<y sitepoint

TAILWIND CSS:

CRAFT BEAUTIFUL, FLEXIBLE, AND
RESPONSIVE DESIGNS

BY IVAYLO GERCHEV

=

-

THE RAPID WAY TO DEVELOP CSS

Tailwind CSS: Craft Beautiful, Flexible, and
Responsive Designs

Copyright © 2022 SitePoint Pty. Ltd.
Ebook ISBN: 978-1-925836-51-6

Author: Ivaylo Gerchev

Series Editor: Oliver Lindberg

Product Manager: Simon Mackie

Technical Editor: Shahed Nasser

English Editor: Ralph Mason

Cover Designer: Alex Walker

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in
a retrieval system or transmitted in any form or by any means, without
the prior written permission of the publisher, except in the case of

brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accu-
racy of the information herein. However, the information contained in

this book is sold without warranty, either express or implied. Neither

the authors and SitePoint Pty. Ltd., nor its dealers or distributors will
be held liable for any damages to be caused either directly or indirect-
ly by the instructions contained in this book, or by the software or

hardware products described herein.
Trademark Notice

Rather than indicating every occurrence of a trademarked name as
such, this book uses the names only in an editorial fashion and to the
benefit of the trademark owner with no intention of infringement of the

trademark.

3 sitepoint

10-12 Gwynne St, Richmond, VIC, 3121
Australia
Web: www.sitepoint.com

Email: books @sitepoint.com

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-under-

stand content for web professionals. Visit http://www.sitepoint.com/ to

access our blogs, books, newsletters, articles, and community fo-
rums. You'll find a stack of information on JavaScript, PHP, design,

and more.

About the Author

lvaylo Gerchev is a web developer/designer from Bulgaria. In his free
time he likes to write articles and tutorials sharing his knowledge and
understanding on various web development topics. His favorite topics
include Ul, UX, SVG, HTML, CSS, Tailwind, JavaScript, Node, Nest,
Adonis, Vue, React, Angular, PHP, Laravel, and Statamic. The best
tools he uses are Figma and VS Code. When he's not programming

the Web, he loves to program his own reality.

http://www.sitepoint.com/

Preface

Conventions Used

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<hl>A Perfect Summer's Day</hl>
<p>It was a lovely day for a walk in the park.

The birds were singing and the kids were all bacl

You'll notice that we’ve used certain layout styles throughout this
book to signify different types of information. Look out for the follow-

ing items.

Tips, Notes, and Warnings

HEY, YOU!

Tips provide helpful little pointers.

AHEM, EXCUSE ME ...

Notes are useful asides that are related—but not critical—to the topic

at hand. Think of them as extra tidbits of information.

MAKE SURE YOU ALWAYS ...

... pay attention to these important points.

WATCH OUT!

Warnings highlight any gotchas that are likely to trip you up along the

way.

Supplementary Materials

o hitps://www.sitepoint.com/community/ are SitePoint’s forums, for

help on any tricky problems.
« books@sitepoint.com is our email address, should you need to

contact us to report a problem, or for any other reason.

https://www.sitepoint.com/community/

Getting Started with Tailwind CSS

There are two main types of CSS framework. One is based around
components—a group that includes frameworks such as Bootstrap,
Foundation, and Bulma. The other type of CSS framework is based
around utilities—a group that includes the likes of Tachyons, Tailwind
CSS, and Windi CSS.

COMPONENT VS UTILITY CLASSES

If you’re not clear on the difference between component and utility
classes, jump to the “What Is a Utility Class?” section below, and then

continue reading from here.

For many years, component-based frameworks were the de facto
standard for building websites quickly and easily. But all this magic
comes with a price. Without serious customization, sites built with
such frameworks look similar to each other. And customization is a
real pain in the neck for anyone who wants to build something more
complex and/or creative. Component-based styles are easy to imple-
ment, but inflexible and confined to certain boundaries. Solving speci-
ficity issues while trying to override the default styles of a particular

framework isn’t a fun and productive job.

https://getbootstrap.com/
https://get.foundation/
https://bulma.io/
https://tachyons.io/
https://tailwindcss.com/
https://windicss.org/

“Utility-first” frameworks were created to solve this problem. A utility-
first framework is built with low-level functionality in mind. Utility
classes offer much more power and flexibility than component

classes.
Utility-first frameworks provide the following advantages:

« Utility classes operate at a low level. This means we have more
control and flexibility over how we apply them—a concept that’s
similar to the power and flexibility offered by a low-level language
like C or C++, in contrast to high-level languages such as Java-
Script or PHP.

« Utility classes are easy to customize, so we can build any design.

« A utility-first approach scales well. It’s great for managing and
maintaining large projects, because we only have to maintain
HTML files, instead of a large CSS codebase. It’s already used
with success by big sites like GitHub, Heroku, Kickstarter, Twitch,
and Segment.

« Utility classes can be adopted to any design.

« Utility classes are completely customizable and extensible. It’s
easier to build unique, custom website designs without fighting
with unwanted styles.

« Utility classes allow for much easier implementation of responsive

design patterns.

« Utility classes have consistent styles, which gives us a ready-to-
use design system. We can also create our own design system if
we need to.

« With utility classes, we can still extract common, repetitive patterns
into custom, reusable components. But in contrast to predefined

components, custom components will be exactly what we need.

In summary, we can say that a utility-first framework gives us balance

between the concrete and the abstract.

Now that we’ve seen how useful utility-first frameworks can be, it's
time to pick one and see what it can do for us in action. In this book,

we’ll explore Tailwind CSS, which is the most popular of the utility-first

frameworks.

What Is Tailwind?

Tailwind is a set of low-level, reusable utility classes that can be used
like building blocks to create virtually any design we can imagine.
This utility-first framework covers the most important CSS properties,
but it can be easily extended in a variety of ways. It can be used ei-

ther for rapid prototyping or for creating full-blown designs.

Tailwind has great documentation, covering every class utility in detail

and showing the ways it can be customized. There’s also a play-

https://tailwindcss.com/
https://tailwindcss.com/docs
https://play.tailwindcss.com/

ground where you can try out your ideas. You can also check out Tail-

wind’s screencasts if you prefer to learn by watching.

As of version 2.0, Tailwind CSS supports the latest stable versions of
Chrome, Firefox, Edge, and Safari. There’s no support for any version
of IE, including IE11.

What Is a Utility Class?

As we already know, Tailwind’s main characteristic is the use of utility

classes. But what is a utility class?

While a component class is a collection of predefined CSS settings
applied in an opinionated fashion, a utility class is mostly a single
CSS property or behavior that we can use freely in a predictable way.
This gives us the freedom to combine, mix and match different set-
tings depending on our requirements. We have greater control over
each element’s appearance. We can change and fine-tune an ele-

ment’s appearance much more effortlessly with utility classes.

In Bootstrap, we create a button by using predefined component

classes, as in the following example:

<button class="btn btn-success">Success</button>

https://play.tailwindcss.com/
https://www.youtube.com/tailwindlabs
https://getbootstrap.com/docs/5.1/components/buttons/

Here, the btn and btn-success are the so-called component
classes. Each one of them represents a collection of predefined CSS

settings.

In Tailwind, we create a button by using utility classes:

<button class="py-2 px-4 bg-green-500 text-white
Success
</button>

Here, py-2, px-4, bg-green-500, and so on, are the so-called
utility classes, and each one of them represents just a single CSS
setting. To create the button, we use multiple utilities—which we put

together like the pieces of a puzzle in order to get the whole picture.
This CodePen demo shows these two buttons on the same page.
The buttons looks quite similar, but they’re created in different ways.

We’ve covered the basic difference between component and utility

classes, but let’s now take an even closer look at utility classes.

In Tailwind, the CSS font-style: italic isrepresented by the

italic utility class.

