threads to wake u

);

 }

}

Now, as a usage example, let’s use these to make a thread wait for
another.
We’ll use an atomic variable that we initialize at zero, which
the main thread will futex-wait on.
A second thread will change the
variable to one, and then run a futex wake operation on it to wake up
the main thread.

Just like thread parking and waiting on a condition variable,
a futex
wait operation can spuriously wake up, even when nothing hap-
pened.
Therefore, it is most commonly used in a loop, repeating it if
the condition we’re waiting for isn’t met yet.

Let’s take a look at the example below:

fn main() {

 let a = AtomicU32::new(0);

 thread::scope(|s| {

 s.spawn(|| {

 thread::sleep(Duration::from_secs(3))

 a.store(1, Relaxed);

 wake_one(&a);

 });

 println!("Waiting...");

 while a.load(Relaxed) == 0 {

 wait(&a, 0);

 }

 println!("Done!");

 });

}

The spawned thread will set the atomic variable to one after a
few seconds.

It then executes a futex wake operation to wake up the main
thread,
in case it was sleeping, so it can see that the variable
has changed.

The main thread waits as long as the variable is zero,
before
continuing to print its final message.

The futex wait operation is used to put the thread to sleep.
Very
importantly, this operation will check whether a is still zero
be-
fore going to sleep, which is the reason that the signal from the
spawned thread cannot get lost between and .
Either (and
therefore) did not happen yet and it goes to sleep,
or (and
maybe) already happened, and it immediately continues.

An important observation to make here is that the wait call
is avoid-
ed entirely if a was already set to one before the while loop.
In a
similar fashion, if the main thread had also stored in the atomic vari-
able
whether it started waiting for the signal (by setting it to a value
other than zero or one),
the signaling thread could skip the futex
wake operation if the main thread hadn’t started waiting yet.
This is
what makes futex-based synchronization primitives so fast:
since we
manage the state ourselves, we don’t need to rely on the kernel,
ex-
cept when we actually need to block.

NOTE

Since Rust 1.48, the standard library’s thread parking functions on Linux
are imple-
mented like this.
They use one atomic variable per thread, with three possible
states:
zero for the idle and initial state, one for “unparked but not yet parked,” and
minus one for “parked but not yet unparked.”

In Chapter 9, we’ll implement mutexes, condition variables, and read-
er-writer locks using these operations.

Futex Operations

Next to the wait and wake operations, the futex syscall supports sev-
eral other operations.
In this section, we’ll briefly discuss every opera-
tion supported by this syscall.

The first argument to the futex is always a pointer to the 32-bit atomic
variable to operate on.
The second argument is a constant represent-
ing the operation, such as FUTEX_WAIT ,
to which up to two flags
can be added: FUTEX_PRIVATE_FLAG and/or
FUTEX_CLOCK_REALTIME ,
which we will discuss below.
The re-
maining arguments depend on the operation and are described for
each of the operations below.

FUTEX_WAIT

This operation takes two additional arguments: the value the
atomic variable is expected to have and a pointer to a
timespec representing the maximum time to wait.

If the value of the atomic variable matches the expected value,

the wait operation blocks until woken up by one of the wake op-
erations,
or until the duration specified by the timespec has
passed.
If the pointer to the timespec is null, there is no time
limit.
Additionally, the wait operation might spuriously wake up
and return without a corresponding wake operation, before the
time limit is reached.

The check and blocking operation happens as a single atomic
operation with respect
to other futex operations, meaning that
no wake signals can get lost between them.

The duration specified by the timespec represents a dura-
tion on the monotonic clock
(like Rust’s Instant) by default.
By adding the FUTEX_CLOCK_REALTIME flag, the real-time
clock (like Rust’s SystemTime)
is used instead.

The return value indicates whether the expected value
matched and whether the timeout was reached or not.

FUTEX_WAKE

This operation takes one additional argument: the number of
threads to wake up, as an i32 .

This wakes up as many threads as specified that are blocked in
a wait
operation on the same atomic variable.
(Or fewer if there
are not that many waiting threads.)
Most commonly, this argu-
ment is either one to wake up just one thread,
or i32::MAX to
wake up all threads.

The number of awoken threads is returned.

FUTEX_WAIT_BITSET

This operation takes four additional arguments:
the value the
atomic variable is expected to have,
a pointer to a timespec

representing the maximum time to wait,
a pointer that’s ig-
nored, and a 32-bit “bitset” (a u32).

This operation behaves the same as FUTEX_WAIT , with two
differences.

The first difference is that it takes a bitset argument that
can be used to wait
for only specific wake operations, rather
than all wake operations on the same atomic variable.
A
FUTEX_WAKE operation is never ignored,
but a signal from a

FUTEX_WAKE_BITSET operation is ignored if the
wait bitset
and the wake bitset do not have any 1-bit in common.

For example, a FUTEX_WAKE_BITSET operation with a bitset
of 0b0101 will
wake up a FUTEX_WAIT_BITSET operation
with a bitset of 0b1100 , but not one
with a bitset of 0b0010 .

This might be useful when implementing something like a read-
er-writer lock,
to wake up a writer without waking up any read-
ers.
However, note that using two separate atomic variables
can be more efficient
than using a single one for two different
kinds of waiters,
since the kernel will keep a single list of wait-
ers per atomic variable.

The other difference with FUTEX_WAIT is that the timespec

is
used as an absolute timestamp, rather than a duration.
Be-
cause of this, FUTEX_WAIT_BITSET is often used with a bit-
set of u32::MAX (all bits set),
effectively turning it into a regu-
lar FUTEX_WAIT operation,
but with an absolute timestamp
for the time limit.

FUTEX_WAKE_BITSET

This operation takes four additional arguments:
the number of
threads to wake up,
two pointers that are ignored,
and a 32-bit
“bitset” (a u32).

This operation is identical to FUTEX_WAKE ,
except it does not
wake up FUTEX_WAIT_BITSET operations
with a bitset that
does not overlap. (See FUTEX_WAIT_BITSET above.)

With a bitset of u32::MAX (all bits set), this is identical to
FUTEX_WAKE .

FUTEX_REQUEUE

This operation takes three additional arguments:
the number of
threads to wake up (an i32),
the number of threads to re-
queue (an i32),
and the address of a secondary atomic
variable.

This operation wakes up a given number of waiting threads,

and then requeues a given number of remaining waiting
threads
to instead wait on another atomic variable.

Waiting threads that are requeued continue to wait,
but are no
longer affected by wake operations on the primary atomic vari-
able.
Instead, they are now woken up by wake operations on
the secondary atomic variable.

This can be useful for implementing something like the “notify
all” operation of a condition variable.
Instead of waking up all
threads, which will subsequently try to lock a mutex,
most likely

making all but one thread wait for that mutex right afterwards,

we could only wake up a single thread and requeue all the oth-
ers to directly wait for the mutex without waking them up first.

Just like with the FUTEX_WAKE operation,
the value of
i32::MAX can be used to requeue all waiting threads.
(Speci-
fying a value of i32::MAX for the number of threads to wake
up is not very useful,
since that will make this operation equiva-
lent to FUTEX_WAKE .)

The number of awoken threads is returned.

FUTEX_CMP_REQUEUE

This operation takes four additional arguments:
the number of
threads to wake up (an i32),
the number of threads to re-
queue (an i32),
the address of a secondary atomic variable,

and the value the primary atomic variable is expected to have.

This operation is nearly identical to FUTEX_REQUEUE ,
except
it refuses to operate if the value of the primary atomic variable
does not match the expected value.
The check of the value and
the requeueing operation happens atomically
with respect to
other futex operations.

Unlike FUTEX_REQUEUE , this returns the sum of the number
of
awoken and requeued threads.

FUTEX_WAKE_OP

This operation takes four additional arguments:
the number of
threads to wake up on the primary atomic variable (an i32),

the number of threads to potentially wake up on the second
atomic variable (an i32),
the address of a secondary atomic
variable,
and a 32-bit value encoding both an operation and a
comparison to be made.

This is a very specialized operation that modifies the secondary
atomic variable,
wakes a number of threads waiting on the pri-
mary atomic variable,
checks if the previous value of the atomic
variable matches a given condition,
and if so, also wakes a
number of threads on a secondary atomic variable.

In other words, it is identical to the following code, except the
entire
operation behaves atomically with respect to other futex
operations:

let old = atomic2.fetch_update(Relaxed, Rela

wake(atomic1, N);

if some_condition(old) {

 wake(atomic2, M);

}

The modifying operation to perform and the condition to check
are both
specified by the last argument to the syscall, encoded
in its 32 bits.
The operation can be one of the following: assign-
ment, addition, binary or , binary and-not ,
and binary xor ,

with either a 12-bit argument or a 32-bit argument that’s a pow-
er of two.
The comparison can be chosen from == , != , < , <​

= , > , and >= ,
with a 12-bit argument.

See the futex(2) Linux man page for details on the encod-
ing of this argument,
or use the linux-futex crate on
crates.io,
which includes a convenient way to construct this
argument.

This operation returns the total number of awoken threads.

At first glance this may seem like a flexible operation with many
use cases.
However, it was designed for just one specific use
case in GNU libc where two
threads had to be woken up
from two separate atomic variables.
That specific case has
been replaced by a different implementation that no longer
makes use of FUTEX_WAKE_OP .

The FUTEX_PRIVATE_FLAG can be added to any of these opera-
tions to enable a possible optimization if all relevant futex operations

on the same atomic variable(s) come from threads of the same
process,
which is usually the case.
To make use of it, every relevant
futex operation must include this same flag.
By allowing the kernel to
assume there will be no interactions with other processes,
it can skip
some otherwise potentially expensive steps in performing futex oper-
ations,
improving performance.

In addition to Linux, NetBSD also supports all the futex operations de-
scribed above.
OpenBSD also has a futex syscall, but only supports
the FUTEX_WAIT , FUTEX_WAKE , and FUTEX_REQUEUE opera-
tions.
FreeBSD does not have a native futex syscall,
but does include
a syscall called _umtx_op , which includes functionality
nearly iden-
tical to FUTEX_WAIT and FUTEX_WAKE :
 UMTX_OP_WAIT (for 64-
bit atomics), UMTX_OP_WAIT_UINT (for 32-bit atomics), and
UMTX_OP_WAKE .
Windows also includes functions that behave very
similarly to the futex wait and wake operations,
which we will discuss
later in this chapter.

NEW FUTEX OPERATIONS

As of Linux 5.16, released in 2022, there is an additional futex syscall:
futex_waitv .
This new syscall allows waiting for more than one
futex at once,
by providing it a list of atomic variables (and their ex-
pected values) to wait on.
A thread blocked on futex_waitv can
be woken up by a wake operation on
any of the specified variables.

This new syscall also leaves space for future extensions.
For exam-
ple, it’s possible to specify the size of the atomic variable to wait on.

While the initial implementation only supports 32-bit atomics,
just like
the original futex syscall,
this might be extended in the future to in-
clude 8-bit, 16-bit, and 64-bit atomics.

Priority Inheritance Futex Operations

Priority inversion is a problem that occurs when a high priority thread
is blocked on a lock held by a low priority thread.
The high priority
thread effectively has its priority “inverted,”
since it now has to wait for
the low priority thread to release the lock before it can make
progress.

A solution to this problem is priority inheritance, in which the blocking
thread
inherits the priority of the highest priority thread that is waiting

for it,
temporarily increasing the priority of the low priority thread while
it holds the lock.

In addition to the seven futex operations we discussed before,
there
are six priority inheriting futex operations
specifically designed for im-
plementing priority inheriting locks.

The general futex operations we discussed before
do not have any
requirements for the exact contents of the atomic variable.
We got to
choose ourselves what the 32 bits represent.
However, for a priority
inheriting mutex, the kernel needs to be able
to understand whether
the mutex is locked, and if so, which thread has locked it.

To avoid having to make a syscall on every state change,
the priority
inheritance futex operations specify the exact contents
of the 32-bit
atomic variable, so the kernel can understand it:
the highest bit repre-
sents whether there are any threads waiting to lock the mutex,
and
the lowest 30 bits contain the thread ID (the Linux tid , not the Rust
ThreadId)
of the thread that holds the lock, or zero when unlocked.

As an extra feature, the kernel will set the second highest bit if the
thread that holds the lock
terminates without unlocking it, but only if
there are any waiters.
This allows for the mutex to be robust:
a term
used to describe a mutex that can gracefully handle a situation where
its “owning”
thread unexpectedly terminates.

The priority inheriting futex operations have a one to one
correspon-
dence to the standard mutex operations:
 FUTEX_LOCK_PI for lock-
ing, FUTEX_UNLOCK_PI for unlocking,
and FUTEX_TRYLOCK_PI

for locking without blocking.
Additionally, the
FUTEX_CMP_REQUEUE_PI and FUTEX_WAIT_REQUEUE_PI oper-
ations
can be used to implement a condition variable that pairs with a
priority inheriting mutex.

We’ll not discuss these operations in detail.
See the futex(2) Lin-
ux man page or the linux-futex crate on crates.io for their de-
tails.

macOS

The kernel that’s part of macOS supports various useful low-level
concurrency related syscalls.
However, just like most operating sys-
tems, the kernel interface is not considered stable,
and we’re not sup-
posed to use it directly.

The only way software should interact with the macOS kernel is
through the libraries
that ship with the system.
These libraries include
its standard library implementations for
C (libc), C++ (libc++), Objec-
tive-C, and Swift.

As a POSIX-compliant Unix system, the macOS C library includes a
full pthread implementation.
The standard locks in other languages
tend to use pthread’s primitives under the hood.

Pthread’s locks tend to be relatively slow on macOS
compared to the
equivalent on other operating systems.
One of the reasons is that the
locks on macOS behave as fair locks by default.
This means that
when several threads attempt to lock the same mutex,
they are
served in order of arrival, like a perfect queue.
While fairness can be
a desirable property, it can significantly
reduce performance, espe-
cially under high contention.

os_unfair_lock

Next to the pthread primitives, macOS 10.12 introduced a new light-
weight platform-specific mutex,
which is not fair: os_unfair_lock .

It is just 32 bits in size, initialized statically with the
OS_UNFAIR_LOCK_INIT constant,
and does not require destruc-
tion.
It can be locked through os_unfair_lock_lock() (block-
ing)
or os_unfair_lock_trylock() (non-blocking), and is un-
locked through os_unfair_lock_unlock() .

Unfortunately, it does not come with a condition variable,
nor does it
have a reader-writer variant.

Windows

The Windows operating system ships with a set of libraries that to-
gether form
the Windows API, often called the “Win32 API” (even on
64-bit systems).
This forms a layer on top of the “Native API”:
the
largely undocumented interface with the kernel,
which we’re not sup-
posed to use directly.

The Windows API is made available to Rust programs through Mi-
crosoft’s official
 windows and windows-sys crates, which are
available on crates.io.

Heavyweight Kernel Objects

Many of the older synchronization primitives available on Windows
are managed fully by the kernel, making them quite heavyweight,
and
giving them similar properties as other kernel-managed objects, such
as files.
They can be used by multiple processes,
they can be named
and located by their name,
and they support fine-grained permis-
sions, similar to files.
For example, it’s possible to allow a process to
wait on some object,
without allowing it to send signals through it to
wake others.

These heavyweight kernel-managed synchronization objects include
Mutex (which can be locked and unlocked),
 Event (which can be

signalled and waited for), and WaitableTimer (which can be auto-
matically signalled after a chosen time, or periodically).
Creating such
an object results in a HANDLE , just like opening a file,
that can be
easily passed around and used with the regular HANDLE functions;

most notably the family of wait functions.
These functions allow us to
wait for one or more objects of various types,
including the heavy-
weight synchronization primitives,
processes, threads, and various
forms of I/O.

Lighter-Weight Objects

A lighter-weight synchronization primitive included in the Windows
API is the “critical section.”

The term critical section refers to a part of a program, a “section” of
code,
that may not be entered concurrently by more than one thread.

The mechanism for protecting a critical section is often called a mu-
tex.
In this case, however, Microsoft used the name “critical section”
for the mechanism,
quite possibly because the name “mutex” was al-
ready taken by the heavyweight Mutex object
discussed above.

A Windows CRITICAL_SECTION is effectively a recursive mutex,

except it uses the terms “enter” and “leave” rather than “lock” and
“unlock.” As a recursive mutex, it is designed to only protect against
other threads.
It allows the same thread to lock (or “enter”) it more

than once,
requiring it to also unlock (leave) it the same number of
times.

This is something to keep in mind when wrapping this type in Rust.
Successfully locking (entering) a CRITICAL_SECTION shouldn’t re-
sult in
an exclusive reference (&mut T) to data protected by it.
Oth-
erwise, a thread could use this to create two exclusive references to
the same data,
which immediately results in undefined behavior.

A CRITICAL_SECTION is initialized using the
InitializeCriticalSection() function,
destroyed with
DeleteCriticalSection() , and may not be moved.
It is locked
through EnterCriticalSection() or
TryEnterCriticalSection() ,
and unlocked with
LeaveCriticalSection() .

NOTE

Until Rust 1.51, std::sync::Mutex on Windows XP was based on a (Box -allo-
cated) CRITICAL_SECTION object. (Rust 1.51 dropped support for Windows XP.)

Slim reader-writer locks

As of Windows Vista (and Windows Server 2008),
the Windows API
includes a much nicer locking primitive that’s very lightweight:
the

slim reader-writer lock, or SRW lock for short.

The SRWLOCK type is just one pointer in size, can be statically initial-
ized with SRWLOCK_INIT ,
and does not require destruction.
While
not in use (borrowed), we’re even allowed to move it, making it an ex-
cellent candidate
for being wrapped in a Rust type.

It provides exclusive (writer) locking and unlocking through
AcquireSRWLockExclusive() ,

TryAcquireSRWLockExclusive() , and
ReleaseSRWLockExclusive() ,
and provides shared (reader)
locking and unlocking through AcquireSRWLockShared() ,

TryAcquireSRWLockShared() , and
ReleaseSRWLockShared() .
It is often used as a regular mutex,

simply by ignoring the shared (reader) locking functions.

An SRW lock prioritizes neither writers nor readers.
While not guaran-
teed, it attempts to serve all lock requests in order,
as far as possible
without reducing performance.
One must not attempt to acquire a
second shared (reader) lock on a thread that already holds one.
Do-
ing so could lead to a permanent deadlock if the operation gets
queued behind an exclusive (writer) lock operation of another thread,

which would be blocked because of the first shared (reader) lock that
the first thread already holds.

The SRW lock was introduced to the Windows API together with the
condition variable.
Similar to an SRW lock, a
CONDITION_VARIABLE is just one pointer in size,
can be initialized
statically with CONDITION_VARIABLE_INIT ,
and does not require
destruction.
We’re also allowed to move it, as long as it isn’t in use
(borrowed).

This condition variable can not only be used together with
an SRW
lock, through SleepConditionVariableSRW ,
but also with a criti-
cal section, through SleepConditionVariableCS .

Waking up waiting threads is done either through
WakeConditionVariable
to wake a single thread, or
WakeAllConditionVariable to wake all waiting threads.

NOTE

Originally, Windows SRW locks and condition variables used in the standard library
were wrapped in a Box to avoid moving the objects.
Microsoft didn’t document the
movability guarantees until we requested that in 2020.
Since then, as of Rust 1.49,

std::sync::Mutex , std::sync::RwLock , and std::sync::Condvar on

Windows Vista and later directly wrap an SRWLOCK or CONDITION_VARIABLE ,

without any allocations.

Address-Based Waiting

Windows 8 (and Windows Server 2012) introduced a new, more flexi-
ble, type of synchronization functionality
that is very similar to the Lin-
ux FUTEX_WAIT and FUTEX_WAKE operations we discussed earli-
er in this chapter.

The WaitOnAddress function can operate on an 8-bit, 16-bit, 32-bit,
or 64-bit atomic variable.
It takes four arguments: the address of the
atomic variable,
the address of a variable that holds the expected val-
ue,
the size of the atomic variable (in bytes),
and the maximum num-
ber of milliseconds to wait before giving up (or u32::MAX for an infi-
nite timeout).

Just like the FUTEX_WAIT operation, it compares the value of the
atomic variable
with the expected value, and goes to sleep if they
match, waiting for a corresponding wake operation.
The check and
sleep operation happens atomically with respect to wake operations,

meaning no wake signal can get lost in between.

Waking a thread that’s waiting on WaitOnAddress is done through
either WakeByAddressSingle to wake a single thread, or
WakeByAddressAll to wake all waiting threads.
These two func-
tions take just a single argument:
the address of the atomic variable,

which was also passed to WaitOnAddress .

Some, but not all, of the synchronization primitives of the Windows
API are implemented using these functions.
More importantly, they
are a great building block for building our own primitives, which we
will do in Chapter 9.

Summary

A syscall is a call into the operating system’s kernel and is rela-
tively slow
compared to a regular function call.
Usually, programs don’t make syscalls directly, but instead go
through the operating system’s libraries
(e.g., libc) to interface
with the kernel.
On many operating systems, this is the only sup-
ported way of interfacing with the kernel.
The libc crate gives Rust code access to libc .

On POSIX systems, libc includes more than what’s required
by the C standard to comply with the POSIX standard.

The POSIX standard includes pthreads, a library with concurren-
cy primitives such as pthread_mutex_t .

Pthread types are designed for C, not for Rust.
For example, they
are not movable, which can be a problem.

Linux has a futex syscall supporting several waiting and waking
operations on an AtomicU32 .
The wait operation verifies the
expected value of the atomic, which is used to avoid missing
notifications.

In addition to pthread, macOS also provides os_unfair_lock

as a lightweight locking primitive.

Windows heavyweight concurrency primitives always require in-
teracting with the kernel,
but can be passed between processes
and used with the standard Windows waiting functions.

Windows lightweight concurrency primitives include a “slim”
reader-writer lock (SRW lock)
and a condition variable. These
are easily wrapped in Rust, as they are movable.

Windows also provides basic futex-like functionality, through
WaitOnAddress and WakeByAddress .

Chapter 9. Building Our Own Locks

In this chapter, we’ll build our own mutex, condition variable, and
reader-writer lock.
For each of them, we’ll start with a very basic ver-
sion, and then extend it to make it more efficient.

Since we’re not going to use the lock types from the standard libary
(which would be cheating),
we’re going to have to use the tools from
Chapter 8 to be able to make threads
wait without busy-looping.
How-
ever, as we saw in that chapter, the available tools the operating sys-
tem provides
vary a lot per platform, making it hard to build some-
thing that works cross-platform.

Fortunately, most modern operating systems support futex-like func-
tionality, or at least the wake and wait operations.
As we saw in
Chapter 8,
Linux has supported them since 2003 with the futex

syscall,
Windows since 2012 with the WaitOnAddress family of
functions,
FreeBSD since 2016 as part of the _umtx_op syscall, and
so on.

The most notable exception is macOS.
While its kernel does support
these operations,
it is not exposed through any stable, publicly us-
able, C function that we can use.
However, macOS does ship with a
recent version of libc++,
an implementation of the C++ standard li-
brary.
This library includes support for C++20,
which is the version of

C++ that comes with built-in support
for very basic atomic wait and
wake operations (like std::atomic<T>::wait()).
While it’s
somewhat tricky to make use of that from Rust for a variety of rea-
sons,
it is certainly possible, giving us access to basic futex-like wait
and wake functionality
on macOS as well.

We’ll not dive into the dirty details, but instead make use of the
atomic-wait crate from crates.io
to provide us with the building
blocks for our locking primitives.
This crate provides just three func-
tions: wait() , wake_one() , and wake_all() .
It implements
these for all the major platforms,
using the various platform-specific
implementations we’ve discussed above.
This means we no longer
have to think about any platform-specific details,
as long as we stick
to these three functions.

These functions behave like the identically named ones we imple-
mented in “Futex”
for Linux, but let’s quickly recall how they work:

wait(&AtomicU32, u32)

This function is used to wait until the atomic variable no longer
contains the given value.
It blocks if the value stored in the
atomic variable is equal to the given value.
When another
thread modifies the value of the atomic variable,
that thread
needs to call one of the wake functions below, on the same
atomic variable,
to wake up the waiting thread from its sleep.

This function might return spuriously, without a corresponding
wake operation.
So make sure to check the value of the atomic
variable after it returns,
and repeat the wait() call if
necessary.

wake_one(&AtomicU32)

This wakes up a single thread that’s currently blocked on
wait() on the same atomic variable.
Use this right after mod-
ifying the atomic variable, to inform one waiting thread of the
change.

wake_all(&AtomicU32)

This wakes up all threads that are currently blocked on
wait() on the same atomic variable.
Use this right after mod-
ifying the atomic variable, to inform the waiting threads of the
change.

Only 32-bit atomics are supported, because that’s the only size that’s
supported on all major platforms.

TIP

In “Futex”, we discussed a very minimal example that shows how these
functions
are used in practice.
If you’ve forgotten, make sure you check out that example be-
fore continuing.

To use the atomic-wait crate, add atomic-wait = "1" to the
[dependencies] section in your Cargo.toml ; or run cargo

add atomic-wait@1 , which will do that for you.
The three func-
tions are defined in the root of the crate
and can be imported with
use atomic_wait::{wait, wake_one, wake_all}; .

NOTE

There might be later versions of this crate available by the time you’re reading this,

but only major version 1 is made for this chapter.
Later versions might not have a
compatible interface.

Now that we have our basic building blocks ready, let’s get started.

Mutex

We’ll take our SpinLock<T> type from Chapter 4 as our reference
while building our Mutex<T> .
The parts not involved in blocking,

such as the design of the guard type,
will remain unchanged.

Let’s start with the type definition.
We’ll have to make one change
compared to the spin lock:
instead of an AtomicBool set to
false or true , we’ll use an AtomicU32 set to zero or one,
so
we can use it with the atomic wait and wake functions.

pub struct Mutex<T> {

 /// 0: unlocked

 /// 1: locked

 state: AtomicU32,

 value: UnsafeCell<T>,

}

Just like for the spin lock, we need to promise that a Mutex<T> can
be shared between threads,
even though it contains a scary
UnsafeCell :

unsafe impl<T> Sync for Mutex<T> where T: Send {}

We’ll also add a MutexGuard type that implements the Deref

traits
to provide a fully safe locking interface, like we did in “A Safe In-
terface Using a Lock Guard”:

pub struct MutexGuard<'a, T> {

 mutex: &'a Mutex<T>,

}

impl<T> Deref for MutexGuard<'_, T> {

 type Target = T;

 fn deref(&self) -> &T {

 unsafe { &*self.mutex.value.get() }

 }

}

impl<T> DerefMut for MutexGuard<'_, T> {

 fn deref_mut(&mut self) -> &mut T {

 unsafe { &mut *self.mutex.value.get() }

 }

}

TIP

For the design and operation of a lock guard type, see “A Safe Interface Using a

Lock Guard”.

Let’s also get the Mutex::new function out of the way before we
move on to the interesting part.

impl<T> Mutex<T> {

 pub const fn new(value: T) -> Self {

 Self {

 state: AtomicU32::new(0), // unlocked

 value: UnsafeCell::new(value),

 }

 }

 …

}

Now that we have all that out of the way, there are two remaining
pieces left:
locking (Mutex::lock()) and unlocking (Drop for

MutexGuard<T>).

The lock function we implemented for our spin lock uses an atomic
swap
operation to attempt to obtain the lock, returning if it succesfully
changed the state from “unlocked” to “locked.” If unsuccesful, it im-
mediately tries again.

To lock our mutex we’ll do almost the same,
except we use wait()

to wait before trying again:

 pub fn lock(&self) -> MutexGuard<T> {

 // Set the state to 1: locked.

 while self.state.swap(1, Acquire) == 1 {

 // If it was already locked..

 // .. wait, unless the state is no lo

 wait(&self.state, 1);

 }

 MutexGuard { mutex: self }

 }

NOTE

For the memory ordering, the same reasoning applies as with our spin lock.
Refer
back to Chapter 4 for the details.

Note how the wait() function will only block if the state is still set to
1 (locked)
at the time we call it, such that we don’t have to worry
about the possibility of
missing a wake-up call between the swap and
the wait calls.

The Drop implementation of the guard type is responsible for un-
locking the mutex.
Unlocking our spin lock was easy: just set the
state back to false (unlocked).
For our mutex, however, that won’t
suffice.
If there’s a thread waiting to lock the mutex, it won’t know that
the mutex
has been unlocked unless we notify it using a wake opera-
tion.
If we don’t wake it up, it will most likely stay asleep forever.
(Maybe it is lucky and is spuriously woken up at the right time, but
let’s not count on that.)

So, we’ll not only set the state back to 0 (unlocked),
but also call
wake_one() right afterwards:

impl<T> Drop for MutexGuard<'_, T> {

 fn drop(&mut self) {

 // Set the state back to 0: unlocked.

 self.mutex.state.store(0, Release);

 // Wake up one of the waiting threads, if

 wake_one(&self.mutex.state);

 }

}

Waking one thread is enough, because even if there are multiple
threads waiting,
only one of them will be able to claim the lock.
The
next thread to lock it will wake up another thread when it’s done with
the lock, and so on.
Waking up more than one thread at once will just
set those threads up for disappointment,
wasting valuable processor
time when all but one of them realize their chance at locking has
been
snatched away by another lucky thread, before they go back to
sleep again.

Note that there is no guarantee that the one thread that we wake up
will be able to grab the lock.
Another thread might still grab the lock
right before it gets the chance.

An important observation to make here is how this mutex implemen-
tation would still be technically correct
(that is, memory safe) without
the wait and wake functions.
Because the wait() operation can
spuriously wake up,
we can’t make any assumptions about when it
returns.
We still have to manage the state of our locking primitives
ourselves.
If we were to remove the wait and wake function calls,
our
mutex would be basically identical to our spin lock.

In general, the atomic wait and wake functions never play a factor in
correctness,
from a memory safety perspective.
They are only a (very
serious) optimization to avoid busy-looping.
This doesn’t mean that
an unusably inefficient lock would be considered
“correct” by any
practical standards,
but this insight can be helpful when trying to rea-
son about unsafe Rust code.

LOCK API

If you’re planning to take on implementing Rust locks as a new hob-
by,
you might quickly get bored with the boilerplate code involved in
providing a safe interface.
That is, the UnsafeCell , the Sync im-
plementation, the guard type, the Deref implementations,
and so
on.

The lock_api crate on crates.io can be used to automatically take
care of all these things.
You’ll only have to make a type that repre-
sents the lock state,
and provide (unsafe) lock and unlock functions
through the (unsafe) lock_api::RawMutex trait.
In return, the
lock_api::Mutex type will provide you with a fully safe and er-
gonomic
mutex type, including a mutex guard, based on your lock
implementation.

Avoiding Syscalls

By far the slowest part of our mutex are the wait and wake, since
those (can) result
in a syscall, a call into the operating system’s ker-
nel.
Talking with the kernel like that is quite an involved process that
tends to be quite slow,
especially compared to atomic operations.
So,

for a performant mutex implementation, we should try to avoid wait
and wake calls
as much as possible.

Luckily, we’re already halfway there.
Because the while loop in our
locking function checks the state
before the wait() call, the wait
operation is skipped entirely in
the situation where we don’t need to
wait, when the mutex wasn’t locked.
We do, however, unconditionally
call the wake_one() function when unlocking.

We can skip the wake_one() if we know there are no other threads
waiting.
To know whether there are waiting threads, we need to keep
track of this information ourselves.

We can do this by splitting the “locked” state into two separate states:

“locked without waiters” and “locked with waiter(s).”
We’ll use the val-
ues 1 and 2 for that,
and update our documentation comment of the
state field in the struct definition:

pub struct Mutex<T> {

 /// 0: unlocked

 /// 1: locked, no other threads waiting

 /// 2: locked, other threads waiting

 state: AtomicU32,

 value: UnsafeCell<T>,

}

Now, for an unlocked mutex, our lock function still needs to set the
state to 1 to lock it.
However, if it was already locked, our lock function
now needs to set the state to 2
before going to sleep, so that the un-
lock function can tell there’s a waiting thread.