Here are some more examples:

https://codepen.io/SitePoint/pen/OJzxOQK?editors=1000

« text-align: right becomes text-right

« font-weight: 700 becomes font-bold

e border-radius: 0.25rem becomes rounded
« width: 0.5rem becomes w-2

« padding: 1.5rem becomes p-6

And here’s how classes are applied in practice. Let’s say we want to

make a paragraph bold and italic. We do it this way in CSS:

P
font-weight: 700;

font-style: italic;

To do the same in Tailwind, we add the font-bold and italic

classes directly to the HTML element:

<p class="font-bold italic">Lorem ipsum...</p>

In Tailwind, we can also apply classes based on an element’s states,
such as hover, focus, and so on. For example, if we want the above
paragraph to be italic only on mouse hover, we can write the class

like this: hover:italic.

As you can see, Tailwind utility classes are mostly self-explanatory.
We can often imagine how the styled element looks by just reading
the classes. Some class names are heavily abbreviated, admittedly,
but once we’ve grasped the pattern and had a bit of practice with

them, they’re easy to remember and recall.
What a Design System Is, and How It Can Help Us

As Tailwind offers a sort of design system, it will be useful to say few

words about what a design system is and how it can facilitate the de-

sign process.

In simple terms, a design system is a set of rules and conventions
for how a design should be built. It includes predefined rules about
sizes, colors, text, and so on. Traditionally, when we build a design

we need to make multiple choices about things like:

« the size of the design elements (text, images, etc.)
« the colors and color variations

« the fonts and other typographic features

....and so on.

Making a decision for every small part of a design can lead to choice

paralysis and inconsistency. It’s tedious and error-prone. It would be

much easier if we first established a design system with already pre-

https://uxdesign.cc/everything-you-need-to-know-about-design-systems-54b109851969
https://www.scienceofpeople.com/choice-paralysis/

defined options that are tested and proven to work. We can then just
select from the existing, limited set of options and combine them to

produce the desired outcome.

This is actually what Tailwind gives us—a well-crafted design system
that we can use to speed up, smooth, and facilitate our design-build-

ing process.

Up and Running with Tailwind

KNOW YOUR HTML AND CSS

To follow along with the rest of this tutorial, you should
have a good understanding of HTML and CSS and their
concepts. If you’re not up to speed with those yet, check
out SitePoint’s HTML and CSS learning_path.

The official documentation describes a bunch of different ways to in-

stall Tailwind. In this tutorial, we’ll use the simplest one—which in-

volves including Tailwind in our projects via the Play CDN option. So

just create an HTML file and put the following content in it:

<!doctype html>
<html>
<head>
<meta charset="UTF-8" />

<meta name="viewport" content="width=device-wic

https://www.sitepoint.com/premium/paths/learn-html
https://tailwindcss.com/docs/installation
https://tailwindcss.com/docs/installation/play-cdn

'S

<link href="https://cdnjs.cloudflare.com/ajax/.
<script src="https://cdn.tailwindcss.com"></sc:
</head>

<body>

<l—— ... ==>
</body>
</html>

This is the starting template we’ll build upon throughout the rest of the
tutorial. We’ll also include a Font Awesome link that we’ll use for the

icons in our design.
Exploring Tailwind Basics
There are four main factors involved in every web design project:

- Layout. It all starts with a blueprint. This defines how the white-
space and elements of our design are organized and ordered.

« Typography. This includes all text content, including messages.

« Colors. This brings life to a design and defines a design’s mood
and brand.

« Imagery. This includes the visuals of a design, such as icons, im-

ages, illustrations, and so on.

https://fontawesome.com/

In the next four sections, we’ll learn more about each one of these
factors and see how Tailwind can help us to implement them in the
development phase. The aim here is to give you a bird’s-eye view of
what classes to look for when you’re working on a particular compo-
nent. Don’t worry: I’ll go into much more detail for each class when

we start exploring a practical example later on in the chapter.
Responsive Web Design

Our coverage of layout, typography, color and imagery here won't be
able to include principles and techniques relating to responsive web
design, as that topic is beyond the scope of this book. But it’s an im-
portant topic that’s central to modern web design. For more informa-

tion, see this general overview of responsive web design, and also

Tailwind’s documentation for specific instructions.

Layout

In this section, we’ll explore briefly the most commonly used classes
for layout composition. We can group classes by their function, as

follows:

« Size. This includes width and height utilities for setting an ele-
ment’s dimensions.
« Space. This includes margin and padding utilities for adding space

in our design.

https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Responsive_Design
https://tailwindcss.com/docs/responsive-design
https://tailwindcss.com/docs/width
https://tailwindcss.com/docs/height
https://tailwindcss.com/docs/margin
https://tailwindcss.com/docs/padding

« Position. This includes an element’s positioning and coordinates.

« Borders. This includes various utilities for setting an element’s
borders, such as style, width, and radius.

« Display. This includes the way elements are rendered.

In modern CSS, we have also Flexbox and Grid classes for building a
layout. We'll cover only the Flexbox utilities in this chapter, as they’re

much simpler and easier to use for beginners.

When we use Flexbox, we start by creating a flex container by adding
a flex class to a parent element. Then we add additional flex class-
es to configure how the flex items inside the container (direct chil-

dren) will be displayed. For example, to render flex items vertically as

a column, we add a flex-col class along withthe flex class:

<div class="flex flex-col">
<div>1</div>
<div>2</div>
<div>3</div>

</div>

This is the base for applying flex classes. There are plenty of them in
Tailwind, and it would be tedious to explain each one individually. In-
stead, when we explore a practical example later on, I'll cover the flex

classes we use in that example.

https://tailwindcss.com/docs/position
https://tailwindcss.com/docs/top-right-bottom-left
https://tailwindcss.com/docs/border-style
https://tailwindcss.com/docs/border-width
https://tailwindcss.com/docs/border-radius
https://tailwindcss.com/docs/display

Typography

Now that we have a layout, the next step is to add the content we
want to display. This is mostly done by using text. Here are the most

commonly used text utilities grouped by function:

well as tracking and leading settings.

« Text. This includes text aligning, color and opacity, decoration and

transformation.

« List. This includes list type and position styling.

Colors

We have a layout, and we have text. Now we need to bring life to
them by using some colors. Tailwind offers a large, pre-made color
palette. Applying a color is super easy. Here are the two most com-

mon uses of color:

« Text. To apply a color to text we use the pattern text-[color]-

[number] . The number variable defines tints and shades. For
example, to make text dark red, we can use a text-red-900
class. To make it light red, we can use text-red-100.

« Background. To use a color as a background, we use the pattern

bg-[color]-[number] .

https://tailwindcss.com/docs/font-family
https://tailwindcss.com/docs/font-size
https://tailwindcss.com/docs/font-style
https://tailwindcss.com/docs/font-weight
https://tailwindcss.com/docs/letter-spacing
https://tailwindcss.com/docs/line-height
https://tailwindcss.com/docs/text-align
https://tailwindcss.com/docs/text-color
https://tailwindcss.com/docs/text-opacity
https://tailwindcss.com/docs/text-decoration
https://tailwindcss.com/docs/text-transform
https://tailwindcss.com/docs/list-style-type
https://tailwindcss.com/docs/list-style-position
https://tailwindcss.com/docs/customizing-colors
https://tailwindcss.com/docs/text-color
https://tailwindcss.com/docs/background-color

Imagery: Icons and Images

The final spice in our design recipe is the visual imagery. Visuals are
like salt and spices: a meal isn’t tasty without them. The most com-

monly used visuals are:

« Icons. These can be based on SVGs or icon fonts. As we saw ear-
lier, we included Font Awesome in our template. To use an icon
from, it we use the pattern fas fa-[icon-name] . For example,
to use a search icon for a search input, we can use the fas fa-
search classes. Notice that fas placed before the icon name
means that we use Font Awesome’s solid icons collection, which is
free. Font Awesome offers some base styling for its icons, but we
can style them with Tailwind’s utilities (for color, size, etc.) as well.