To do this, we’ll first use a compare-and-exchange function to
attempt
to change the state from 0 to 1.
If that succeeds, we’ve locked the mu-
tex, and we know there are no other waiters,
since the mutex wasn’t
locked before.
If it fails, that must be because the mutex is currently
locked (in state 1 or 2).
In that case, we’ll use an atomic swap opera-
tion to set it to 2.
If that swap operation returns an old value of 1 or 2,

that means
the mutex was indeed still locked, and only then do we
use wait() to block
until it changes.
If the swap operation returns
0, that means we’ve succesfully locked
the mutex by changing its
state from 0 to 2.

 pub fn lock(&self) -> MutexGuard<T> {

 if self.state.compare_exchange(0, 1, Acqu

 while self.state.swap(2, Acquire) !=

 wait(&self.state, 2);

 }

 }

 MutexGuard { mutex: self }

 }

Now, our unlock function can make use of the new information
by
skipping the wake_one() call when it’s unnecessary.
Instead of just
storing a 0 to unlock the mutex,
we’ll now use a swap operation so we
can check out its previous value.
Only if that value was 2, will we con-
tinue to wake up a thread:

impl<T> Drop for MutexGuard<'_, T> {

 fn drop(&mut self) {

 if self.mutex.state.swap(0, Release) == 2

 wake_one(&self.mutex.state);

 }

 }

}

Note that after setting the state back to zero,
it no longer indicates
whether there are any waiting threads.
The thread that’s woken up is
responsible for setting the state back to 2,
to make sure any other
waiting threads are not forgotten.
This is why the compare-and-ex-
change operation is not part of the while loop in our lock function.

This does mean that for every time a thread had to wait() while
locking, it will also
call wake_one() when unlocking, even when
that’s not necessary.
However, what’s most important is that in the
uncontended case,
the ideal situation where threads are not attempt-
ing to acquire the lock simultaneously,
both the wait() and
wake_one() calls are entirely avoided.

Figure 9-1 visualizes the operations and happens-before relation-
ships
in a situation where two threads concurrently attempt to lock
our Mutex .
The first thread locks the mutex by changing the state
from 0 to 1.
At that point, the second thread will not be able to acquire
the lock
and therefore goes to sleep after changing the state from 1 to
2.
When the first thread unlocks the Mutex , it swaps the state back
to 0.
Because it was 2, indicating a waiting thread, it calls
wake_one() to wake up the second thread.
Note how we do not
depend on any happens-before relationship between the wake and
wait operations.
While it’s likely that the wake operation is the one re-
sponsible for waking up the waiting thread,
the happens-before rela-
tionship is established through the acquire swap operation observing
the value
stored by the release swap operation.

Figure 9-1. The happens-before relationships between two threads concurrently attempting
to lock our Mutex

Optimizing Further

https://marabos.nl/atomics/alt/9-1.html

At this point, it might seem like there’s not much else we could opti-
mize further.
In the uncontended case, we perform zero syscalls, and
all that’s left
are just two very simple atomic operations.

The only way to avoid the wait and wake operations is to go back to
our spin lock implementation.
While spinning is usually very ineffi-
cient,
it at least does avoid the potential overhead of a syscall.
The
only situation where spinning can be more efficient is when waiting
for only a very short time.

For locking a mutex, that happens only in situations where the thread
that currently holds the lock
is running in parallel on a different pro-
cessor core and will keep the lock only very briefly.
This is, however,
a very common case.

We can try to combine the best of both approaches by spinning for a
very short amount of time before resorting to calling wait() .
That
way, if the lock is released very quickly, we don’t need to call
wait() at all,
but we still avoid consuming an unreasonable amount
of processor time that other threads could make better use of.

Implementing this only requires changes to our lock function.

To keep things as performant as possible in the uncontended case,

we’ll keep the original compare-and-exchange operation at the start

of the lock function.
We’ll leave spinning waiting to a separate
function.

impl<T> Mutex<T> {

 …

 pub fn lock(&self) -> MutexGuard<T> {

 if self.state.compare_exchange(0, 1, Acqu

 // The lock was already locked. :(

 lock_contended(&self.state);

 }

 MutexGuard { mutex: self }

 }

}

fn lock_contended(state: &AtomicU32) {

 …

}

In lock_contended , we could simply repeat the same compare-
and-exchange
operation a few hundred times before continuing to
the wait loop.
However, a compare-and-exchange operation general-
ly attempts to get
exclusive access to the relevant cache line (see
“The MESI protocol”),
which can be more expensive than a simple
load operation when executed repeatedly.

With that in mind, we come to the following lock_contended

implementation:

fn lock_contended(state: &AtomicU32) {

 let mut spin_count = 0;

 while state.load(Relaxed) == 1 && spin_count

 spin_count += 1;

 std::hint::spin_loop();

 }

 if state.compare_exchange(0, 1, Acquire, Rela

 return;

 }

 while state.swap(2, Acquire) != 0 {

 wait(state, 2);

 }

}

First, we spin up to 100 times,
making use of a spin loop hint like we
did in Chapter 4.
We only spin as long as the mutex is locked and has
no waiters.
If another thread is already waiting, it means it gave up
spinning because it took too long,
which can be an indication that
spinning will likely not be very useful for this thread either.

NOTE

The spin duration of a hundred cycles is chosen mostly arbitrarily.
The time an iter-
ation takes and the duration of a syscall (which we’re trying to avoid)
depend heavi-
ly on the platform.
Extensive benchmarking can help with choosing the right num-
ber,
but unfortunately there’s not a single correct answer.

The Linux implementation of std::sync::Mutex in the Rust standard library,
at
least the one in Rust 1.66.0, uses a spin count of 100.

After the lock state has changed, we try once more to lock it by set-
ting it to 1,
before we give up and start waiting.
As we discussed be-
fore, after we call wait() we can no longer lock the mutex
by set-
ting its state to 1, since that might result in other waiters being
forgotten.

COLD AND INLINE ATTRIBUTES

You could add the #[cold] attribute to the lock_contended

function definition to help the compiler understand that this function is
not called in the common (uncontended) case,
which can help with
optimizations for the lock method.

Additionally, you could add the #[inline] attribute to the Mutex

and
 MutexGuard methods to inform the compiler that it might be a
good idea to
inline them: to put the resulting instructions directly at
the place where the method is called.
Whether that increases perfor-
mance is hard to say in general,
but for very small functions like
these, it usually does.

Benchmarking

Testing the performance of a mutex implementation is hard.
It’s easy
to write a benchmark test and get some numbers,
but it’s very hard to
get any meaningful numbers.

Optimizing a mutex implementation to perform very well in a specific
benchmark test
is relatively easy, but not very useful.
After all, the
point is to make something that performs well in real-world programs,

not just in test programs.

We’ll attempt to write two simple benchmark tests showing that
our
optimizations at least had some positive effect on some use cases,

but keep in mind that any conclusions won’t necessarily hold up in dif-
ferent scenarios.

For our first test, we’ll create a Mutex and lock and unlock it a few
million times,
all on the same thread, measuring the total time it takes.

This is a test for the trivial uncontended scenario,
where there are
never any threads that need to be woken up.
Hopefully, this will show
us a significant difference between our 2-state and 3-state versions.

fn main() {

 let m = Mutex::new(0);

 std::hint::black_box(&m);

 let start = Instant::now();

 for _ in 0..5_000_000 {

 *m.lock() += 1;

 }

 let duration = start.elapsed();

 println!("locked {} times in {:?}", *m.lock()

}

NOTE

We use std::hint::black_box (like we did in “Impact on Performance”)
to
force the compiler to assume there might be more code that accesses the mutex,

preventing it from optimizing away the loop or locking operations.

Results will vary heavily depending on hardware and operating sys-
tem.
Trying this on one particular Linux computer with a recent AMD
processor results in a total time of about 400 milliseconds for our un-
optimized 2-state mutex,
and about 40 milliseconds for our more opti-
mized 3-state mutex.
A factor ten improvement!
On another Linux
computer with an older Intel processor, the difference is even bigger:
about 1800 milliseconds versus 60 milliseconds.
This confirms that
the addition of the third state can indeed be a very significant
optimization.

Running this on a computer that runs macOS, however, produces
completely different results:
about 50 milliseconds for both versions,

showing that it’s all highly platform-dependent.

As it turns out, the implementation of libc++’s
std::atomic<T>::wake() ,
which we use on macOS,
already
performs its own bookkeeping, independent from the kernel,
to avoid
unnecessary syscalls.
The same holds for
WakeByAddressSingle() on Windows.

Avoiding a call to those functions can still result in slightly better per-
formance,
since their implementation is far from trivial,
especially be-
cause they can’t store any information in the atomic variable itself.
However, if we’d only be targeting only these operating systems,
we
should question whether adding a third state to our mutex was really
worth the effort.

To see if our spinning optimization made any positive difference,
we
need a different benchmark test: one with lots of contention,
with mul-
tiple threads repeatedly trying to lock an already locked mutex.

Let’s try a scenario where four threads all concurrently attempt to lock
and unlock
the mutex a few million times:

fn main() {

 let m = Mutex::new(0);

 std::hint::black_box(&m);

 let start = Instant::now();

 thread::scope(|s| {

 for _ in 0..4 {

 s.spawn(|| {

 for _ in 0..5_000_000 {

 *m.lock() += 1;

 }

 });

 }

 });

 let duration = start.elapsed();

 println!("locked {} times in {:?}", *m.lock()

}

Note that this is an extreme and unrealistic scenario.
The mutex is
only kept for an extremely short time (only to increment an integer),
and the threads will immediately attempt to lock the mutex again after
unlocking.
A different scenario will most likely result in very different
results.

Let’s run this benchmark on the same two Linux computers as before.

On the one with the older Intel processor,
this results in about 900 mil-
liseconds for the version of our mutex that doesn’t spin,
and about
750 milliseconds when using the spinning version. An improvement!
On the computer with the newer AMD processor, however, we get
opposite results:
about 650 milliseconds without spinning and about
800 milliseconds with.

In conclusion, the answer as to whether spinning actually increases
performance is, unfortunately, “it depends,” even when looking at just
one scenario.

Condition Variable

Let’s move on to something more fun: implementing a condition
variable.

As we saw in “Condition Variables”, a condition variable
is used to-
gether with a mutex to wait until the mutex-protected data matches
some condition.
It has a wait method that unlocks a mutex, waits for a
signal, and locks the same mutex again.
Signals are sent by other
threads, usually right after modifying the mutex-protected data,
to ei-
ther one waiting thread (often called “notify one” or “signal”) or all
waiting threads (often called “notify all” or “broadcast”).

While a condition variable attempts to keep a waiting thread asleep
until it is signalled,
it is possible for a waiting thread to be woken up
spuriously, without a corresponding signal.
The condition variable’s
wait operation will still relock the mutex before returning, though.

Notice how this interface is nearly identical to
our futex-like wait() ,

wake_one() , and wake_all() functions.
The main difference is
the mechanism used to prevent lost signals.
A condition variable will
start “listening” to signals before unlocking the mutex
to not miss any
signals right after, while our futex-style wait() function
relies on a
check of the state of the atomic variable to make sure waiting is still a
good idea.

This leads to the following minimal implementation idea for a condi-
tion variable:
if we make sure that every notification changes an
atomic variable (like a counter),
then all our Condvar::wait()
method needs to do is check the value of that variable
before unlock-
ing the mutex, and pass it to the futex-style wait() function after
unlocking it.
That way, it will not go to sleep if any notification signal
arrived since unlocking the mutex.

Let’s try that out!

We start with a Condvar struct that just contains a single
AtomicU32 , which we initialize at zero:

pub struct Condvar {

 counter: AtomicU32,

}

impl Condvar {

 pub const fn new() -> Self {

 Self { counter: AtomicU32::new(0) }

 }

 …

}

The notify methods are simple.
They just need to change the counter
and use the corresponding wake operation to notify any waiting
thread(s):

 pub fn notify_one(&self) {

 self.counter.fetch_add(1, Relaxed);

 wake_one(&self.counter);

 }

 pub fn notify_all(&self) {

 self.counter.fetch_add(1, Relaxed);

 wake_all(&self.counter);

 }

(We’ll discuss the memory ordering in a moment.)

The wait method will take a MutexGuard , since that represents
proof
of a locked mutex.
It will also return a MutexGuard , since it’ll
make sure the mutex is locked again before returning.

As we sketched out above, the method will first check the current val-
ue of the counter
before unlocking the mutex.
After unlocking the mu-
tex, it should only wait if the counter hasn’t changed,
to make sure we
didn’t miss any signals.
Here’s what that looks like as code:

 pub fn wait<'a, T>(&self, guard: MutexGuard<

p , (, g

 let counter_value = self.counter.load(Rel

 // Unlock the mutex by dropping the guard

 // but remember the mutex so we can lock

 let mutex = guard.mutex;

 drop(guard);

 // Wait, but only if the counter hasn't c

 wait(&self.counter, counter_value);

 mutex.lock()

 }

TIP

This makes use of the private mutex field of the MutexGuard .
Privacy in Rust is
based on modules, so if you’re defining this in a different module than
the
MutexGuard , you’ll need to mark the mutex field of the MutexGuard as, for
example,
 pub(crate) to make it available to other modules in the crate.

Before we celebrate our success in finishing our condition variable,

let’s think for a second about memory ordering.

While the mutex is locked, no other thread can change the mutex-
protected data.
Therefore, we don’t need to worry about notifications
from before we unlock the mutex,
since, as long as we hold the mutex

locked, nothing can happen to the data that would make us change
our mind about wanting to go to sleep and wait.

The only situation we’re interested in is when, after we release the
mutex,
another thread comes along and locks the mutex, changes
the protected data,
and signals us (hopefully after unlocking the
mutex).

In this situation, there’s a happens-before relationship between un-
locking the mutex in
 Condvar::wait() and locking the mutex in
the notifying thread.
This happens-before relationship is what guaran-
tees that our relaxed load,
which happens before unlocking,
will ob-
serve the value before the notification’s relaxed increment operation,

which happens after locking.

We don’t know whether the wait() operation will see the value be-
fore or after incrementing,
since there’s nothing that guarantees any
ordering at that point.
However, that doesn’t matter, since wait()

behaves atomically with respect to corresponding wake operations.

Either it sees the new value, in which case it does not go to sleep at
all,
or it sees the old value, in which case it goes to sleep and will be
woken up by the corresponding
 wake_one() or wake_all() call
from the notification.

Figure 9-2 shows the operations and happens-before relationships
for
a situation in which one thread uses Condvar::wait() to wait for
some mutex-protected data to change and gets woken up by a sec-
ond thread that modifies the data and calls
Condvar::wake_one() .
Note how the first load operation is guar-
anteed to observe the value before it gets incremented,
thanks to the
unlock and lock operations.

We should also consider what happens if the counter overflows.

The actual value of the counter doesn’t matter as long as it is different
after each notification.
Unfortunately, after a bit more than four billion
notifications,
the counter will overflow and restart at zero, going back
to values that have been used before.
Technically, it is possible for
our Condvar::wait() implementation to go to sleep when it
shouldn’t:
if it misses exactly 4,294,967,296 notifications (or any multi-
ple of that),
it will overflow the counter all the way around to the value
it had before.

Figure 9-2. The operations and happens-before relationships of one thead using
Condvar::wait() that’s woken up by another thread using Condvar::notify_one()

https://marabos.nl/atomics/alt/9-2.html

It’s entirely reasonable to consider the chance of that happening to be
negligible.
In contrtast to what we did in our mutex locking method,

we don’t recheck the state and repeat the wait() call after waking
up here,
so we only need to worry about an overflow round-trip hap-
pening in the moment between
the relaxed load of the counter and
the wait() call.
If a thread can be interrupted for so long that it al-
lows for (exactly) that many notifications to happen,
something has
probably already gone terribly wrong, and the program has already
turned unresponsive.
At that point, one might reasonably argue, a mi-
croscopic additional risk of a
thread staying asleep no longer matters.

TIP

On platforms that support futex-style waiting with a time limit,
the risk of overflowing
can be mitigated by using a timeout for the wait operation of a few seconds.
Send-
ing four billion notifications will take significantly longer,
at which point the risk of a
few additional seconds will have very little impact.
This completely removes any risk

of the program locking up
due to a waiting thread wrongly staying asleep forever.

Let’s see if it works!

#[test]

fn test_condvar() {

 let mutex = Mutex::new(0);

 let condvar = Condvar::new();

 let mut wakeups = 0;

 thread::scope(|s| {

 s.spawn(|| {

 thread::sleep(Duration::from_secs(1))

 *mutex.lock() = 123;

 condvar.notify_one();

 });

 let mut m = mutex.lock();

 while *m < 100 {

 m = condvar.wait(m);

 wakeups += 1;

 }

 assert_eq!(*m, 123);

 });

 // Check that the main thread actually did wa

 // while still allowing for a few spurious wa

 assert!(wakeups < 10);

}

We count the number of times the condition variable returns from its
wait method,
to make sure it actually goes to sleep.
If that number
would be very high, it would indicate that we are accidentally
spin-

looping instead.
It’s important to test this, since a condition variable
that never sleeps still
results in “correct” behavior, but would effec-
tively turn the waiting loop into a spin loop.

If we run this test, we see that it compiles and passes just fine,
con-
firming that our condition variable did actually put the main thread to
sleep.
Of course, this doesn’t prove that its implementation is correct.
A long stress test that involves many threads, ideally run on a com-
puter
with a weakly ordered processor architecture, can be used to
gain more confidence if necessary.

Avoiding Syscalls

As we realized in “Avoiding Syscalls”,
optimizing a locking primitive is
mainly about avoiding unnecessary wait and wake operations.

In the case of our condition variable, there is not much use in trying to
avoid the wait() call
in our Condvar::wait() implementation.

By the time a thread decides to wait on a condition variable,
it has al-
ready checked that the thing it’s waiting for hasn’t happened yet,
and
it needs to go to sleep.
If the wait wasn’t necessary, it wouldn’t have
called Condvar::wait() at all.

We can, however, avoid the wake_one() and wake_all() calls
if there are no waiting threads,
similar to what we did for our Mutex .

A simple way to do this is to keep track of the number of waiting
threads.
Our wait method will need to increment it before waiting, and
decrement it when it’s done.
Then our notify methods can skip send-
ing their signal if that number is zero.

So, we add a new field to our Condvar struct to track the number of
active waiters:

pub struct Condvar {

 counter: AtomicU32,

 num_waiters: AtomicUsize, // New!

}

impl Condvar {

 pub const fn new() -> Self {

 Self {

 counter: AtomicU32::new(0),

 num_waiters: AtomicUsize::new(0), //

 }

 }

 …

}

By using an AtomicUsize for num_waiters , we don’t have to
worry about it overflowing.
A usize is big enough to count every

byte in memory,
so if we assume that every active thread takes up at
least a single byte of memory,
it’s definitely big enough to count any
number of concurrently existing threads.

Next, we update our notification functions to not do anything if there
are no waiters:

 pub fn notify_one(&self) {

 if self.num_waiters.load(Relaxed) > 0 { /

 self.counter.fetch_add(1, Relaxed);

 wake_one(&self.counter);

 }

 }

 pub fn notify_all(&self) {

 if self.num_waiters.load(Relaxed) > 0 { /

 self.counter.fetch_add(1, Relaxed);

 wake_all(&self.counter);

 }

 }

(We’ll discuss the memory ordering in a moment.)

And finally, most importantly, we increment it at the start of our wait
method and decrement as soon as it wakes up:

pub fn wait<'a T>(&self guard: MutexGuard<

 pub fn wait< a, T>(&self, guard: MutexGuard<

 self.num_waiters.fetch_add(1, Relaxed); /

 let counter_value = self.counter.load(Rel

 let mutex = guard.mutex;

 drop(guard);

 wait(&self.counter, counter_value);

 self.num_waiters.fetch_sub(1, Relaxed); /

 mutex.lock()

 }

We should again ask ourselves carefully if relaxed memory ordering
is enough for all these atomic operations.

A new potential risk we’ve introduced,
is one of the notify methods
observing a zero in num_waiters ,
skipping its wake operation,

while there was actually a thread to wake up.
This can happen when
a notify method observes the value either before the increment oper-
ation or after the decrement operation.

Just as with the relaxed load from the counter,
the fact that the waiter
still holds the mutex locked while incrementing num_waiters

makes sure that any load of num_waiters that happens after un-
locking the mutex
will not see a value from before it was incremented.

We also don’t need to worry about the notifying thread observing the
decremented value “too soon,” because once the decrementing oper-
ation is executed, perhaps after a spurious wake-up,
the waiting
thread no longer needs to be woken up anyway.

In other words, the happens-before relationship that the mutex estab-
lishes
still provides all the guarantees we need.

Avoiding Spurious Wake-ups

Another way in which we could optimize our condition variable is by
avoiding spuriously waking up.
Every time a thread is woken up, it’ll
try to lock the mutex,
potentially competing with other threads, which
can have a big impact on performance.

It’s quite uncommon for the underlying wait() operation to spuri-
ously wake up,
but our condition variable implementation easily al-
lows for notify_one()
to cause more than one thread to stop
waiting.
If a thread is in the process of going to sleep, has just loaded
the counter value,
but hasn’t gone to sleep yet, a call to

notify_one() will prevent that thread from
going to sleep due to
the updated counter, but it’ll also cause a second thread
to wake up
because of the wake_one() operation that follows.
Both of those
threads will then compete to lock the mutex, wasting valuable proces-
sor time.

This might sound like a rarely occurring situation, but this can actually
happen quite easily,
due to how the mutex ends up synchronizing the
threads.
A thread that will call notify_one() on the condition vari-
able
will most likely lock and unlock the mutex right before, to change
something about the data
that the waiting thread is waiting for.
This
means that as soon as the Condvar::wait() method unlocks the
mutex,
that might immediately unblock a notifying thread that was
waiting for the mutex.
At that point the two threads are racing: the
waiting thread to go to sleep,
and the notifying thread to lock and un-
lock the mutex and notify the condition variable.
If the notifying thread
wins that race,
the waiting thread will not go to sleep because of the
incremented counter,
but the notifying thread will still call
wake_one() .
This is exactly the problematic situation described
above,
where it might unnecessarily wake up an extra waiting thread.

A relatively straightforward solution would be to keep
track of the
number of threads that are allowed to wake up (that is, return from
Condvar::wait()).
The notify_one method would increase it
by one,
and the wait method would attempt to decrease it by one if

it’s not zero.
If the counter is at zero, it could go (back) to sleep,
in-
stead of attempting to relock the mutex and returning.
(Notifying all
threads could be done by adding another counter specifically for
notify_all that is never decremented.)

This approach works, but comes with a new and more subtle issue:
a
notification might wake up a thread that hasn’t even called
Condvar::wait() yet,
including itself.
A call to
Condvar::notify_one() would increment the number of
threads that should be woken up
and use wake_one() to wake up
one waiting thread.
Then, if another (or even the same) thread calls
Condvar::wait() afterwards,
before the thread that was already
waiting has a chance to wake up,
the newly waiting thread could see
that there’s one notification pending
and claim it by decrementing the
counter to zero, returning immediately.
The first thread that was wait-
ing would then go back to sleep,
since another thread already took
the notification.

Depending on the use case, this might be perfectly fine,
or it might be
a big problem, causing some threads to never make progress.

NOTE

GNU libc’s pthread_cond_t implementation used to suffer from this issue.
After
much discussion on whether or not this was allowed by the POSIX specification,

the issue was eventually resolved with the release of GNU libc 2.25 in 2017,
which
included a completely new condition variable implementation.

In many situations where a condition variable is used,
it’s perfectly
fine for a waiter to snatch away an earlier notification.
However, when
implementing a condition variable for general use
rather than a spe-
cific kind of use case, this behavior might be unacceptable.

Again, we must come to the conclusion that the answer to
whether
we should use an optimized aproach is, unsurprisingly, “it depends.”

TIP

There are ways to avoid this problem while still avoiding spurious wake-ups,
but
those are significantly more complicated than other approaches.

The solution used by GNU libc’s new condition variable involves categorizing wait-
ers into two groups,
only allowing the first group to consume notifications
and swap-
ping the groups around when the first one has no waiters left.

A downside of this approach is not only the complexity of the algorithm,
but also
that it significantly increases the size of the condition variable type,
since it now
needs to keep track of much more information.

THUNDERING HERD PROBLEM

Another performance problem that one might encounter when using
a condition variable occurs when using notify_all() to wake up
many threads waiting for the same thing.

The problem is that, after waking up, all those threads will immediate-
ly try to lock the same mutex.
Most likely, only one thread will suc-
ceed, and all the others will have to go back to sleep.
This resource-
wasting problem of many threads all rushing to claim the same re-
source
is referred to as the thundering herd problem.

It’s not unreasonable to argue that Condvar::notify_all() is
fundamentally an anti-pattern
not worth optimizing for.
A condition
variable’s purpose is to unlock a mutex and relock it when notified,
so
perhaps notifying more than one thread at once will never lead to
anything good.

Even so, if we want to optimize for this situation,
we can do so on op-
erating systems that support a futex-like requeuing operation,
like
FUTEX_REQUEUE on Linux. (See “Futex Operations”.)

Instead of waking up many threads of which all but one will immedi-
ately
go back to sleep once they realize the lock has already been
taken,
we can requeue all but one thread such that their futex wait op-

erations no longer wait
for the condition variable’s counter, but start
waiting for the mutex state instead.

Requeueing a waiting thread doesn’t wake it up.
In fact, the thread
won’t even know that it has been requeued.
Unfortunately, this can
lead to some very subtle pitfalls.

For example, remember how a three-state mutex always must be
locked
to the right state (“locked with waiters”) after waking up,
to
make sure other waiters aren’t forgotten about?
This means we
should no longer use the regular mutex lock method in our
Condvar::wait() implementation,
which might set the mutex to
the wrong state.

A requeueing condition variable implementation would need to store
a pointer to
the mutex used by the waiting threads.
Otherwise, the no-
tify methods wouldn’t know which atomic variable (the mutex state)
to
requeue the waiting threads to.
This is why a condition variable gen-
erally does not allow two threads to wait
for different mutexes.
Even
though many condition variable implementations do not make use of
requeueing,
it can be useful to keep open the possibility for a future
version to do so.

Reader-Writer Lock

It’s time to implement a reader-writer lock!

Recall how, unlike a mutex, a reader-writer lock supports two types of
locking:
read-locking and write-locking, sometimes called shared
locking and exclusive locking.
Write-locking behaves identically to
locking a mutex, only allowing one lock at a time,
while read-locking
allows for multiple readers to hold a lock at once.
In other words, it
closely matches how exclusive references (&mut T) and
shared ref-
erences (&T) work in Rust, allowing only one exclusive reference,
or
any number of shared references, to be active at the same time.

For our mutex, we needed to track only whether it was locked or not.
For our reader-writer lock, however, we also need to know how many
(reader) locks are currently held, to make sure write-locking
only hap-
pens after all readers have released their locks.

Let’s start with a RwLock struct that uses a single AtomicU32 as
its state.
We’ll use it to represent the number of currently acquired
read locks,
such that a value of zero means it’s unlocked.
To repre-
sent the write-locked state, let’s use a special value of u32::MAX .

pub struct RwLock<T> {

 /// The number of readers, or u32::MAX if wri

 state: AtomicU32,

 value: UnsafeCell<T>,

}

For our Mutex<T> , we had to restrict its Sync implementation to
types T that implement Send ,
to make sure it can’t be used to
send, for example, an Rc to another thread.
For our new
RwLock<T> , we additionally need to require that T also imple-
ments Sync ,
because multiple readers will be able to access the
data at once:

unsafe impl<T> Sync for RwLock<T> where T: Send +

Because our RwLock can be locked in two different ways,
we’ll have
two separate lock functions, each with its own type of guard:

impl<T> RwLock<T> {

 pub const fn new(value: T) -> Self {

 Self {

 state: AtomicU32::new(0), // Unlocked

 value: UnsafeCell::new(value),

 }

 }

 pub fn read(&self) -> ReadGuard<T> {

 …

 }

pub fn write(&self) -> WriteGuard<T> {

 pub fn write(&self) -> WriteGuard<T> {

 …

 }

}

pub struct ReadGuard<'a, T> {

 rwlock: &'a RwLock<T>,

}

pub struct WriteGuard<'a, T> {

 rwlock: &'a RwLock<T>,

}

The write guard should behave like an exclusive reference (&mut

T),
which we do by implementing both Deref and DerefMut for it:

impl<T> Deref for WriteGuard<'_, T> {

 type Target = T;

 fn deref(&self) -> &T {

 unsafe { &*self.rwlock.value.get() }

 }

}

impl<T> DerefMut for WriteGuard<'_, T> {

 fn deref_mut(&mut self) -> &mut T {

 unsafe { &mut *self.rwlock.value.get() }

}

 }

}

However, the read guard should only implement Deref , not
DerefMut ,
because it doesn’t have exclusive access to the data,

making it behave like a shared reference (&T):

impl<T> Deref for ReadGuard<'_, T> {

 type Target = T;

 fn deref(&self) -> &T {

 unsafe { &*self.rwlock.value.get() }

 }

}

Now that we got all that boilerplate code out of the way,
let’s get to
the interesting parts: locking and unlocking.

To read-lock our RwLock , we must increment the state by one,
but
only if it wasn’t already write-locked.
We’ll use a compare-and-ex-
change loop (“Compare-and-Exchange Operations”) to do so.
In case
the state is u32::MAX , meaning the RwLock is write-locked,
we’ll
use a wait() operation to sleep and retry later.

 pub fn read(&self) -> ReadGuard<T> {

 let mut s = self.state.load(Relaxed);

 loop {

 if s < u32::MAX {

 assert!(s != u32::MAX - 1, "too m

 match self.state.compare_exchange

 s, s + 1, Acquire, Relaxed

) {

 Ok(_) => return ReadGuard { r

 Err(e) => s = e,

 }

 }

 if s == u32::MAX {

 wait(&self.state, u32::MAX);

 s = self.state.load(Relaxed);

 }

 }

 }

Write-locking is easier; we just need to change the state from zero to
u32::MAX ,
or wait() if it was already locked:

 pub fn write(&self) -> WriteGuard<T> {

 while let Err(s) = self.state.compare_exc

 0, u32::MAX, Acquire, Relaxed

) {

 // Wait while already locked.

 wait(&self.state, s);

 }

 WriteGuard { rwlock: self }

 }

Note how the exact state value of a locked RwLock varies,
but the
wait() operation expects us to give it an exact value to compare
the state with.
This is why we use the return value from the compare-
and-exchange operation for the wait() operation.

Unlocking a reader involves decrementing the state by one.
The
reader that ends up unlocking the RwLock ,
the one that changes the
state from one to zero,
is responsible for waking up a waiting writer, if
any.

Waking up just one thread is enough,
because we know there cannot
be any waiting readers at this point.
There would simply be no reason
for a reader to be waiting
on a read-locked RwLock .

impl<T> Drop for ReadGuard<'_, T> {

 fn drop(&mut self) {

 if self.rwlock.state.fetch_sub(1, Release

 // Wake up a waiting writer, if any.

 wake_one(&self.rwlock.state);

 }

 }

}

A writer must reset the state to zero to unlock,
after which it should
wake either one waiting writer or all waiting readers.

We don’t know whether readers or writers are waiting,
nor do we
have a way to wake up only a writer or only the readers.
So, we’ll just
wake all threads:

impl<T> Drop for WriteGuard<'_, T> {

 fn drop(&mut self) {

 self.rwlock.state.store(0, Release);

 // Wake up all waiting readers and writer

 wake_all(&self.rwlock.state);

 }

}

And that’s it! We’ve built a very simple but perfectly usable reader-
writer lock.

Time to fix some issues.

Avoiding Busy-Looping Writers

One issue with our implementation
is that write-locking might result in
an accidental busy-loop.

If we have an RwLock with a lot of readers repeatedly locking and
unlocking it,
the lock state might be continuously in flux, rapidly going
up and down.
For our write method, this results in a high chance of
the lock state
changing between the compare-and-exchange opera-
tion and the subsequent wait() operation,
especially if the
wait() operation is directly implemented as a (relatively slow)

syscall.
This means that the wait() operation will often return im-
mediately,
even though the lock was never unlocked; it just had a dif-
ferent number of readers than expected.

A solution can be to use a different AtomicU32 for the writers to
wait on,
and only change the value of that atomic when we actually
want to wake up a writer.