- Images. To style images, we can use a bunch of Tailwind classes,
such as width and height, opacity, shadows, borders, filters, and so

on.

Building a Blog Starter Template

In this last section, we’ll explore how to build a simple blog starter
template from scratch. | won’t go too deeply into the detail of each in-
dividual utility class, but I'll provide enough explanation where it’s

needed.

https://tailwindcss.com/docs/opacity
https://tailwindcss.com/docs/box-shadow
https://tailwindcss.com/docs/filter

Here’s the final version of the blog template. You can also test it in ac-

tion in this CodePen demo.

UTILITY CLASS HELP

For information about any particular utility class, you can use Jay
Elaraj’s handy Tailwind cheatsheet, or you can search for a specific

class in the Tailwind documentation.

BASE STYLES

As we dive into building our starter template with Tail-
wind, it’s important to note that Tailwind applies an opin-

lonated set of base styles for every project by default.

Creating the Header

We’ll build the template from top to bottom, starting with a header.

The following image shows what we’re trying to create.

?%Tailwind School Home News Tutorials Videos

To create the header, put the following code inside the <body> ele-

ment in the starting template:

https://github.com/spbooks/tailwind/blob/master/part-1/blog-starter-template.html
https://codepen.io/codeknack/pen/yLXmKyQ
https://nerdcave.com/tailwind-cheat-sheet
https://tailwindcss.com/docs
https://tailwindcss.com/docs/preflight

<div class="container mx-auto">
<header class="flex justify-between items-cente
<div class="flex-shrink-0 ml-6 cursor-pointei
<i class="fas fa-wind fa-2x text-yellow-50(
<span class="text-3x1 font-semibold text-b:
</div>
<ul class="flex mr-10 font-semibold">
<li class="mr-6 p-1 border-b-2 border-yell«
<a class="cursor-default text-blue-200" I
</1li>
<li class="mr-6 p-1">
<a class="text-white hover:text-blue-300'
</1li>
<li class="mr-6 p-1">
<a class="text-white hover:text-blue-300'
</1li>
<li class="mr-6 p-1">
<a class="text-white hover:text-blue-300'
</1li>

</header>

</div>

Let’s break the header’s code into smaller blocks. First, we’ve
wrapped all the content in a container by adding the container

class in the wrapping <div> element:

https://tailwindcss.com/docs/container

<div class="container mx-auto">

</div>

This forces the design to accommodate certain dimensions depend-
ing on the current breakpoint. We’ve also centered the design with

the mx-auto utility. This sets the left and right margins to auto.

In Tailwind, when x is used after a CSS setting abbreviation (m for
margin here), it means that the setting will be applied both on /eft and
right. If y is used instead, it means the setting will be applied both

top and bottom.

The reason we create such a container is that, on large screens, the
design will be centered and presented in a more compact size, which

in my opinion looks much better than a fully-fluid viewport.

The next thing we've done is create the header with a <header>

element:

<header class="flex justify-between items-center

</header>

We've created a flex container and used justify-between and
items-center classes to add an equal amount of space between
flex items and align them along the center of the container’s cross

axis.

We’'ve also used the sticky and top-0 classes to make the
header fixed to the top when users scroll down, and we'’ve seta z-

10 class to ensure the header will be always on top.

We’ve added a shade of blue color as a background and some pad-

ding for both top and bottom sides of the header.

The first item in the header’s container is the blog’s logo:

<div class="flex-shrink-0 ml-6 cursor-pointer">
<i class="fas fa-wind fa-2x text-yellow-500"><,
<span class="text-3x1l font-semibold text-blue-.

</div>

It’s combination of a yellow colored wind icon (fas fa-wind) and
light blue colored “Tailwind School” text. We’ve made the icon bigger
by using Font Awesome’s fa-2x class. The text is made bigger and
semibold by using Tailwind’s text-3x1 and font-semibold

classes respectively.

For the logo’s container, we’ve added a bit of left margin and used the
flex-shrink-0 class to prevent the logo from shrinking when the

design is resized to smaller viewports.

The second item in the header’s container is the main navigation:

<ul class="flex overflow-x-hidden mr-10 font-sem:

We’'ve created it by using a ul element turned into a flex container
SO we can style its items as horizontal links. We’ve used the over-
flow-x-hidden class to clip the content within navigation that
overflows its left and right bounds. We've also added some right

margin.

The mr-10 class and the m1-6 (logo) classes use the r for right
and 1 for left abbreviations to set right and left margin respectively.
In a similar way, t and b can be used for setting top and bottom

sides of an element.

For the navigation’s links, we’ve added some right margin and a small

padding to all sides:

<li class="mr-6 p-1 border-b-2 border-yellow-500'

A ~Tl Aa~n~=" qdrar~ A AAFf AT+ + Axrd Tn1aaA 2"'NNN hhaoAafr-".

~Na e lLlaoo—T culLovuL-Tuc.iLaulu LCALTULUC—TZUVUV lircL— 7

<li class="mr-6 p-1">

<a class="text-white hover:text-blue-300" href:
</1li>
<li class="mr-6 p-1">

<a class="text-white hover:text-blue-300" href:
</1li>
<li class="mr-6 p-1">

<a class="text-white hover:text-blue-300" href:
</1li>

When we use a setting like padding without side abbreviation (p-1

here), it’s applied to all sides.

We’ve set the color of links to white, which changes to light blue on

hovering. We've also used the hover: prefix to achieve that effect.

We've styled the active “Home” link by adding a thin yellow border
below the text. The border is created with the border-b-2 class,

where b is for bottom and 2 is the amount of border thickness.

THE DESIGN PROCESS

In a text-based tutorial, it’s hard to demonstrate how a
design is built step by step, and how each step is built

upon the previous one. For that reason, | suggest you

watch this short video, which shows an example of the

steps and reasoning involved in the design process. It
should give you some extra insight into the process

we’re following here.

https://www.youtube.com/watch?v=1OUbP0rGFNs

Chapter 2: Going Beyond the Basics

As we learned from the chapter, Tailwind CSS is the best known of
the utility-first frameworks. It offers a rich collection of CSS class utili-
ties that can be combined like Lego blocks to build any kind of design.
Learning the basics of how to use these utilities is also very

straightforward.

But this knowledge alone isn’t enough for building complex and flexi-
ble designs. After grasping the basics, instead of diving deeper into
what can be done with Tailwind, many users decide to use ready-
made templates or a copy-paste approach to building their designs.
The aim of this chapter is to avoid such a scenario by providing some
insights into Tailwind’s more advanced capabilities. We'll dive a little
deeper into what we can do with Tailwind, learning how to create re-
usable, utility-based components and templates, and how to make
our designs responsive. We’'ll also start to explore how Tailwind can
be configured and customized—a topic we’ll continue to explore and

build on in the following chapters.

All these skills will help us create a more flexible and manageable
codebase. They’ll let us go beyond the Tailwind basics so we can

build our own components and templates with confidence.

Getting Started with Tailwind

https://tailwindcss.com/

In this section, we’ll learn how to set up a new project with Tailwind.

PROJECT CODE

You can find the finished project for this chapter in the

code repo for this book.

The project creation process described below will also be used as a
starting point in the following parts of the book. In each of the next

parts, you’ll be redirected to this section to prepare a new project.

GETTING READY

To follow along from here onwards, you'll firstly need to

have Node installed on your machine.

Also, make sure you have a basic knowledge of Tail-
wind’s utilities—including how they work and how
they’re applied to HTML—as we won'’t be explaining
them in detail here. The basics of Tailwind utilities were

covered in the first chapter.