Let’s try that, by adding a new writer_wake_counter field to our
RwLock :

pub struct RwLock<T> {

 /// The number of readers, or u32::MAX if wri

 state: AtomicU32,

 /// Incremented to wake up writers.

 writer_wake_counter: AtomicU32, // New!

 value: UnsafeCell<T>,

}

impl<T> RwLock<T> {

pub const fn new(value: T) -> Self {

 pub const fn new(value: T) -> Self {

 Self {

 state: AtomicU32::new(0),

 writer_wake_counter: AtomicU32::new(0

 value: UnsafeCell::new(value),

 }

 }

 …

}

The read method remains unchanged,
but the write method now
needs to wait for the new atomic variable instead.
To make sure we
don’t miss any notifications between seeing that the RwLock
is
read-locked and actually going to sleep, we’ll use a pattern similar to
the one we used for implementing our condition variable:
check the
writer_wake_counter before checking if we still want to sleep:

 pub fn write(&self) -> WriteGuard<T> {

 while self.state.compare_exchange(

 0, u32::MAX, Acquire, Relaxed

).is_err() {

 let w = self.writer_wake_counter.load

 if self.state.load(Relaxed) != 0 {

 // Wait if the RwLock is still lo

 // there have been no wake signal

wait(&self.writer wake counter, w

 wait(&self.writer_wake_counter, w

 }

 }

 WriteGuard { rwlock: self }

 }

The acquire-load operation of writer_wake_counter will
form a
happens-before relationship with a release-increment operation
that’s
executed right after unlocking the state, before waking up a waiting
writer:

impl<T> Drop for ReadGuard<'_, T> {

 fn drop(&mut self) {

 if self.rwlock.state.fetch_sub(1, Release

 self.rwlock.writer_wake_counter.fetch

 wake_one(&self.rwlock.writer_wake_cou

 }

 }

}

The happens-before relationship makes sure that the write

method
cannot observe the incremented writer_wake_counter

value
while still seeing the not-yet-decremented state value after-
wards.
Otherwise, the write-locking thread might conclude the
RwLock is still locked
while having missed the wake-up call.

As before, write-unlocking should wake either one waiting writer or all
waiting readers.
Since we still don’t know whether there are writers or
readers waiting, we have to wake both one waiting writer (through
wake_one)
and all waiting readers (using wake_all):

impl<T> Drop for WriteGuard<'_, T> {

 fn drop(&mut self) {

 self.rwlock.state.store(0, Release);

 self.rwlock.writer_wake_counter.fetch_add

 wake_one(&self.rwlock.writer_wake_counter

 wake_all(&self.rwlock.state);

 }

}

TIP

On some operating systems, the operation behind the wake operations
returns the
number of threads it woke up.
It might indicate a lower number than the actual num-
ber
of awoken threads (due to spuriously awoken threads),
but its return value can
still be useful as an optimization.

In the drop implementation above, for example,
we could skip the wake_all()

call if the wake_one() operation
would indicate it actually woke up a thread.

Avoiding Writer Starvation

A common use case for an RwLock is a situation with many frequent
readers,
but very few, often only one, infrequent writer.
For example,

one thread might be responsible for reading out some sensor input
or
periodically downloading some new data that many other threads
need to use.

In such a situation, we can quickly run into an issue called writer star-
vation:
a situation where the writer(s) never get a chance to lock the
RwLock
because there are always readers around to keep the
RwLock read-locked.

One solution to this problem is to prevent any new readers from ac-
quiring a lock
when there is a writer waiting, even when the RwLock

is still read-locked.
That way, all new readers will have to wait until
the writer has had its turn,
making sure that readers will get access to
the latest data that the writer wanted to share.

Let’s implement this.

To do this, we need to keep track of whether there are any waiting
writers.
To make space for this information in the state variable,
we
can multiply the reader count by 2,
and add 1 for situations where
there is a writer waiting.
This means that a state of 6 or 7 both repre-
sent a situation with
three active read locks: 6 without a waiting writer,
and 7 with a waiting writer.

If we keep u32::MAX , which is an odd number, as the write-locked
state,
then readers will have to wait if the state is odd,
but are free to
acquire a read lock by incrementing it by two if the state is even.

pub struct RwLock<T> {

 /// The number of read locks times two, plus

 /// u32::MAX if write locked.

 ///

 /// This means that readers may acquire the l

 /// the state is even, but need to block when

 state: AtomicU32,

 /// Incremented to wake up writers.

 writer_wake_counter: AtomicU32,

 value: UnsafeCell<T>,

}

We’ll have to change the two if statements in our read method
to
no longer compare the state against u32::MAX ,
but instead check
whether the state is even or odd.
We also need to change the upper
bound in the assert statement
and make sure we lock by incre-
menting by two instead of one.

 pub fn read(&self) -> ReadGuard<T> {

 let mut s = self.state.load(Relaxed);

 loop {

 if s % 2 == 0 { // Even.

 assert!(s != u32::MAX - 2, "too m

 match self.state.compare_exchange

 s, s + 2, Acquire, Relaxed

) {

 Ok(_) => return ReadGuard { r

 Err(e) => s = e,

 }

 }

 if s % 2 == 1 { // Odd.

 wait(&self.state, s);

 s = self.state.load(Relaxed);

 }

 }

 }

Our write method has to undergo bigger changes.
We’ll use a
compare-and-exchange loop, just like our read method above.
If
the state is 0 or 1, which means the RwLock is unlocked,
we’ll at-
tempt to change the state to u32::MAX to write-lock it.
Otherwise,

we’ll have to wait.
Before doing so, however, we need to make sure
the state is odd,
to stop new readers from acquiring the lock.
After
making sure the state is odd,
we wait for the
writer_wake_counter variable,
while making sure that the lock
hasn’t been unlocked in the meantime.

In code, that looks like this:

 pub fn write(&self) -> WriteGuard<T> {

 let mut s = self.state.load(Relaxed);

 loop {

 // Try to lock if unlocked.

 if s <= 1 {

 match self.state.compare_exchange

 s, u32::MAX, Acquire, Relaxed

) {

 Ok(_) => return WriteGuard {

 Err(e) => { s = e; continue;

 }

 }

 // Block new readers, by making sure

 if s % 2 == 0 {

 match self.state.compare_exchange

 s, s + 1, Relaxed, Relaxed

) {

 Ok(_) => {}

 Err(e) => { s = e; continue;

 }

 }

 // Wait, if it's still locked

 let w = self.writer_wake_counter.load

 s = self.state.load(Relaxed);

 if s >= 2 {

 wait(&self.writer_wake_counter, w

 s = self.state.load(Relaxed);

}

 }

 }

 }

Since we now track whether there are any waiting writers,
read-un-
locking can now skip the wake_one() call
when unnecessary:

impl<T> Drop for ReadGuard<'_, T> {

 fn drop(&mut self) {

 // Decrement the state by 2 to remove one

 if self.rwlock.state.fetch_sub(2, Release

 // If we decremented from 3 to 1, tha

 // the RwLock is now unlocked _and_ t

 // a waiting writer, which we wake up

 self.rwlock.writer_wake_counter.fetch

 wake_one(&self.rwlock.writer_wake_cou

 }

 }

}

While write-locked (a state of u32::MAX),
we do not track any infor-
mation on whether any thread is waiting.
So, we have no new infor-
mation to use for write-unlocking,
which will remain identical:

impl<T> Drop for WriteGuard<'_, T> {

 fn drop(&mut self) {

 self.rwlock.state.store(0, Release);

 self.rwlock.writer_wake_counter.fetch_add

 wake_one(&self.rwlock.writer_wake_counter

 wake_all(&self.rwlock.state);

 }

}

For a reader-writer lock that’s optimized for the “frequent reading and
infrequent writing” use case, this would be quite acceptable, since
write-locking (and therefore write-unlocking) happens infrequently.

For a more general purpose reader-writer lock, however,
it is definite-
ly worth optimizing further, to bring the performance
of write-locking
and -unlocking near the performance of an efficient 3-state mutex.

This is left as a fun exercise for the reader.

Summary

The atomic-wait crate provides basic futex-like functionality
that works on (recent versions of) all major operating systems.

A minimal mutex implementation only needs two states, like our
SpinLock from Chapter 4.

A more efficient mutex tracks whether there are any waiting
threads,
so it can avoid an unnecessary wake operation.

Spinning before going to sleep might in some cases be benefi-
cial,
but it depends heavily on the situation, operating system,

and hardware.

A minimal condition variable only needs a notification counter,
which Condvar::wait will have to check both before and after
unlocking the mutex.

A condition variable could track the number of waiting threads to
avoid unnecessary wake operations.

Avoiding spuriously waking up from Condvar::wait can be
tricky,
requiring extra bookkeeping.

A minimal reader-writer lock requires only an atomic counter as
its state.

An additional atomic variable can be used to wake writers inde-
pendently from readers.

To avoid writer starvation, extra state is required to prioritize a
waiting writer over new readers.

Chapter 10. Ideas and Inspiration

There are an infinite number of concurrency related topics,
algo-
rithms, data structures, anecdotes, and other potential chapters
that
could be part of this book.
However, we’ve arrived at the final chapter
and it’s almost time for us to part ways,
hopefully leaving you with an
excited feeling of new possibilities
and ready to apply new knowledge
and skills in practice.

This final chapter’s purpose is to provide inspiration
for your own cre-
ations and future work by showing you some ideas that you can
study, explore, and build on your own.

Semaphore

A semaphore is effectively just a counter with two operations:
signal
(also called up or V) and wait (also called down or P).
The signal op-
eration increments the counter up to a certain maximum,
while a wait
operation decrements the counter.
If the counter is zero, a wait oper-
ation will block and wait
for a matching signal operation, preventing
the counter from ever becoming negative.
It is a flexible tool that can
be used to implement other synchronization primitives.

A semaphore can be implemented as a combination of a
Mutex<u32> for the counter and a Condvar for wait operations to
wait for.
However, there are several ways to implement it more effi-
ciently.
Most notably, on platforms that support futex-like operations
(“Futex”),
it can be implemented more efficiently as a single
AtomicU32 (or even AtomicU8).

A semaphore with a maximum value of one is sometimes called a
binary semaphore,
and can be used as a building block with which to
build other primitives.
For example, it can be used as a mutex by ini-
tializing the counter at one,
using the wait operation for locking, and
the signal operation for unlocking.
By initializing it at zero, it can also
be used for signaling, like a condition variable.
For example, the stan-
dard park() and unpark() functions in std::thread
can be
implemented as wait and signal operations on a binary semaphore
associated with the thread.

NOTE

Note how a mutex can be implemented using a semaphore,
while a semaphore can
be implemented using a mutex (and a condition variable).
It’s advisable to avoid us-
ing a mutex-based semaphore to implement a semaphore-based mutex,
and the
other way around.

Further reading:

Wikipedia article on semaphores
Stanford University course notes on semaphores

RCU

If you want to allow multiple threads to (mostly) read and (sometimes)

mutate some data, you can use an RwLock .
When this data is just a
single integer,
you can use an atomic variable (such as
AtomicU32) to avoid locking, which is more efficient.
However, for
larger chunks of data, like a struct with many fields,
there’s no avail-
able atomic type that allows for lock-free atomic operations on the en-
tire object.

Just like every other problem in computer science,
this problem can
be solved by adding a layer of indirection.
Instead of the struct itself,
you can use an atomic variable to store a pointer to it.
This still

https://oreil.ly/_rSRZ
https://oreil.ly/ZVaei

doesn’t allow you to modify the struct as a whole atomically,
but it
does allow you to replace the entire struct atomically, which is nearly
as good.

This pattern is often called RCU, which stands for “read, copy, up-
date,”
the steps necessary to replace the data.
After reading the
pointer, the struct can be copied into a new allocation
that can be
modified without worrying about other threads.
When ready, the
atomic pointer can be updated using a compare-and-exchange oper-
ation (“Compare-and-Exchange Operations”),
which will only suc-
ceed if no other thread has replaced the data in the meantime.

The most interesting part about the RCU pattern is the last step,

which does not have a letter in the acronym: deallocating the old
data.
After a successful update, other threads might still be reading
the old copy,
if they read the pointer before the update.
You’ll have to

wait for all those threads to be done before the old copy can be
deallocated.

There are many possible solutions for this issue,
including reference
counting (like Arc), leaking memory (ignoring the problem),
garbage
collection,
hazard pointers (a way for threads to tell the others what
pointers they are currently using), and
quiescent state tracking (wait-
ing for each thread to reach a point at which it is definitely not using
any pointers).
The last one can be extremely efficient in certain
conditions.

Many data structures in the Linux kernel are RCU based,
and there
are many interesting talks and articles about their implementation de-
tails
that can provide a great deal of inspiration.

Further reading:

Wikipedia article on the read-copy-update pattern
LWN article “What is RCU, Fundamentally?”

Lock-Free Linked List

Expanding on the basic RCU pattern,
you can add an atomic pointer
to the struct to point to the next one,
to turn it into a linked list.
This al-

https://oreil.ly/egIIi
https://oreil.ly/GQZ6r

lows for threads to atomically add or remove elements on this list,
without having to copy the entire list for every update.

To insert a new element at the start of the list,
you only have to allo-
cate that element and point its
pointer at the first element in the list,
and then atomically update the initial pointer
to point to your newly al-
located element.

Similarly, removing an element can be done by atomically updating
the pointer
before it to point to the element after it.
However, when
multiple writers are involved,
care must be taken to handle concurrent
insertion or removal operations on neighboring elements.
Otherwise,

you might accidentally also remove a concurrently newly inserted ele-
ment,
or undo the removal of a concurrently removed element.

TIP

To keep things simple, you can use a regular mutex to avoid concurrent mutations.

That way, reading is still a lock-free operation, but you don’t have to worry about
handling concurrent mutation.

After detaching an element from the linked list, you’ll run into the
same issue as before:
waiting until you can deallocate it (or otherwise
claim ownership).
The same solutions we discussed for the basic
RCU pattern can work in this case as well.

In general, you can build a wide variety of elaborate lock-free data
structures based on
compare-and-exchange operations on atomic
pointers, but you’ll always need a
good strategy for deallocating or
otherwise reclaiming ownership of the allocations.

Further reading:

Wikipedia article on non-blocking linked lists
LWN article “Using RCU for Linked Lists—A Case Study”

Queue-Based Locks

For most standard locking primitives, the operating system’s kernel
keeps track of the threads that are blocked on it,
and is responsible

https://oreil.ly/kVQ1O
https://oreil.ly/H0lt4

for picking one to wake up when asked to do so.
An interesting alter-
native is to implement a mutex (or other locking primitive),
by manual-
ly keeping track of the queue of waiting threads.

Such a mutex could be implemented as a single AtomicPtr
that
can point to a (list of) waiting threads.

Each element in this list needs to contain something that can be used
to wake up
the corresponding thread, such as a
std::thread::Thread object.
Some unused bits of the atomic
pointer can be used to store the state of the mutex itself,
and whatev-
er is necessary for managing the state of the queue.

There are many variations possible.
The queue could be protected by
its own lock bit or it could be implemented as a (partially) lock-free
structure.
The elements don’t have to be allocated on the heap,
but
could be local variables of the threads that are waiting.
The queue
could be a doubly-linked list with not only pointers to the next ele-
ment,
but also to the previous element.
The first element could also

include a pointer to the last element to allow efficiently appending an
element at the end.

This pattern allows for implementing efficient locking primitives
using
only something that can be used to block and wake up a single
thread, such as thread parking.

Windows SRW locks (“Slim reader-writer locks”) are implemented us-
ing this pattern.

Further reading:

Notes on the implementation of Windows SRW locks
A Rust implementation of queue-based locks

Parking Lot–Based Locks

To make a highly efficient mutex that’s as small as possible,
you can
build upon the queue-based locks idea by moving the queue into a
global data structure,
leaving only one or two bits inside the mutex it-
self.
This way, the mutex only needs to be a single byte.
You could
even put it in some unused bits of a pointer,
allowing for very fine-
grained locking at almost no extra cost.

https://oreil.ly/El8GA
https://oreil.ly/aFyg1

The global data structure can be a HashMap that maps memory ad-
dresses to a queue of threads waiting on the
mutex at that address.

This global data structure is often called a parking lot, since it’s a col-
lection of parked threads.

The pattern can be generalized by not only tracking queues for mu-
texes,
but also for condition variables and other primitives.
By track-
ing a queue for any atomic variable, this effectively provides a way
to
implement futex-like functionality on platforms that don’t natively sup-
port that.