UTILITY CLASS REFERENCES

For information about particular utility classes, you can use Jay
Elaraj’s handy Tailwind cheatsheet, or you can search for a specific

class in the Tailwind documentation.

https://github.com/spbooks/tailwind/tree/master/part-2
https://nodejs.org/en/download/
https://nerdcave.com/tailwind-cheat-sheet
https://tailwindcss.com/docs

Base Styles

Remember to bear in mind that Tailwind applies an opinionated set of

base styles for every project by default.

The first step is to create a new Node app. In a directory of your

choice, run this command:

npm init -y

In the chapter, we played with Tailwind by using a Play CDN link.

That’s a great way to get started when we’re doing a quick test or
proof of concept experiment. But in this chapter, we’ll use the Tailwind

CLI, which will give us a production-ready setup.

The first step is to install Tailwind:

npm install -D tailwindcss

Next, run the following command:

npx tailwindcss init

NPX

https://tailwindcss.com/docs/preflight
https://tailwindcss.com/docs/installation/play-cdn
https://tailwindcss.com/docs/installation

npx is a tool that’s automatically installed alongside
npm and allows you to run a command from a local or

remote npm package.

This will create a minimal tailwind.config. js file, where we

can put our customization options during development. The generat-

ed file contains the following:

// /tailwind.config.js
module.exports = {

content: [],

theme: {
extend: {},

by

plugins: [],

The next thing to do is to add our template paths in the content sec-

tion, so Tailwind can compile the utilities used in our templates. In our
case, we’ll add just an index.html file, which we’ll create a bit

later:

// /tailwind.config.js
module.exports = {

content: ["index.html"],

https://tailwindcss.com/docs/content-configuration

The next step is to create a styles.css file, in the root directory,
where we’ll include the framework’s styles using the @tailwind direc-

tive:

/* /styles.css */
@tailwind base;
@tailwind components;

@tailwind utilities;

As the names suggest, Tailwind styles are divided into three groups.
The first group represents all the base styles—such as CSS resets.
The second represents the styles for components—where any cus-
tom components are also injected. The third group contains all of Tail-

wind’s default utilities, as well as any custom-made utilities.

The next step is to build the Tailwind styles. To do this, run the follow-

ing command:

npx tailwindcss -i styles.css -o tailwind.css

This gets the styles from the styles.css file as an input and gen-

eratesa tailwind.css file as an output.

https://tailwindcss.com/docs/functions-and-directives#tailwind

If we don’t want to run this command every time we make some
changes, we can append the -w or —-watch flag at the end, which

will rebuild our styles every time we make a change:

npx tailwindcss -i styles.css -o tailwind.css -w

To facilitate the use of both commands, let’s define them as scripts in

package. json file:

// /package.json
"scripts": {

"dev": "npx tailwindcss -i styles.css -o tailw:

"dev:watch": "npx tailwindcss -i styles.css -0

b

Now we’re ready to start playing with Tailwind.

Creating Tailwind Components

As you may have expected, no matter how useful Tailwind classes

are, we’ll soon realize that we have repeating groups of utilities in our

code. Of course, this makes the code error-prone and hard to main-

tain. This is where components come into play.

Components are predefined sets of utilities that can be reused and
adapted for various scenarios. A component effectively allows us to
reuse Tailwind’s classes, which reduces the code repetition and im-

proves maintainability.

Tailwind allows us to extract classes into reusable components in two
major ways. The first way is to just extract them as groups of classes.
The second way is to create a reusable component with a frontend
framework like Vue or React, or a template partial with a template en-
gine like Twig or Blade. We'll explore both scenarios in the following

sections.

But before we dive into the examples, let’s create an index.html
file in the root directory and add links to the generated tail-

wind.css file and to the Font Awesome icons. Here’s what the

starter template should look like:

<!-- /index.html -->
<!doctype html>
<html>
<head>
<meta charset="UTF-8" />

<meta name="viewport" content="width=device-i

- 2 12 <9 U0 __.n 9 9 _____n (U [IR | [T T A | =]

https://fontawesome.com/

S11NK rel= styleslleet Type= TexXt/Css Nnrer=
<link rel="stylesheet" href="https://cdnjs.c:
</head>
<body>
<le= ... ==>

</body>
</html>

Extracting Classes into Reusable Components

Extracting classes into components is as easy as grouping a series of
classes by using the @apply directive. To demonstrate how this can
be done, we’ll create an alert component. First, let’'s see how our alert

component looks when it’s built only with utility classes:

<div class="flex flex-col p-4 pt-2 w-full border-
<div class="font-semibold italic text-1lg text-l
<div class="leading-tight text-sm text-blue-80!

</div>

Here’s a CodePen demo of the code above.

As you can see, this code sample creates a simple “Info” alert com-
ponent. But the problem is that, if we want to create different alerts —

such as “Warning”, “Success”, and so on—we’ll need to repeat a big

https://tailwindcss.com/docs/extracting-components#extracting-component-classes-with-apply
https://codepen.io/SitePoint/pen/LYeepBO?editors=1000

part of the code for each alert. This leads to poor maintainability, be-
cause if we wanted to change the overall styles of these alerts, we’d
need to update each one separately. To avoid such a scenario, we’ll

extract the repeating patterns into individual component classes.

Openthe styles.css file and add the following code:

/* /styles.css */

@layer components {
.alert {
@apply flex flex-col p-4 pt-2 w-full border-.

.alert-title {
@apply font-semibold italic text-1g;

.alert-content {

@apply leading-tight text-sm;

.alert-info {
@apply bg-blue-100 border-blue-500

ol =N T L H R r

Al T—111TO—Tl1Tle |

@apply text-blue-500;

.alert-info-content {
@apply text-blue-800;

.alert-warning {
@apply bg-red-100 border-red-500

.alert-warning-title {

@apply text-red-500;

.alert-warning-content {

@apply text-red-800;

Here, we've used the @layer components { ... } directiveto
wrap our custom component classes. This is to tell Tailwind which
layer those styles belong to and to avoid specificity issues. The op-

tions are base, components,and utilities.

First, we extract the base code for each alert component part into an
individual class (.alert, .alert-title,and .alert-con-
tent). Then, we extract the code that differs for each individual alert
(the specific color classes). For example, for the “Info” alert, the class-
eswouldbe .alert-info, .alert-info-title, and
.alert-info-content . Generally, we extract or group the utili-

ties into smaller and more manageable component classes.

As you might have noticed, the classes we’ve just created are pretty
similar to those in component-based frameworks such as Bootstrap
or Bulma. The advantage of Tailwind’s classes is that they’re more
transparent and easier to tweak. We can see exactly which utilities

are applied and we can easily edit them whenever we need to.

Once we've created the required classes, we need to build Tailwind
styles again (by running npm run dev or npm run dev:watch)
for the changes to take effect. Once that’s done, we can try out the
new components in action. Open the index.html file and add the

following code:

<!-- /index.html -->
<div class="alert alert-info m-6 w-1/3">
<div class="alert-title alert-info-title">Info-
<div class="alert-content alert-info-content">]
</div>

<div class="alert alert-warning m-6 w-1/3">

<div class="alert-title alert-warning-title">W:
<div class="alert-content alert-warning-content
</div>

This code creates “Info” and “Warning” alerts.

Info
Lorem ipsum dolor sit amet consectetur
adipisicing elit.

Warning

Lorem ipsum dolor sit amet consectetur
adipisicing elit.

As you can see, with our custom component classes we can create
much more manageable and maintainable code. We now have fewer

classes to use and fewer places to make changes.

Building Tailwind Components with Vue

Extracting component classes, as demonstrated above, works well
for fairly small, simple components. If we want to create a complex
component with multiple elements, we’ll need to use a more flexible
approach. By “flexible” | mean more reusable and easier to manage.
As we’ve seen already, even for our simple alert component, we
needed to create many component classes for the different states or
parts of the component. Imagine if we wanted to create a fairly com-
plex component such as a card. Doing this by using the @apply di-
rective would be quite impractical. After all, we want to simplify our

code, not to make it a mess, right?