This pattern is most well known from its 2015 implementation in Web-
Kit,
where it was used for locking JavaScript objects.
Its implementa-
tion inspired other implementations, such as the popular
parking_lot Rust crate.

Further reading:

WebKit blog post, “Locking in WebKit”
Documentation of the parking_lot crate

https://oreil.ly/6dPim
https://oreil.ly/UPcXu

Sequence Lock

A sequence lock is another solution to the problem of atomically up-
dating (larger) data
without using traditional (blocking) locks.
It uses
an atomic counter that is odd while the data is being updated,
and
even when the data is ready to be read.

The writing thread will have to increment the counter from even to
odd
before mutating the data,
after which it has to increment the
counter again to leave it at a (different) even value.

Any reading thread can, at any point and without blocking,
read the
data by reading the counter both before and after.
If the two values
from the counter are equal and even,
there was no concurrent muta-
tion, meaning you read a valid copy of the data.
Otherwise, you might
have read data that was concurrently being modified,
in which case
you should just try again.

This is a great pattern for making data available to other threads,

without the possibility of the reading threads blocking the writing
thread.
It is often used in operating systems kernels and many em-
bedded systems.
Since the readers need only read access to the
memory and no pointers are involved,
this can be a great data struc-
ture to safely use in shared memory, between processes,
without
needing to trust the readers.
For example, the Linux kernel uses this
pattern to very efficiently provide timestamps to processes by provid-
ing them with read-only access to (shared) memory.

An interesting question is how this fits into the memory model.
Con-
current non-atomic reads and writes to the same data result in unde-
fined behavior,
even if the read data is ignored.
This means that,
technically speaking, both reading and writing the data should
be
done using only atomic operations, even though the entire read or
write does
not have to be a single atomic operation.

Further reading:

Wikipedia article on Linux’s Seqlock
Rust RFC 3301, AtomicPerByte

Documentation of the seqlock crate

Teaching Materials

https://oreil.ly/T28bW
https://oreil.ly/Qavc7
https://oreil.ly/yHd_7

It can be great fun to spend many hours—​or years—​inventing new
concurrent data
structures and designing ergonomic Rust implemen-
tations of them.
If you’re looking for something else to do with your
knowledge on Rust,
atomics, locks, concurrent data structures, and
concurrency in general,
it can also be very fulfilling to create new
teaching materials to share your knowledge with others.

There is a great lack of accessible resources aimed at those new to
these topics.
Rust has played a significant role in making systems
programming more accessible to everyone,
but many programmers
still shy away from low-level concurrency.
Atomics are often thought
of as a somewhat mystical topic that’s best left to a very small group
of experts,
which is a shame.

I hope this very book makes a significant difference,
but there is so
much space for more books, blog posts, articles, video courses,
con-
ference talks, and other materials about Rust concurrency.

~

I’m excited to see what you create.

Good luck. ♥

Index

A

AArch64 (see ARM64)

ABA problem, Compare-and-Exchange Operations
aborting the process, Example: ID Allocation
AcqRel, Release and Acquire Ordering

(see also release and acquire memory ordering)

acquire memory ordering (see release and acquire memory
ordering)

add instruction (ARM), Processor Instructions
add instruction (x86), Processor Instructions
address-based waiting (Windows), Address-Based Waiting

(see also futex)

air, out of thin, Relaxed Ordering
alignment, Impact on Performance
allocating IDs (see ID allocation)

AMD processors, Understanding the Processor
and instruction (x86), x86 lock prefix
Arc, Reference Counting

building our own, Building Our Own “Arc”-Summary
cyclic structures, Weak Pointers
get_mut, Mutation

memory ordering, Basic Reference Counting, Mutation,

Optimizing, Optimizing
naming clones, Reference Counting
using for channel state, Safety Through Types
weak pointers, Weak Pointers

performance cost, Optimizing
arguments, consuming, Safety Through Types
ARM64 (processor architecture), Understanding the Processor

aarch64-unknown-linux-musl target, Processor Instructions
other-multi-copy atomic, Memory Ordering
weakly ordered, ARM64: Weakly Ordered-ARM64: Weakly
Ordered

ARM64 instructions
add, Processor Instructions
ARMv8.1 atomic instructions, ARM load-exclusive and store-ex-
clusive, ARM64: Weakly Ordered
b.ne (branch if not equal), Compare-and-exchange on ARM
cbnz (compare and branch on nonzero), ARM load-exclusive
and store-exclusive
clrex (clear exclusive), ARM load-exclusive and store-exclusive
cmp (compare), Compare-and-exchange on ARM
dmb (data memory barrier), Memory Fences
ldar (load-acquire register), ARM64: Weakly Ordered
ldaxr (load-acquire exclusive register), ARM64: Weakly Ordered

ldr (load register), Processor Instructions
ldxr (load exclusive register), ARM load-exclusive and store-
exclusive
load-linked and store-conditional instructions, ARM load-exclu-
sive and store-exclusive
mov (move), Compare-and-exchange on ARM
overview, Summary
ret (return), Processor Instructions
stlr (store-release register), ARM64: Weakly Ordered
stlxr (store-release exclusive register), ARM64: Weakly Ordered
str (store register), Processor Instructions
stxr (store exclusive register), ARM load-exclusive and store-
exclusive

ARMv8 (see ARM64)

ARMv8.1 atomic instructions, ARM load-exclusive and store-exclu-
sive, ARM64: Weakly Ordered

overview, Summary
array::from_fn, Fences
assembler, Processor Instructions
assembly, Processor Instructions

inspecting compiler output, Processor Instructions
atomic, Atomics-Summary

compare-and-exchange operations, Compare-and-Exchange
Operations-Example: Lazy One-Time Initialization

caching, effect on, Impact on Performance
compiler optimization, Compare-and-exchange on ARM
example, ID allocation, Example: ID Allocation Without
Overflow
example, lazy initialization, Example: Lazy One-Time Initial-
ization, Example: Lazy Initialization with Indirection-Example:

Lazy Initialization with Indirection
memory ordering, Example: Locking
using for channel state, Safety Through Runtime Checks
using for mutex state, Avoiding Syscalls
using for reader-writer lock state, Reader-Writer Lock
using on AtomicPtr, Example: Lazy Initialization with
Indirection
using to lock reference counter, Optimizing
weak, Compare-and-Exchange Operations

fetch-and-modify operations, Fetch-and-Modify Operations-
Example: ID Allocation

example, ID allocation, Example: ID Allocation-Example: ID
Allocation
example, progress reporting, Example: Progress Reporting
from Multiple Threads-Example: Progress Reporting from
Multiple Threads
example, statistics, Example: Statistics-Example: Statistics

wrapping behavior (add and sub), Fetch-and-Modify
Operations

(see also overflows)

load and store operations, Atomic Load and Store Operations-
Example: Lazy Initialization

compared to non-atomic operations, The Memory Model,
Load and Store
example, lazy initialization, Example: Lazy Initialization
example, progress reporting, Example: Progress Reporting-
Synchronization
example, stop flag, Example: Stop Flag-Example: Stop Flag

memory ordering (see memory ordering)

reference counting (see Arc)

atomic barriers (see fences)

atomic fences (see fences)

atomic types, Atomics, Atomics
compare_exchange, Compare-and-Exchange Operations
compare_exchange_weak, Compare-and-Exchange Operations
fetch_add, Fetch-and-Modify Operations

wrapping behavior, Fetch-and-Modify Operations
(see also overflows)

fetch_and, Fetch-and-Modify Operations
fetch_max, Fetch-and-Modify Operations
fetch_min, Fetch-and-Modify Operations

fetch_nand, Fetch-and-Modify Operations
fetch_or, Fetch-and-Modify Operations
fetch_store (see swap)

fetch_sub, Fetch-and-Modify Operations
wrapping behavior, Fetch-and-Modify Operations

(see also overflows)

fetch_update, Example: ID Allocation Without Overflow
fetch_xor, Fetch-and-Modify Operations
get_mut, Safety Through Runtime Checks
load, Atomic Load and Store Operations
store, Atomic Load and Store Operations
swap, Fetch-and-Modify Operations

ἄτομος, Atomics
atomic-wait crate, Building Our Own Locks
AtomicBool, Atomics

(see also atomic types)

locking using, Example: Locking, A Minimal Implementation
AtomicI8 (see atomic types)

AtomicI16 (see atomic types)

AtomicI32 (see atomic types)

AtomicI64 (see atomic types)

AtomicIsize (see atomic types)

AtomicPtr, Atomics
(see also atomic types)

compare-and-exchange, Example: Lazy Initialization with
Indirection
lazy initialization, Example: Lazy Initialization with Indirection

AtomicU8 (see atomic types)

AtomicU16 (see atomic types)

AtomicU32 (see atomic types)

AtomicU64 (see atomic types)

AtomicUsize (see atomic types)

auto traits, Thread Safety: Send and Sync

B

b.ne (branch if not equal) instruction (ARM), Compare-and-ex-
change on ARM
barriers (see fences)

basics, Basics of Rust Concurrency-Summary
benchmarking, Impact on Performance, Benchmarking-
Benchmarking

black_box, avoiding optimizations with, Impact on Performance,

Benchmarking
binary semaphore, Semaphore
black_box, Impact on Performance, Benchmarking
blocking, Operating System Primitives

channel, Blocking-Blocking
condition variables, Condition Variables

futex wait operation, Futex
(see also futex)

mutexes, Locking: Mutexes and RwLocks
Once and OnceLock, Example: Lazy Initialization, Example:

Lazy One-Time Initialization
semaphores, Semaphore
spin loop, A Minimal Implementation
thread parking (see thread parking)

boolean (atomic) (see AtomicBool)
borrowing, Borrowing and Data Races

bending the rules, Interior Mutability
error, Scoped Threads
exclusive, Interior Mutability
from multiple threads (Sync), Thread Safety: Send and Sync
immutable, Borrowing and Data Races

(see also shared)

local variables in a thread, Scoped Threads
mutable, Borrowing and Data Races

(see also exclusive)

shared, Interior Mutability
splitting, Borrowing to Avoid Allocation
undefined behavior, Interior Mutability

Box

from_raw, Example: Lazy Initialization with Indirection, Basic
Reference Counting
into_raw, Example: Lazy Initialization with Indirection
leak, Leaking, Basic Reference Counting
unmovable type, wrapping in, Wrapping in Rust

btc (bit test and complement) instruction (x86), x86 lock prefix
btr (bit test and reset) instruction (x86), x86 lock prefix
bts (bit test and set) instruction (x86), x86 lock prefix
building our own

Arc, Building Our Own “Arc”-Summary
channels, Building Our Own Channels-Summary
condition variables, Condition Variable-Avoiding Spurious
Wake-ups
mutexes, Mutex-Benchmarking
reader-writer locks, Reader-Writer Lock-Avoiding Writer
Starvation
spin locks, Building Our Own Spin Lock-Summary

busy-looping, Building Our Own Spin Lock
(see also spinning)

C

C standard library, Interfacing with the Kernel
(see also libc)

cache coherence, Cache Coherence-The MESI protocol

protocol, Cache Coherence
MESI, The MESI protocol
MESIF, The MESI protocol
MOESI, The MESI protocol
write-through, The write-through protocol

cache lines, Caching
performance experiment, Impact on Performance-Impact on
Performance

cache miss, The MESI protocol
caching (processors), Caching-Impact on Performance

(see also cache coherence)

compare-and-exchange operations, effect of, Impact on
Performance
per core, Cache Coherence
performance experiment, Impact on Performance-Impact on
Performance

cargo-show-asm, Processor Instructions
cas (compare and swap) instruction (ARM), ARM load-exclusive
and store-exclusive
casa (compare and swap, acquire) instruction (ARM), ARM64:

Weakly Ordered
casal (compare and swap, acquire and release) instruction (ARM),

ARM64: Weakly Ordered

casl (compare and swap, release) instruction (ARM), ARM64:

Weakly Ordered
cbnz (compare and branch on nonzero) instruction (ARM), ARM
load-exclusive and store-exclusive
Cell, Cell

unsafe (see UnsafeCell)
channels

blocking, Blocking-Blocking
borrowing, Borrowing to Avoid Allocation
building our own, Building Our Own Channels-Summary
dropping, An Unsafe One-Shot Channel
one-shot, An Unsafe One-Shot Channel
safe interface, Safety Through Runtime Checks
Sender and Receiver types, Safety Through Types, Borrowing
to Avoid Allocation
storing in Arc, Safety Through Types

avoiding, Borrowing to Avoid Allocation
unsafe interface, An Unsafe One-Shot Channel

Clone trait, Reference Counting, Reference Counting, Safety
Through Types, Basic Reference Counting, Weak Pointers
closures

captured values
moving, Threads in Rust
naming, Reference Counting

spawning scoped threads using, Scoped Threads
spawning threads using, Threads in Rust

clrex (clear exclusive) instruction (ARM), ARM load-exclusive and
store-exclusive
cmp (compare) instruction (ARM), Compare-and-exchange on
ARM
cmpxchg (compare and exchange) instruction (x86), x86 compare-
and-exchange instruction-x86 compare-and-exchange instruction
cmpxchg (compare-and-exchange) instruction (x86)

#[cold], Optimizing Further
compare-and-exchange operations (atomic), Compare-and-
Exchange Operations-Example: Lazy One-Time Initialization

on ARM64, Compare-and-exchange on ARM-Compare-and-ex-
change on ARM
caching, effect on, Impact on Performance
compiler optimization, Compare-and-exchange on ARM
example, ID allocation, Example: ID Allocation Without Overflow
example, lazy initialization, Example: Lazy One-Time Initializa-
tion, Example: Lazy Initialization with Indirection-Example: Lazy
Initialization with Indirection
memory ordering, Example: Locking
using for channel state, Safety Through Runtime Checks
using for mutex state, Avoiding Syscalls
using for reader-writer lock state, Reader-Writer Lock

using on AtomicPtr, Example: Lazy Initialization with Indirection
using to lock reference counter, Optimizing
weak, Compare-and-Exchange Operations

on ARM64, Compare-and-exchange on ARM
on x86-64, x86 compare-and-exchange instruction-x86 compare-
and-exchange instruction

Compiler Explorer, Processor Instructions
compiler fence, Fences, An Experiment
compiler optimization

black_box, avoiding with, Impact on Performance,

Benchmarking
#[cold], Optimizing Further
of compare-and-exchange loops, Compare-and-exchange on
ARM
enabling, Processor Instructions, Impact on Performance
#[inline], Optimizing Further
reordering, Reordering and Optimizations

complex instruction set computer (CISC), Processor Instructions
concurrency, basics, Basics of Rust Concurrency-Summary
condition variables, Condition Variables-Condition Variables

building our own, Condition Variable-Avoiding Spurious Wake-
ups
example, Condition Variables
memory ordering, Condition Variable

pthread_cond_t, POSIX
thundering herd problem, Avoiding Spurious Wake-ups
timeout, Condition Variables
using to build a channel, A Simple Mutex-Based Channel-A
Simple Mutex-Based Channel
Windows, Slim reader-writer locks

Condvar, Condition Variables
(see also condition variables)

consume memory ordering, Consume Ordering
consuming arguments by value, Safety Through Types
contention (mutexes), Avoiding Syscalls, Optimizing Further

benchmarking, Benchmarking
Copy trait, An Unsafe One-Shot Channel, An Unsafe One-Shot
Channel

atomic types, not implementing, Example: Progress Reporting
from Multiple Threads
moving, Leaking

critical section (Windows), Lighter-Weight Objects
current thread, Threads in Rust, Threads in Rust, Thread Parking
cyclic structures (Arc), Weak Pointers

D

data races, Borrowing and Data Races
avoiding using atomics, Atomics, The Memory Model

Deref trait, Reader-Writer Lock, A Safe Interface Using a Lock
Guard, Basic Reference Counting
DerefMut trait, Rust’s Mutex, Reader-Writer Lock, A Safe Interface
Using a Lock Guard, Mutation
disassembler, Processor Instructions, Processor Instructions
dmb (data memory barrier) instruction (ARM), Memory Fences
drop function, Rust’s Mutex, A Safe Interface Using a Lock Guard,

Weak Pointers
Drop trait, Rust’s Mutex, A Safe Interface Using a Lock Guard, A
Safe Interface Using a Lock Guard, An Unsafe One-Shot Channel,
Safety Through Runtime Checks, Safety Through Types, Basic
Reference Counting, Testing It, Weak Pointers, Weak Pointers,