Another way we can utilize the full potential of Tailwind is by using it in
frontend frameworks (like Vue, React, Svelte) that allow us to create
reusable components. This will give us much more flexibility when we
want to build complex components. We’ll demonstrate this by creat-

ing a general recipe card component with Vue.

https://v3.vuejs.org/

Pizza Margherita

Invented in Naples in honor of the first queen of Italy,
the Margherita pizza is the triumph of Italian cuisine
in the world.

® 1 alll
Th 15m 4 Servings Easy

LEARNING VUE

If you’re not familiar with Vue, you can consult the Vue

documentation, or take a look at Jump Start Vue.js, which offers a

https://v3.vuejs.org/guide/introduction.html
https://www.sitepoint.com/premium/books/jump-start-vue-js-2nd-edition/

more in-depth exploration of Vue’s features and abilities.

For this example, we’ll need to add a link to the Vue framework:

<!-- /index.html -->

<script src="https://unpkg.com/vue@3"></script>

Let’s first see what the recipe card component’s code would look like

without Vue:

<div class="m-5 shadow-md w-80 rounded overflow-l

<img src="https://source.unsplash.com/x00CzBt4l

<div class="p-2">
<div class="font-bold text-1g text-gray-700
Pizza !
</div>
<p class="text-xs leading-tight tracking-wide
<div class="flex pt-2 border-t border-gray-3I
<div class="flex-1 text-center">
<i class="far fa-clock"></i>
<p>1h 15m</p>
</div>
<div class="flex-1 text-center">
<i class="fas fa-utensils"></i>

<p>4 Servinas</p>

F. - F.

</div>
<div class="flex-1 text-center">
<i class="fas fa-signal"></i>
<p>Easy</p>
</div>
</div>
</div>

</div>

Here’s a CodePen demo of the code above.

The problem here is that, if we want to use this template for multiple

recipes, we’ll end up with lots of code repetition. Later on, if we decide
to change the card’s design, we’ll need to edit the template in multiple
places. This is error-prone and wasteful of our time. The solution is to

find a way to extract the repeating code into a reusable template. We

can easily do this by creating_a reusable Vue component.

Open index.html and add the following code before the closing

</body> tag:

// /index.html
<script>

const app = Vue.createlpp({})

app.component('recipe-card', {

https://codepen.io/SitePoint/pen/oNppbVR?editors=1000
https://v3.vuejs.org/guide/component-basics.html

props: [1mageurl', 'imgalt’', ‘'titleurl’', ‘'tit.
template:
<div class="m-5 shadow-md w-80 rounded overf:

<div class="p-2">

<div class="font-bold text-lg text-gray-’

<a thref="titleurl" class="hover:under.
</div>
<p class="text-xs leading-tight tracking-
<div class="flex pt-2 border-t border-gr:
<div class="flex-1 text-center">
<i class="far fa-clock"></i>
<p>{{ time }}</p>
</div>
<div class="flex-1 text-center">
<i class="fas fa-utensils"></i>
<p>{{ servings }}</p>
</div>
<div class="flex-1 text-center">
<i class="fas fa-signal"></i>
<p>{{ level }}</p>
</div>
</div>
</div>
</div>"

})

app.mount ('#app')
</script>

Here, we’ve put all repeating code in a template and defined props for
the recipe’s details. This way, we can provide different details for
each recipe while the template remains the same. If we decide in the
future to change the card’s appearance, we’ll need to edit its template

in only one place.

REBUILDING STYLES

Build Tailwind styles again (if you don’t use the dev:watch script)

for the changes to take effect.

https://v3.vuejs.org/guide/component-basics.html#passing-data-to-child-components-with-props

Chapter 3: Building Complex Designs
with Tailwind

In the first chapter, we covered the basic concepts of the Tailwind
framework and how to use it to build simple designs. We then ex-
panded this knowledge by learning how we can build reusable com-

ponents and responsive designs.

In this chapter, we’ll extend what we’ve learned with more advanced
layout-building and design-enhancement techniques, including creat-

ing and using:

« grid layouts

« drop caps

gradients

image clipping

image filters

transforms and transitions

We'll start with several grid layouts and then we’ll build a full article

layout.

Building Complex and Flexible Layouts with
Tailwind’s Grid Utilities

In this section, we’ll build several grid layouts similar to magazine or

news sites. To do that, we’ll use Tailwind’s grid utilities.

CSS GRID
If you need to get up to speed with Grid layout in CSS, you can do it

quickly by playing this fun CSS Grid Garden game. For more in-depth
exploration of CSS Grid and CSS in general, | suggest checking out
CSS Master.

PROJECT CODE

You can find the finished project for this chapter in the

code repo for this book.

Exploring Tailwind’s Grid Utilities
Here’s a quick overview of the grid utilities we’ll use in our layouts.

To define columns and rows, you use the following classes (n is the

number of columns/rows):

e grid-cols-{n} : define columns

« grid-rows-{n} : define rows

https://cssgridgarden.com/
https://www.sitepoint.com/premium/books/css-master-3rd-edition/
https://github.com/spbooks/tailwind/tree/master/part-3

To add a gap between columns and/or rows, you can use the follow-

ing classes:

« gap-{size} : define gap between columns and rows at the
same time
« gap-x-{size} : define gap between columns

« gap-y-{size} : define gap between rows

To start creating complex layouts, you’ll need the following classes:

« col-span-{n} : make an element span n columns

« col-start-{n} : make an element start at grid line n
« col-end-{n} : make an element end at grid line n

« row-span-{n} : make an element span n rows

« row-start-{n} : make an element start at grid line n

« row-end-{n} : make an element end at grid line n

NUMBERING GRID LINES

CSS grid lines start at 1, not 0. So in a four-column,
three-row grid, columns would start at column line 1 and
end at column line 5, and rows would start at row line 1

and end at row line 4—as illustrated below.

Y
NS
o
N
N

You can also use order-{order} to display grid items in a differ-

ent order from their DOM order.

With the above utilities, we can create an endless number of layouts

with different levels of complexity. Let’s explore some examples now.

Creating Grid Layouts

We’ll borrow most of the following examples from this nice looking

Newsportal theme.

https://newsportal.electronthemes-ghost.com/

You can see the completed grid layout examples in this CodePen

demo.

To follow along, let’s create a new project, just as we learned how to

do in the previous chapter.

Next, you need to configure Tailwind to use all HTML files, by modify-

ing the content sectioninthe tailwind.config. js file:

// /tailwind.config.js

module.exports = {
content: ['*.html'],
theme: {
extend: {},
by
plugins: [],
}

Lastly, build the styles by running this command:

npm run dev:watch

Now, let’s start with the first layout. The image below shows what we

want to build.

https://codepen.io/SitePoint/pen/LYeeqdE

How are Medicare benefits
changing for 20217

Top 7 Emerging Technologies

[2 Dec 23, 2020

Cellulose, the most abundant organic polymer on earth, is & major companent of plant cell Product Phntngraphy

wealls; lignin fill = the spaces in those walls, providing strength and rigidity. To make plastics Ideas

from those substances, manufacturers must firat break them into their building blocks, or

monomers.

To build the first layout, in the root directory, create a new grid-

s.html file with the following content:

<!-- /grids.html -->
<!doctype html>
<html>
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-i
<link rel="stylesheet" type="text/css" href='
<style>
.box {
color: white;

background-color: green;

min-height: 150px;
padding-top: 10%;
padding-left: 15%;
font-size: 1.5rem;
font-weight: 700;
}
</style>
</head>
<body>

<div class="mx-auto p-8 w-full lg:w-1/2">

<hl class="text-3x1 font-bold">Grid Layout
<h2 class="my-6 text-2xl1 underline underlii

<div class="grid grid-cols-3 grid-rows-2 gz
<div class="box row-span-2 col-span-2">1-«
<div class="box">2</div>
<div class="box">3</div>

</div>
<!-- Add the next grid examples here -->
</div>

</body>
</html>

Example #1

Demo Styles

The box class is used here and later just for demonstration purpos-

es, so we can see the visual shape of our grids.

As you can see, we've effectively replicated the design in the earlier

screenshot.

To achieve this, we’ve firstly created a grid container and specified
that our grid will have three columns and two rows. We've also added
different gap spaces between columns and rows. Then we’ve made

the first element span two columns and two rows.

Let’s move on to the next layout. The final result is shown below.

2 Dec 18, 2020

"' Graphic Design Trends 2021 Video Overview

19 Best Art Websites For Artists and Online Art Galleries

2020

Are you an artist who wishes to build an online presence? Do you think that

y build up your reputation? If

you da, then this excellent list of art web ruly a demand!

Read More

the Global Apparel Industry

As you can see, this is quite similar to the first example, but under the

hood we’ll do some different things to achieve it. Here’s the code to

add after the first example:

<!-- /grids.html -->

<h2 class="my-6 text-2xl underline underline-off:

<div class="grid grid-cols-2 grid-rows-4 gap-x-4

<div
<div
<div
<div
<div

</div>

class="box row-span-4">1</div>
class="box">2</div>
class="box">3</div>
class="box">4</div>

class="box">5</div>

Example #2

This time, we’ve used two columns and four rows, and the only thing
we’ve needed to do is span the first element over four rows. Easy,
huh?

The next layout is quite a bit different. This is what it looks like fully

finished.

Beginning Two Don't A Very Likeness Every Them Herb Air Deep Had Stars Man

B Aug 02 201

"& e

Land Deep Male Two Living Playful Person Soccer Kick Colorful women digital art Top view of graphic designer
Give Fruit Fun face exhibition

21 Aug 02, 2021

2 Aug 02, 2021 B Aug 02, 2021 3 Aug 02, 201

Here’s the code to add after the second example:

<!-- /grids.html -->

<h2 class="my-6 text-2xl underline underline-off:

<div class="grid grid-cols-4 grid-rows-2 gap-x-2
<div class="box col-span-2">1</div>
<div class="box col-span-2">2</div>
<div class="box">3</div>
<div class="box">4</div>
<div class="box">5</div>
<div class="box">6</div>

</div>

Example #3

In this example, we’ve created four columns and two rows for the

grid. Then we’ve just spanned the first two elements over two col-

umns. Once again, it was quite simple to achieve this result.

OK. Let’s try something more complex now.

Every Them Herb Air Deep Had 5tars Man Brown tortoise and blue bird

Playful Person Soccer Top view of graphic designer
Kick Fun

= Aug 02, 201

Abduzeedo is a collective of individual

writers sharing articles about

architecture, design, photography and
Colorful women digital UX. Founded by Brazilian designer Fabio Saint Laurent reveals
art face exhibition latest collection

Read More a - De

Here’s the code to add after the third example:

<!-- /grids.html -->

<h2 class="my-6 text-2xl underline underline-off:

<div class="grid grid-cols-3 grid-rows-4 gap-x-4
<div class="box row-span-2">1</div>
<div class="box row-span-4">2</div>
<div class="box row-span-2">3</div>
<div class="box">4</div>
<div class="box">5</div>
<div class="box">6</div>
<div class="box">7</div>

</div>

<hr class="my-6">

<div class="grid grid-cols-3 grid-rows-4 gap-x-4
<div class="box row-span-2">1</div>
<div class="box row-start-3">2</div>
<div class="box row-start-4">3</div>
<div class="box row-span-4">4</div>
<div class="box row-span-2">5</div>

<div class="box">6</div>

<div class="box">7</div>

</div>

ple #4

Exam

In this example, I've included two variations to show you that there’s

more than one way to create the same layout.

The first version is the easier to achieve. We’ve just spanned the first
three elements across the desired number of rows. This also creates
a sort of row ordering, as you can see from the box numbers. But

what if we want the elements to display column by column?

The second version demonstrates how this can be achieved. The first
element is easy. We've just spanned it over two rows. For the second,
we’ve used a row-start-{n} classto putitin the right place —be-
low the first element. We’ve used the same technique to put the third
element below the second one. The forth and fifth elements are also
easy. We've spanned them four and two rows respectively, to put
them properly in the grid. The last two elements don’t need any class-

es because they flow naturally into the right places.

As we can see, to create a fairly complex layout is quite easy with
these grid utilities. Let’s create an even more complex final example.

Here’s the code to add after the fourth example:

<!-- /grids.html -->

<h2 class="my-6 text-2xl underline underline-off:

<div class="grid grid-cols-3 grid-rows-3 gap-2">

<div
<div
<div

<div

<div

</div>

Example #5

class="box
class="box
class="box

class="box

class="box

col-start-1 col-end-3">1</div>
row-start-2 row-end-4">2</div>
row-start-2">3</div>

row-start-1 row-end-3">4</div>

col-start-2 col-end-4">5</div>

This creates a very interesting layout. The image below is labeled so

we can more easily understand how the code works.

For this example, we've used a grid of three columns and three rows.

We’ve mixed the start and end classes.

We’'ve told the first element that it should start at the first vertical grid
line and end at the third one. We’ve moved the second element below
the first one by making it start at the second horizontal grid line and

end at the fourth.

For the third element, we’ve only needed to define its start line. We've

forced the fourth element to start at the first horizontal line and end at

the third. And finally, we’ve spanned the fifth element over two col-
umns by defining the second vertical grid line as a starting point and

the fourth one as the end.

And that’s it. It’s easy, but it needs careful planning and lots of

experimenting.

By the way, we can use a different utility combination to achieve the
exact same result. For example, here’s a variation that uses mostly

span utilities instead of start and end:

<div class="grid grid-cols-3 grid-rows-3 gap-2">
<div class="box col-span-2">1</div>
<div class="box row-start-2 row-span-2">2</diwv:

<div class="box row-start-2">3</div>

<div class="box row-span-2">4</div>
<div class="box col-span-2">5</div>

</div>

The end result is the same.

As we can see, CSS grids allow us to easily build complex layouts
that are almost impossible to build with CSS 2.x without using some

sort of dirty hacks and/or complicated workarounds.

Creating a Complete Article Design

In this section, we’ll explore how to create a complete article/post de-
sign, employing Tailwind utility classes for layout, typography, colors,

images, and a bit of interactivity. The final result is shown below.

OREM IPSUM DOLOR SIT AMET, CONSECTETUR

adipiscing elit. Maecenas wvarius vitae ipsum et commaodaoa. ln

scelerisque est magna, ut fringilla purus congue eu. Mauris id Mmetus
ac metus porta aliguet. Aliguam quam ipsum, conseqguat malesuada lectus
nec, blandit condimenturnm enim. Donec wvarius mattis facilisis. Maorbki rhoncus
erat vel erat pellentesque suscipit. Nunc dictum euismod libero sed tristigue.

Lorem ipswum dolor sit armet. consectefur adipiscing =lit. Maecenas varius vitae
s et cormmodo. fn scelerisgue est rmagna. Ut fringilla purtis congue e
MQUIris id rmetuis Gc rmetids porta aliguet.

Adiguam id nulla dignissim felis bibendum aliguam. Cras vulputate blandit
semper. Mam guam dolor, tincidunt non odio ac, condimentum molestie
Justo. In ormare maximus tortor, aliguam conseguat arcu sagittis id. Wivamus
condimentum wvarius ante, pulvinar laoreet tortor dignissim ac. Curabitur
egestas in arcu sit amet feugiat. Aenean interdum, purus eget sodales

tincidunt. maana sem lobortis nunc. at porttitor arcu velit sed auaue. Praesent
porttitor nisl enim, eget sollicitudin ipsum porta a. Integer tincidunt, lorem sit

amet gravida hendrerit, arcu felis conwvallis metus, vitae vehicula diam dolor
wvulputate sapien. MNulla finibus lectus nec porta faucibus. Praesent in massa
sollicitudin, dignissim gquam at, volutpat mauris. Morkbi in turpis sapien. Morkbi
ante est, gravida wvitae ipsum quis, pretium scelerisque massa.