Optimizing, Mutex
dword, Processor Instructions

E

--emit=asm (rustc), Processor Instructions
exclusive references, Interior Mutability

F

fair locks, macOS
false sharing, Impact on Performance
fences, Fences-Fences, Basic Reference Counting, Optimizing

on ARM64, Memory Fences
compiler fence, Fences, An Experiment
instructions, Memory Fences-Memory Fences
process-wide memory barriers, Fences
on x86-64, Memory Fences

fetch-and-modify operations (atomic), Fetch-and-Modify Opera-
tions-Example: ID Allocation

on ARM64, ARM load-exclusive and store-exclusive-ARM load-
exclusive and store-exclusive
example, ID allocation, Example: ID Allocation-Example: ID
Allocation
example, progress reporting, Example: Progress Reporting from
Multiple Threads-Example: Progress Reporting from Multiple
Threads
example, statistics, Example: Statistics-Example: Statistics
wrapping behavior (add and sub), Fetch-and-Modify Operations

(see also overflows)

on x86-64, x86 lock prefix-x86 lock prefix
fetch_store operation (atomic) (see swap operation)

fetch_update (atomic), Example: ID Allocation Without Overflow
FlushProcessWriteBuffers (Windows), Fences
forgetting (see leaking)

FreeBSD, umtx_op syscall, Futex Operations
(see also futex)

from_fn (array), Fences
futex, Linux-Priority Inheritance Futex Operations

cross-platform futex-like functionality, Building Our Own Locks
example, Futex
memory safety, Mutex
on other platforms, Futex Operations
operations (Linux), Futex Operations-Priority Inheritance Futex
Operations

FUTEX_CLOCK_REALTIME, Futex Operations
FUTEX_CMP_REQUEUE, Futex Operations
FUTEX_PRIVATE_FLAG, Futex Operations
FUTEX_REQUEUE, Futex Operations
FUTEX_WAIT, Futex Operations
futex_waitv syscall, Futex Operations
FUTEX_WAIT_BITSET, Futex Operations
FUTEX_WAKE, Futex Operations
FUTEX_WAKE_BITSET, Futex Operations
FUTEX_WAKE_OP, Futex Operations
priority inheritance, Priority Inheritance Futex Operations

requeueing, Futex Operations, Avoiding Spurious Wake-ups
spurious wake-ups, Futex
timeout, Futex Operations, Condition Variable
wait operation, Futex
wake operation, Futex

G

globally consistent order, Sequentially Consistent Ordering
(see also sequentially consistent memory ordering)

Godbolt, Processor Instructions
good luck, Teaching Materials
guards

dropping, Rust’s Mutex
join guard, Scoped Threads
mutex guard, Rust’s Mutex, Mutex
read guard, Reader-Writer Lock, Reader-Writer Lock
spin lock guard, A Safe Interface Using a Lock Guard
write guard, Reader-Writer Lock, Reader-Writer Lock

H

hand, things getting out of, Blocking
happens-before relationships, Happens-Before Relationship-
Relaxed Ordering

in Arc, Basic Reference Counting, Mutation
between threads, Happens-Before Relationship
locking and unlocking, Example: Locking, A Minimal
Implementation
spawning and joining threads, Spawning and Joining

through a release-acquire pair, Release and Acquire Ordering,

Release and Acquire Ordering
chaining, Release and Acquire Ordering

within the same thread, Happens-Before Relationship
hint::black_box, Impact on Performance, Benchmarking
hint::spin_loop, A Minimal Implementation

I

ID allocation
using compare_exchange_weak, Example: ID Allocation With-
out Overflow
using fetch_add, Example: ID Allocation-Example: ID Allocation
using fetch_update, Example: ID Allocation Without Overflow

ideas and inspiration, Ideas and Inspiration-Teaching Materials
if let statement

lifetime of temporaries, Lock Poisoning
ignorance, blissful, Relaxed Ordering
immutable references, Borrowing and Data Races

(see also shared references)

indivisible, Atomics
#[inline], Optimizing Further
inspiration, Ideas and Inspiration-Teaching Materials
Instant, Example: Statistics
instruction reordering (see reordering)

instructions, Processor Instructions-Compare-and-exchange on
ARM

(see also ARM64 instructions; x86-64 instructions)

compare-and-exchange operations, x86 compare-and-ex-
change instruction-x86 compare-and-exchange instruction,

Compare-and-exchange on ARM-Compare-and-exchange on
ARM
fences, Memory Fences-Memory Fences
load and store operations, Load and Store-Load and Store
load-linked/store-conditional (LL/SC) instructions, Load-Linked
and Store-Conditional Instructions-Load-Linked and Store-
Conditional Instructions
memory ordering, Memory Ordering-Memory Fences
overview, Summary
read-modify-write operations, Read-Modify-Write Operations-
ARM load-exclusive and store-exclusive

Intel processors, Understanding the Processor
interior mutability, Interior Mutability-UnsafeCell, An Unsafe Spin
Lock, Weak Pointers
invalidation queues, Reordering

J

jne (jump if not equal) instruction (x86), x86 compare-and-ex-
change instruction

join method, Threads in Rust
JoinGuard, Scoped Threads
JoinHandle, Threads in Rust
joining threads, Threads in Rust

happens-before relationship, Spawning and Joining

K

kernel, Basics of Rust Concurrency, Operating System Primitives
interfacing with, Interfacing with the Kernel-Interfacing with the
Kernel
kernel-managed objects (Windows), Heavyweight Kernel
Objects

L

L1/L2/L3/L4 cache, Cache Coherence
label (assembly), Processor Instructions
lazy initialization

using compare_exchange, Example: Lazy One-Time
Initialization
using compare_exchange and allocation, Example: Lazy Initial-
ization with Indirection-Example: Lazy Initialization with
Indirection
using load and store, Example: Lazy Initialization

ldadd (load and add) instruction (ARM), ARM load-exclusive and
store-exclusive
ldadda (load and add, acquire) instruction (ARM), ARM64: Weakly
Ordered
ldaddal (load and add, acquire and release) instruction (ARM),

ARM64: Weakly Ordered
ldaddl (load and add, release) instruction (ARM), ARM64: Weakly
Ordered
ldar (load-acquire register) instruction (ARM), ARM64: Weakly
Ordered
ldaxr (load-acquire exclusive register) instruction (ARM), ARM64:

Weakly Ordered
ldr (load register) instruction (ARM), Processor Instructions
ldxr (load exclusive register) instruction (ARM), ARM load-exclu-
sive and store-exclusive
leaking, Scoped Threads, Leaking

by mistake, An Unsafe One-Shot Channel
a MutexGuard, Wrapping in Rust

“Leakpocalypse”, Scoped Threads
libc, Interfacing with the Kernel

pthreads functionality in, POSIX
libpthread, POSIX

(see also pthreads)

lifetime

elision, An Unsafe Spin Lock, Borrowing to Avoid Allocation
in a struct, A Safe Interface Using a Lock Guard
of mutex guard, Lock Poisoning
specifying using plain English, An Unsafe Spin Lock
static, Threads in Rust

linked list, Lock-Free Linked List
Linux

futex syscall, Futex-Priority Inheritance Futex Operations
(see also futex)

arguments, Futex Operations
futex_waitv syscall, Futex Operations
interfacing with the kernel, Interfacing with the Kernel
libc, role of, Interfacing with the Kernel
membarrier syscall, Fences
process-wide memory barrier, Fences
RCU, RCU

load and store operations (atomic), Atomic Load and Store Opera-
tions-Example: Lazy Initialization

on ARM64 and x86-64, Load and Store-Load and Store
compared to non-atomic operations, The Memory Model, Load
and Store
example, lazy initialization, Example: Lazy Initialization
example, progress reporting, Example: Progress Reporting-
Synchronization

example, stop flag, Example: Stop Flag-Example: Stop Flag
load-linked/store-conditional (LL/SC) loop, Load-Linked and Store-
Conditional Instructions-Load-Linked and Store-Conditional
Instructions

on ARM64, ARM load-exclusive and store-exclusive-ARM load-
exclusive and store-exclusive
compiler optimization, Compare-and-exchange on ARM

lock poisoning, Lock Poisoning
lock prefix (x86), x86 lock prefix-x86 lock prefix
lock_api crate, Mutex
luck, good, Teaching Materials

M

machine code, Processor Instructions
machine instructions (see instructions)

macOS
futex-like functionality on, Building Our Own Locks
interfacing with the kernel, Interfacing with the Kernel, macOS
os_unfair_lock, os_unfair_lock

main thread, Threads in Rust
ManuallyDrop, Optimizing
MaybeUninit, An Unsafe One-Shot Channel, An Unsafe One-Shot
Channel, An Unsafe One-Shot Channel
mem::forget, Scoped Threads

membarrier syscall, Fences
memory barriers (see fences)

memory fences (see fences)

memory model, The Memory Model
memory ordering, Atomics, Memory Ordering-Summary

on ARM64, ARM64: Weakly Ordered-ARM64: Weakly Ordered
compiler fence, Fences, An Experiment
consume, Consume Ordering
experiment, using relaxed instead of release and acquire, An
Experiment-An Experiment
fences, Fences-Fences, Basic Reference Counting, Optimizing
happens-before relationship, Happens-Before Relationship-
Relaxed Ordering, Release and Acquire Ordering
Miri, detecting problems with, Testing It
misconceptons about, Common Misconceptions-Common
Misconceptions
out-of-thin-air values, Relaxed Ordering
at processor level, Memory Ordering-Memory Fences
reference counting, Basic Reference Counting, Basic Reference
Counting, Mutation, Optimizing, Optimizing
relaxed, Atomics, Relaxed Ordering-Relaxed Ordering

(see also relaxed memory ordering)

release and acquire, Release and Acquire Ordering-Example:

Lazy Initialization with Indirection

(see also release and acquire memory ordering)

locking and unlocking, A Minimal Implementation
sequentially consistent, Sequentially Consistent Ordering

(see also sequentially consistent memory ordering)

specifying using plain English, Reordering and Optimizations
total modification order, Relaxed Ordering, Release and Acquire
Ordering, Safety Through Runtime Checks, Safety Through
Runtime Checks
on x86-64, x86-64: Strongly Ordered-x86-64: Strongly Ordered

MESI cache coherence protocol, The MESI protocol
MESIF cache coherence protocol, The MESI protocol
mfence (memory fence) instruction (x86), Memory Fences
microinstructions, Read-Modify-Write Operations
Miri, Testing It
MOESI cache coherence protocol, The MESI protocol
mov (move) instruction (ARM), Compare-and-exchange on ARM
mov (move) instruction (x86), Load and Store
movable, not

critical section (Windows), Lighter-Weight Objects
Pin, Wrapping in Rust
pthread types, Wrapping in Rust
wrapping in Box, Wrapping in Rust

move closure, Threads in Rust
multi-copy atomicity, Memory Ordering

mutability, interior (see interior mutability)

mutable references, Borrowing and Data Races
(see also exclusive references)

Mutex, Mutex and RwLock, Rust’s Mutex
(see also mutexes)

mutexes, Locking: Mutexes and RwLocks-Reader-Writer Lock
building our own, Mutex-Benchmarking
as container, Reader-Writer Lock
contention, Avoiding Syscalls, Optimizing Further
example, Rust’s Mutex
fair, macOS
happens-before relationship, Example: Locking
into_inner, Rust’s Mutex
lifetime of mutex guard, Lock Poisoning
memory ordering, Example: Locking
Mutex type in Rust, Rust’s Mutex
os_unfair_lock (macOS), os_unfair_lock
in other languages, Reader-Writer Lock
poisoning, Lock Poisoning
pthread

wrapping in Rust, Wrapping in Rust
pthread_mutex_t, POSIX
recursive, Lighter-Weight Objects
robust, Priority Inheritance Futex Operations

Send requirement, Reader-Writer Lock
spin locks, Building Our Own Spin Lock

(see also spin locks)

spinning, Building Our Own Spin Lock, Optimizing Further
using to build a channel, A Simple Mutex-Based Channel-A
Simple Mutex-Based Channel

MutexGuard, Rust’s Mutex
dropping, Rust’s Mutex
lifetime of, Lock Poisoning

mutual exclusion (see mutexes)

N

name of a thread, Threads in Rust
NetBSD, futex support, Futex Operations

(see also futex)

NonNull, Basic Reference Counting

O

-O flag (rustc), Processor Instructions, Impact on Performance
Once and OnceLock, Example: Lazy Initialization, Example: Lazy
One-Time Initialization
one-shot channels, An Unsafe One-Shot Channel
OpenBSD, limited futex support, Futex Operations

(see also futex)

operating systems, Operating System Primitives
(see also Linux; macOS; Windows)

libraries shipped with, Interfacing with the Kernel
synchronization primitives, Interfacing with the Kernel

optimization (see compiler optimization)

or instruction (x86), x86 lock prefix, x86 compare-and-exchange
instruction
Ordering, Atomics, Reordering and Optimizations

(see also memory ordering)

AcqRel, Release and Acquire Ordering
(see also release and acquire memory ordering)

Acquire, Release and Acquire Ordering
(see also release and acquire memory ordering)

Consume, Consume Ordering
Relaxed, Atomics, Relaxed Ordering

(see also relaxed memory ordering)

Release, Release and Acquire Ordering
(see also release and acquire memory ordering)

SeqCst, Sequentially Consistent Ordering
(see also sequentially consistent memory ordering)

os_unfair_lock (macOS), os_unfair_lock
other-multi-copy atomicity, Memory Ordering
out of order execution (see reordering)

out-of-thin-air values, Relaxed Ordering
output locking, Threads in Rust
overflows (atomic), Example: ID Allocation

(see also wrapping behavior)
aborting on, Example: ID Allocation
notification counter, Condition Variable
panicking on, Example: ID Allocation
preventing (compare-and-exchange), Example: ID Allocation
Without Overflow
reference counter, Basic Reference Counting
usize, big enough, Avoiding Syscalls

overview of atomic instructions, Summary
ownership

moving, Threads in Rust, Safety Through Types
sharing, Shared Ownership and Reference Counting
transferring to another thread (Send), Thread Safety: Send and
Sync

P

panicking
poisoned mutexes, Lock Poisoning
RefCell, borrowing, RefCell
thread name in panic messages, Threads in Rust
using a Condvar with multiple mutexes, Condition Variables

when joining a thread, Threads in Rust, Threads in Rust
when spawning a thread, Threads in Rust

parking (see thread parking)

parking lot-based locks, Parking Lot–Based Locks
parking_lot crate, Parking Lot–Based Locks
PhantomData, Thread Safety: Send and Sync, Blocking
Pin, Wrapping in Rust
pipelining, Reordering
pointers

atomic (see AtomicPtr)
neither Send nor Sync, Thread Safety: Send and Sync
NonNull, Basic Reference Counting

poisoning, lock, Lock Poisoning
POSIX, Interfacing with the Kernel

pthreads, POSIX-Wrapping in Rust
println, use of output locking, Threads in Rust
priority inheritance, Priority Inheritance Futex Operations
priority inversion, Priority Inheritance Futex Operations
privacy (modules), Condition Variable
process-wide memory barriers, Fences
processes, Basics of Rust Concurrency
processor architecture, Understanding the Processor

(see also ARM64; x86-64)

strongly ordered, x86-64: Strongly Ordered

weakly ordered, ARM64: Weakly Ordered
processor caching (see caching)

processor instructions (see instructions)

processor registers, Processor Instructions
return value, Load and Store

pthreads, POSIX-Wrapping in Rust
pthread_cond_t, POSIX, Avoiding Spurious Wake-ups
pthread_mutex_t, POSIX

dropping while locked, Wrapping in Rust
pthread_rwlock_t, POSIX
wrapping in Rust, Wrapping in Rust

Q

queue-based locks, Queue-Based Locks

R

racing, Example: Lazy Initialization
Rc, Reference Counting
RCU (read, copy, update), RCU, Lock-Free Linked List
reader-writer locks, Reader-Writer Lock-Reader-Writer Lock

avoiding accidental spinning, Avoiding Busy-Looping Writers
building our own, Reader-Writer Lock-Avoiding Writer
Starvation

pthread_rwlock_t, POSIX
Send requirement, Reader-Writer Lock
SRW locks (Windows), Slim reader-writer locks
Sync requirement, Reader-Writer Lock
writer starvation, Reader-Writer Lock, Avoiding Writer Starvation

recursive locking, POSIX, Lighter-Weight Objects
reduced instruction set computer (RISC), Processor Instructions
RefCell, RefCell