Westibulum congue felis at
posuere commaodo. Praesent sapien
magna, aliguet ut efficitur et, luctus

at neque. Donec vitae nunc convallis,
maxinmus ex sit amet, consequat tellus.
HAenean eleifend cursus urna, sed
fermentum felis cursus eget. Sed accumsan
hendrerit turpis at ullamcorper. Integer quamnm
sapien, rnutrum ac pharetra eget, maximus id lacus. Wivamus sollicitudin

maolestie hendrerit. Proin sem guam, tempus in felis et, elementum dignissim
felis. Integer odio tellus, semper at commodo at, euismod id magna. Aenean
nisl metus, Mmaximus a eros sit amet, facilisis malesuada lorem. Mauris est
tortor, accumsan ac aliguet et, sagittis vitae wvelit. Class aptent taciti sociosgu
ad htora torguent per conukbia nostra, per INnceptos himenaeos.

Aenean scelerisgue urna id dictum tempor. Pellentesgue jpsum orci,
conwvallis eget purus nec, placerat laoreet nulla. MNullam wvitae lectus porta,
lacinia neque at, rutrum felis. Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Morkbki luctus, magna eget gravida lobortis, elit elit rutrum urna,
at volutpat ex orci accumsan urna. Sed et ligula magna. Ut dignissim semper
ligula, at lacinia mi dignissim non. In eleifend ultricies wiverra. Nunc euismod
ac lacus ac molestie. MNam sem lectus, malesuada a ipsum vitae, viverra
condimentum elit. Ut at vulputate tortor, nec suscipit leo. In non dolor nec
Purus semper tempus:

= First item
= Second item

= Third tem

Pellentesque tincidunt non orci id congue. Donec blandit pulvinar leo et
tincidunt. Sed wvenenatis venenatis justo, ut congue neque lobortis sit amet.
MNam tempus vehicula nisi. vitae commodo magna condimentum id. In guis
wvehicula massa. Fusce id congue lorem. Duis imperdiet placerat metus, vitae
hendrerit lorem sollicitudin sit amet. Integer varius justo non wvelit semper
elementum. Donec scelerisque magna nibh, at efficitur elit hendrerit id.
Aenean sagittis lectus odio, eu varius lectus wvestibulum eget. Sed grawvida
mattis auctor.

Dawid Smith

Lorem ipsum dolor sit amet, consectetur adipiscing =lit. Masecenas
warius wvitae ipsum et commodo.
e

Creating the Base Layout

OK. Let’s do some coding. In the root directory, create a new arti-

cle.html file with the following content:

<!-- /article.html -->
<!doctype html>
<html>
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-z
<link rel="stylesheet" type="text/css" href='
</head>
<body>
<div class="m-6 md:mx-auto p-8 space-y-6 md:\
<p>Lorem ipsum dolor sit amet, consectetur
<guote class="px-4 py-2 block border-1-4">]
<p>Aliquam id nulla dignissim felis bibend
<img class="mr-3 w-1/2 float-left rounded"

<p>Vestibulum congue felis at posuere comm

<p>Aenean scelerisque urna id dictum tempo:
<ul class="ml-6 pl-6 space-y-3">

First item</1li>

Second item</1li>

<1li>Third item</1i>

ZANTDATT And+A~AIirA +ann~a Aiand "nN AN Av~a a A ~NAN A

SPOLELICHLEDYUS LLUCLIUULL LUl ULUL LU Culyl
<hr>
<div class="flex pt-6">
<img class="mr-6 mb-6 w-24 h-24 rounded !
<div>
<p class="-mt-3">David Smith</p>
<p class="mt-2">Lorem ipsum dolor sit :
</div>
</div>
</div>
</body>
</html>

Here’s a live version of that code on CodePen.

ABBREVIATED TEXT

For brevity’s sake, from now on | won’t use the full para-
graph text. But you need to use the full text to display

the example correctly.

We’ll start by creating an article container:

<div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/.

</div>

https://codepen.io/SitePoint/pen/abEEMzO

We've added some visual space (space-y-6) between all direct
children elements. Then we’ve added two width modifiers (md : w-
1/2 x1:w-1/3) that will produce the following effect: the article will
start at full width at small screens (this is by default) up to the medium
screens, where the width will change to one and a half. This setting
will prevail up to the extra large screens and above, where the width
will change to one third. Also starting from medium screens and

above, the article will be centered, thanks to the md :mx-auto

property.

Next, we’ll add the article content:

<p>Lorem ipsum dolor..</p>
<guote class="px-4 py-2 block border-1-4">Lorem :
<p>Aliquam id nulla..</p>
<img class="mr-3 w-1/2 float-left rounded" src="lI
<p>Vestibulum congue felis..</p>
<p>Aenean scelerisque urna.. In non dolor nec pu:
<ul class="ml-6 pl-6 space-y-3">

First item</1li>

Second item</1li>

<1li>Third item</1li>

<p>Pellentesque tincidunt non..</p>

Here, we've added the following elements:

« a paragraph

« a quote with basic styling and border

« another paragraph

« an rounded and floated left image with half width
« another two paragraphs

o alist

« and the last paragraph

Finally, we’ll add the author section:

<hr>
<div class="flex pt-6">
<img class="mr-6 mb-6 w-24 h-24 rounded border-
<div>
<p class="-mt-3">David Smith</p>
<p class="mt-2">Lorem ipsum dolor sit amet, ¢
</div>

</div>

Here, we’ve added an hr element to divide the author section from
the article content. We've then wrapped the author info in a flex con-

tainer. We've styled the image with a polaroid-like effect by using bor-

der classes. To achieve this, we’ve used an arbitrary value of 16px

for the bottom border. To style the link, we’ve used the underline
underline-offset-1 classes, which add a line with a small

offset.

We now have a base layout that we can build upon. Let’s continue

developing the article design by adding some typographical features.

Typography

In this section, we’ll explore typographical features such as drop

caps. Here’s what the code should look like after the additions:

<!-- /article.html -->
<div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/.
<p class="first-letter:-mt-2 first-letter:mr-3
<quote class="px-4 py-2 block border-1-4 font-:
<p class="indent-6">Aliquam id nulla..</p>
<img class="mr-3 w-1/2 float-left rounded" src:
<p class="indent-6">Vestibulum congue felis..<,
<p class="indent-6">Aenean scelerisque urna..
<ul class="ml-6 pl-6 space-y-3 list-disc">
First item</1li>
Second item</1li>
Third item</1li>

https://tailwindcss.com/docs/adding-custom-styles#arbitrary-properties

<p class="indent-6">Pellentesque tincidunt non
<hr>
<div class="flex pt-6">
<img class="mr-6 mb-6 w-24 h-24 rounded bord
<div>
<p class="-mt-3 font-semibold">David Smith-
<p class="mt-2 text-sm">Lorem ipsum dolor :
</div>
</div>

</div>

This CodePen demo shows our typography settings in action.

To create a drop cap and style the first line of the paragraph, we've
usedthe first-letter and first-line pseudo elements
(first-letter:-mt-2 first-letter:mr-3 first-let-
ter:float-left first-letter:text-7xl1 first-
letter:font-bold first-line:uppercase first-

line:tracking-widest).

https://codepen.io/SitePoint/pen/ZEvvPgO

OREM IPSUM DOLOR SIT AMET, CONSECTETUR ADIPISCING ELIT.

Maecenas varius vitae ipsum et commodo. In scelerisque est magna, ut fringilla

purus congue eu. Mauris id metus ac metus porta aliquet. Aliquam quam
Ipsum, consequat malesuada lectus nec, blandit condimentum enim. Donec varius
mattis facilisis. Morbi rhoncus erat vel erat pellentesque suscipit. Nunc dictum
euismod libero sed tristique.