RwLock compared to, Reader-Writer Lock
reference counting, Reference Counting-Reference Counting

(see also Arc)

references
exclusive, Interior Mutability
immutable, Borrowing and Data Races

(see also shared)

mutable, Borrowing and Data Races
(see also exclusive)

shared, Interior Mutability
registers, Processor Instructions

return value, Load and Store
relaxed memory ordering, Atomics, Happens-Before Relationship,

Relaxed Ordering-Relaxed Ordering
counter-intuitive results, Happens-Before Relationship

misconceptions about, Common Misconceptions, Common
Misconceptions
out-of-thin-air values, Relaxed Ordering
reference counting, Basic Reference Counting
total modification order, Relaxed Ordering, Release and Acquire
Ordering, Safety Through Runtime Checks, Safety Through
Runtime Checks

release and acquire memory ordering, Release and Acquire Or-
dering-Example: Lazy Initialization with Indirection

acquire fence, Fences, Fences, Basic Reference Counting,

Mutation, Optimizing
on ARM64, ARM64: Weakly Ordered-ARM64: Weakly Ordered
example, lazy initialization, Example: Lazy Initialization with In-
direction-Example: Lazy Initialization with Indirection
experiment, using relaxed instead, An Experiment-An
Experiment
happens-before relationship, Release and Acquire Ordering,

Release and Acquire Ordering
chaining, Release and Acquire Ordering

locking and unlocking, Example: Locking, A Minimal
Implementation
reference counting, Basic Reference Counting, Mutation,

Optimizing, Optimizing
release fence, Fences

on x86-64, x86-64: Strongly Ordered
--release flag (cargo), Processor Instructions, Impact on
Performance
reordering (instructions), Reordering and Optimizations-
Reordering and Optimizations, Reordering-Reordering

memory ordering, Memory Ordering
#[repr(align)], Impact on Performance
requeuing waiting threads, Futex Operations, Avoiding Spurious
Wake-ups
ret (return) instruction (ARM), Processor Instructions
ret (return) instruction (x86), Processor Instructions
robust mutexes, Priority Inheritance Futex Operations
rustup, Processor Instructions
RwLock, Mutex and RwLock, Reader-Writer Lock

(see also reader-writer locks)

RwLockReadGuard, Reader-Writer Lock
RwLockWriteGuard, Reader-Writer Lock

S

safe interface, A Safe Interface Using a Lock Guard, Safety
Through Runtime Checks, Safety Through Runtime Checks
safety requirements of unsafe functions, Borrowing and Data
Races
scheduler, Operating System Primitives

scoped threads, Scoped Threads-Scoped Threads
semaphores, Semaphore
Send trait, Thread Safety: Send and Sync, A Simple Mutex-Based
Channel, Blocking

error, Thread Safety: Send and Sync
implementing for Arc, Basic Reference Counting
requirement by Mutex and RwLock, Reader-Writer Lock

SeqCst (see sequentially consistent memory ordering)

sequence locks, Sequence Lock
sequentially consistent memory ordering, Sequentially Consistent
Ordering

on ARM64, ARM64: Weakly Ordered
fence, Fences
misconceptions about, Common Misconceptions, Common
Misconceptions
on x86-64, x86-64: Strongly Ordered

shadowing, Reference Counting
shared ownership, Shared Ownership and Reference Counting-
Reference Counting

leaking, Leaking
reference counting, Reference Counting
statics, Statics

shared references, Interior Mutability
mutating atomics through, Atomics

slim reader-writer locks (Windows), Slim reader-writer locks,

Queue-Based Locks
spawning threads, Threads in Rust

failing to, Threads in Rust
happens-before relationship, Spawning and Joining
scoped, Scoped Threads

spin locks
building our own, Building Our Own Spin Lock-Summary
cache lines, effect of, Impact on Performance
compare-and-exchange, (not) using, Impact on Performance
experiment, using wrong memory ordering, An Experiment-An
Experiment
guard, A Safe Interface Using a Lock Guard
memory ordering, A Minimal Implementation

spin loop hint, A Minimal Implementation, Optimizing Further
spinning, Building Our Own Spin Lock, Optimizing, Operating Sys-
tem Primitives

avoiding accidental (reader-writer lock), Avoiding Busy-Looping
Writers

splitting (borrowing), Borrowing to Avoid Allocation
spurious wake-ups, Thread Parking, Futex, Avoiding Spurious
Wake-ups
SRW locks (Windows), Slim reader-writer locks, Queue-Based
Locks

stack size, Threads in Rust
starvation, Reader-Writer Lock, Avoiding Writer Starvation
static lifetime, Threads in Rust
statics, Statics
stlr (store-release register) instruction (ARM), ARM64: Weakly
Ordered
stlxr (store-release exclusive register) instruction (ARM), ARM64:

Weakly Ordered
stop flag, Example: Stop Flag
store buffers, Reordering
store operations (atomic) (see load and store operations)

store-conditional (see load-linked/store-conditional)
str (store register) instruction (ARM), Processor Instructions
stress, reducing, Safety Through Runtime Checks
strongly ordered architecture, x86-64: Strongly Ordered
stxr (store exclusive register) instruction (ARM), ARM load-exclu-
sive and store-exclusive
sub (subtract) instruction (x86), x86 lock prefix
swap operation (atomic), Fetch-and-Modify Operations

locking using, A Minimal Implementation
Sync trait, Thread Safety: Send and Sync, A Simple Mutex-Based
Channel

implementing for Arc, Basic Reference Counting
implementing for channel, An Unsafe One-Shot Channel

implementing for mutex, Mutex
implementing for reader-writer lock, Reader-Writer Lock
implementing for spin lock, An Unsafe Spin Lock
requirement by RwLock, Reader-Writer Lock

syscalls, Interfacing with the Kernel
avoiding, Avoiding Syscalls, Avoiding Syscalls

SYS_futex (Linux), Futex
(see also futex)

arguments, Futex Operations

T

--target (rustc), Processor Instructions
teaching, Teaching Materials
thin air, out of, Relaxed Ordering
thread builder, Threads in Rust
thread name, Threads in Rust
Thread object, Blocking

id, Threads in Rust
unpark, Thread Parking, Blocking

thread parking, Thread Parking-Thread Parking, Safety Through
Runtime Checks, Blocking, Futex

spurious wake-ups, Thread Parking
timeout, Condition Variables

example, Synchronization

thread safety, Reference Counting, Thread Safety: Send and
Sync-Thread Safety: Send and Sync

(see also Send and Sync traits)

keeping objects on one thread, Blocking
ThreadId, Threads in Rust
threads, Basics of Rust Concurrency

joining, Threads in Rust
panicking, Threads in Rust, Threads in Rust
returning a value, Threads in Rust
scoped, Scoped Threads-Scoped Threads
spawning, Threads in Rust

thundering herd problem, Avoiding Spurious Wake-ups
time travel, Borrowing and Data Races
timeout

condition variables, Condition Variables
futex, Futex Operations, Condition Variable
thread parking, Condition Variables

example, Synchronization
total modification order, Relaxed Ordering, Release and Acquire
Ordering, Safety Through Runtime Checks, Safety Through Run-
time Checks

U

uncontended (mutexes), Avoiding Syscalls, Optimizing Further

benchmarking, Benchmarking
undefined behavior, Borrowing and Data Races

borrowing, Interior Mutability
data races, Borrowing and Data Races
Miri, detecting with, Testing It
time travel, Borrowing and Data Races

uninitialized memory, An Unsafe One-Shot Channel
Unix systems

interfacing with the kernel, Interfacing with the Kernel
libc, role of, Interfacing with the Kernel

unmovable
critical section (Windows), Lighter-Weight Objects
Pin, Wrapping in Rust
pthread types, Wrapping in Rust
wrapping in Box, Wrapping in Rust

unpark (Thread), Blocking
unparking (see thread parking)

unsafe code, Borrowing and Data Races
unsafe functions, Borrowing and Data Races
unsafe trait implementation, Thread Safety: Send and Sync
UnsafeCell, UnsafeCell, An Unsafe Spin Lock, Weak Pointers

get_mut, Safety Through Runtime Checks
unsound, Borrowing and Data Races

V

VecDeque, A Simple Mutex-Based Channel

W

waiting (see blocking)

WaitOnAddress (Windows), Address-Based Waiting
WakeByAddressAll (Windows), Address-Based Waiting
WakeByAddressSingle (Windows), Address-Based Waiting
Weak (see Arc; weak pointers)

weakly ordered architecture, ARM64: Weakly Ordered
experiment, using relaxed instead of release and acquire, An
Experiment-An Experiment

Windows, Windows-Address-Based Waiting
condition variables, Slim reader-writer locks
critical section, Lighter-Weight Objects
FlushProcessWriteBuffers, Fences
interfacing with the kernel, Interfacing with the Kernel
kernel-managed objects, Heavyweight Kernel Objects
Native API, Windows
process-wide memory barrier, Fences
SRW locks, Slim reader-writer locks, Queue-Based Locks
WaitOnAddress, Address-Based Waiting
WakeByAddressAll, Address-Based Waiting

WakeByAddressSingle, Address-Based Waiting
Win32 API, Windows

windows crate, Windows
windows-sys crate, Windows
wrapping behavior (fetch_add and fetch_sub), Fetch-and-Modify
Operations

(see also overflows (atomic))

wrapping unmovable object in Box, Wrapping in Rust
write-through cache coherence protocol, The write-through
protocol
writer starvation, Reader-Writer Lock, Avoiding Writer Starvation

X

x86-64 (processor architecture), Understanding the Processor
other-multi-copy atomic, Memory Ordering
strongly ordered, x86-64: Strongly Ordered-x86-64: Strongly
Ordered
x86_64-unknown-linux-musl target, Processor Instructions

x86-64 instructions
add, Processor Instructions
and, x86 lock prefix
btc (bit test and complement), x86 lock prefix
btr (bit test and reset), x86 lock prefix
bts (bit test and set), x86 lock prefix

cmpxchg (compare and exchange), x86 compare-and-exchange
instruction-x86 compare-and-exchange instruction
jne (jump if not equal), x86 compare-and-exchange instruction
lock prefix, x86 lock prefix-x86 lock prefix
mfence (memory fence), Memory Fences
mov (move), Load and Store
or, x86 lock prefix, x86 compare-and-exchange instruction
overview, Summary
ret (return), Processor Instructions
sub (subtract), x86 lock prefix
xadd (exchange and add), x86 lock prefix
xchg (exchange), x86 lock prefix, x86-64: Strongly Ordered
xor, x86 lock prefix

xadd (exchange and add) instruction (x86), x86 lock prefix
xchg (exchange) instruction (x86), x86 lock prefix, x86-64: Strongly
Ordered
xor instruction (x86), x86 lock prefix

About the Author

Mara Bos maintains the Rust standard library and builds real-time
control systems in Rust.
As team lead of the Rust library team,
she
knows all the ins and outs of the language and the standard library.
In
addition, she has been working with concurrent real-time systems for
years at the company she founded.
Maintaining the most-used library
in the Rust ecosystem and
working daily on safety critical systems
has given her the
hands-on experience to both understand the theory
and bring it to practice.

Colophon

The animal on the cover of Rust Atomics and Locks is a Kodiak bear
(Ursus arctos middendorffi). This species of brown bear is endemic to
the Kodiak Archipelago of Alaska. They have been isolated from oth-
er bears for roughly 12,000 years.

Kodiak bears are one of the largest bears in the world. A male can
stand 10 feet tall on his hind legs and 5 feet tall on all four. Males can
weigh up to 1,500 pounds while females are 20% to 30% smaller. They
are larger than black bears, showcasing a more prominent shoulder
hump, less prominent ears, and longer, straighter claws. While they
are a type of brown bear, they cannot be easily identified by the color
of their fur, which can range from dark brown to light blonde.

The Kodiak Archipelago hosts a pristine landscape for the bears. Its
temperate forests are full of lush greenery that flourishes due to am-
ple amounts of rain. Winters on the archipelago are long and cold, fol-
lowed by mild summers. The bears take advantage of the climate by
optimizing their diet for whatever is in season. During spring and early
summer they feed on rapidly growing grasses. Berries are consumed
during late summer and early fall. Salmon runs last from May through
September, and the bears feast on Pacific salmon that spawn in
nearby lakes and streams. They are easily adaptable and can be

drawn to improperly stored garbage and food at human campsites
and homes.

Kodiak bears were once actively hunted to protect livestock, but hunt-
ing is now regulated to keep the population thriving. As a result, Kodi-
ak bears have a conservation status of Least Concern. Many of the
animals on O’Reilly covers are endangered; all of them are important
to the world.

The cover illustration is by Karen Montgomery, based on a black-and-
white engraving from Zoology. The cover fonts are Gilroy Semibold
and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.

	Foreword
	Preface
	Who This Book Is For
	Overview of the Chapters
	Code Examples
	Conventions Used in This Book
	Contact Information
	Acknowledgments

	1. Basics of Rust Concurrency
	Threads in Rust
	Scoped Threads
	Shared Ownership and Reference Counting
	Statics
	Leaking
	Reference Counting

	Borrowing and Data Races
	Interior Mutability
	Cell
	RefCell
	Mutex and RwLock
	Atomics
	UnsafeCell

	Thread Safety: Send and Sync
	Locking: Mutexes and RwLocks
	Rust’s Mutex
	Lock Poisoning
	Reader-Writer Lock

	Waiting: Parking and Condition Variables
	Thread Parking
	Condition Variables

	Summary

	2. Atomics
	Atomic Load and Store Operations
	Example: Stop Flag
	Example: Progress Reporting
	Example: Lazy Initialization

	Fetch-and-Modify Operations
	Example: Progress Reporting from Multiple Threads
	Example: Statistics
	Example: ID Allocation

	Compare-and-Exchange Operations
	Example: ID Allocation Without Overflow
	Example: Lazy One-Time Initialization

	Summary

	3. Memory Ordering
	Reordering and Optimizations
	The Memory Model
	Happens-Before Relationship
	Spawning and Joining

	Relaxed Ordering
	Release and Acquire Ordering
	Example: Locking
	Example: Lazy Initialization with Indirection

	Consume Ordering
	Sequentially Consistent Ordering
	Fences
	Common Misconceptions
	Summary

	4. Building Our Own Spin Lock
	A Minimal Implementation
	An Unsafe Spin Lock
	A Safe Interface Using a Lock Guard
	Summary

	5. Building Our Own Channels
	A Simple Mutex-Based Channel
	An Unsafe One-Shot Channel
	Safety Through Runtime Checks
	Safety Through Types
	Borrowing to Avoid Allocation
	Blocking
	Summary

	6. Building Our Own “Arc”
	Basic Reference Counting
	Testing It
	Mutation

	Weak Pointers
	Testing It

	Optimizing
	Summary

	7. Understanding the Processor
	Processor Instructions
	Load and Store
	Read-Modify-Write Operations
	Load-Linked and Store-Conditional Instructions

	Caching
	Cache Coherence
	Impact on Performance

	Reordering
	Memory Ordering
	x86-64: Strongly Ordered
	ARM64: Weakly Ordered
	An Experiment
	Memory Fences

	Summary

	8. Operating System Primitives
	Interfacing with the Kernel
	POSIX
	Wrapping in Rust

	Linux
	Futex
	Futex Operations
	Priority Inheritance Futex Operations

	macOS
	os_unfair_lock

	Windows
	Heavyweight Kernel Objects
	Lighter-Weight Objects
	Address-Based Waiting

	Summary

	9. Building Our Own Locks
	Mutex
	Avoiding Syscalls
	Optimizing Further
	Benchmarking

	Condition Variable
	Avoiding Syscalls
	Avoiding Spurious Wake-ups

	Reader-Writer Lock
	Avoiding Busy-Looping Writers
	Avoiding Writer Starvation

	Summary

	10. Ideas and Inspiration
	Semaphore
	RCU
	Lock-Free Linked List
	Queue-Based Locks
	Parking Lot–Based Locks
	Sequence Lock
	Teaching Materials

	Index
	About the Author