We’ve also added some indent (indent-6) to all paragraphs ex-
cept the first one for easier reading.

We’ve made the text for the quote thin and italic (font-1ight

italic).

We’ve added a disc symbol (1ist-disc) for the list item bullets.

We’ve made the font for the author’s name semibold (font-semi-
bold) and the text for author’s info small (text-sm). Finally, we've
decorated the link by changing its thickness and style (decora-

tion-1 decoration-wavy).

The article is starting to look a lot nicer, but it’s still is missing a bit of

liveliness. Let’s fix that by adding some colors and gradients.

Colors and Gradients

We know already the base use of colors, but now we’ll explore how to

use gradients too. Here’s the code with added colors:

<!-- /article.html -->
<div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/:
<p class="first-letter:-mt-2 first-letter:mr-3
<guote class="px-4 py-2 block border-1-4 borde:
<p class="indent-6">Aliquam id nulla..</p>
<img class="mr-3 w-1/2 float-left rounded" src:
<p class="indent-6">Vestibulum congue felis..<,
<p class="indent-6">Aenean scelerisque urna..
<ul class="ml-6 pl-6 space-y-3 list-disc marke:
First item</1li>
Second item</1i>
<1i>Third item</1i>

<p class="indent-6">Pellentesque tincidunt non
<hr class="text-cyan-600">
<div class="flex pt-6">
<img class="mr-6 mb-6 w-24 h-24 rounded borde
<div>
<p class="-mt-3 font-semibold text-stone-9
<p class="mt-2 text-sm">Lorem ipsum dolor :

</div>

</div>

</div>

You can see these color changes on this CodePen demo.

Firstly, we’ve added colors for the drop cap (first-letter:text-
cyan-400) and the first line of the paragraph (first-
line:text-cyan-600). We've also added color for the quote ele-
ment’s border (border-cyan-400) and a gradient for the body

(bg-gradient-to-r from-teal-100 to-cyan-300).

The pattern for making gradients is from-{color} via-{color}

to-{color} . Let’s break it down:

« from-{color} : setthe starting color of a gradient
« via-{color} : add a middle color (or colors) to a gradient

« to-{color} : setthe ending color of a gradient

The bg-gradient-to-r class defines the direction of the gradient

—from left to right.

https://codepen.io/SitePoint/pen/jOYYROE

OREM IPSUM DOLOR SIT AMET, CONSECTETUR

adipiscing elit. Maecenas varius vitae ipsum et commodo.

In scelerisque est magna, ut fringilla purus congue eu.
Mauris id metus ac metus porta aliquet. Aliquam quam ipsum,
consequat malesuada lectus nec, blandit condimentum enim.
Donec varius mattis facilisis. Morbi rhoncus erat vel erat
pellentesque suscipit. Nunc dictum euismod libero sed tristique.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas
varius vitae ipsum et commodo. In scelerisque est magna, ut
fringilla purus congue eu. Mauris id metus ac metus porta aliquet.

Next, we’ve added color to the list items (text-gray-600) and
their bullets by using the marker pseudo element (marker:text-
cyan-400). We've also colored the hr element’s line (text-

cyan-600) to fit the article theme.

We’ve made the author image border red (border-red-600) and
author name next to it dark brown (text-stone-900). And the last
color change is to the link. We’ve colored the underline and changed
the text color on hover (decoration-cyan-600 hover:text-

cyan-600).

e David Smith

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Maecenas varius vitae ipsum et commodo.

And that’s it. Now our article design looks much more vivid and alive.
To extend this further, let’s now enhance the appearance of the im-

ages with some effects.
Adding Image Effects

In this section, we’ll explore how you can make your images more vi-
sually appealing. We’ll add sepia and drop-shadow effects by using
the corresponding Tailwind filters. Besides that, we’ll use arbitrary val-
ues to clip the image and make text flow around it. Here’s the code

with image effects added:

<!-- /Jarticle.html -->

<div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/.

<img class="mr-3 w-1/2 float-left rounded hove:

<p class="indent-6">Vestibulum congue felis..<,

<div class="flex pt-6">

https://tailwindcss.com/docs/sepia
https://tailwindcss.com/docs/drop-shadow

<img class="mr-6 mb-6 w-24 h-24 rounded borde
<div>
<p class="-mt-3 font-semibold text-stone-9
<p class="mt-2 text-sm">Lorem ipsum dolor :
</div>
</div>

</div>

You can see the code live in this CodePen demo.

For the article image, we’ve firstly added two filters that will take effect
on hover (hover:sepia hover:drop-shadow-1g). Then we’ve
used the power of arbitrary values to clip the image ([clip-
path:circle(80% at 30% 20%)]) and force the text to flow

around it ([shape-outside:circle(80% at 30% 20%)]).

https://codepen.io/SitePoint/pen/RwxxOaq

-1 Vestibulum congue fels at

posuere commodo. Praesent
sapien magna, aliquet ut
efficitur et, luctus at neque.

Donec vitae nunc convallss,
maximus ex sit amet, consequat
tellus. Aenean eleifend cursus urna, sed
fermentum felis cursus eget. Sed accumsan hendrerit turpis at
ullamcorper. Integer quam sapien, rutrum ac pharetra eget,
maximus id lacus. Vivamus sollicitudin molestie hendrerit. Proin
sem quam, tempus in felis et, elementum dignissim felis. Integer
odio tellus, semper at commodo at, euismod id magna. Aenean
nis| metus, maximus a eros sit amet, facilisis malesuada lorem.
Mauris est tortor, accumsan ac aliquet et, sagittis vitae velit. Class
aptent taciti sociosqu ad litora torquent per conubia nostra, per
inceptos himenaeos.

For the author image, we’ve used a regular shadow (shadow-md)

with a dark red color (shadow-red-900) for a more natural look.

Now the article looks even more attractive, but let’s take it to the limit

by adding some transforms and transitions.

Adding Effects

In this final section, we’ll see how to add some bells and whistles to

our article design. Here’s the code with the effects added:

<!-- /article.html -->

<div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/.

<div class="flex pt-6">

<img class="mr-6 mb-6 w-24 h-24 rounded borde

<div>
<p class="-mt-3 font-semibold text-stone-9
<p class="mt-2 text-sm">Lorem ipsum dolor :
</div>
</div>

</div>

You can see these effects live in this CodePen demo.

https://codepen.io/SitePoint/pen/wvppZzw

Here are the classes we’ve added to the author image (origin-
bottom-left -rotate-6 hover:rotate-0 hover:scale-
110 transition duration-500). We've set the transform origin
to be in the bottom left of the image. We’ve then rotated the image
slightly. When the image is hovered over, the image will be rotated to
its normal position and scaled up slightly. Finally, we’ve specified that
the transform property should transition when it’s changed (transi-
tion-transform), and we’ve also set the transition duration (du-

ration-500).

David Smith

Lorem ipsum dolor sit amet, consectetur adipiscing el
Maecenas varius vitae ipsum et commodo

WAAAAAASY

Great! Now our article design is complete and has a compelling look

and feel.

Conclusion

So far, we’ve learned how to build complex layout designs with Tail-
wind’s grid utilities, and how we can build a complete article design by
combining many of Tailwind’s utilities for layout, typography, colors,

imagery, and interactivity.

To further explore and build on your Tailwind skills, | suggest you to
try to make different variants of the designs we’ve explored here and

experiment with your own designs too.

In the next chapter, we’ll explore various ways to customize Tailwind
by overriding or extending the base styles and default theme, and

ways to create reusable configuration presets.

Chapter 4: Customizing Tailwind and
Optimizing Your Workflow

So far we’ve explored various ways to use the existing Tailwind utili-
ties. In this fourth chapter, we’ll dive in even deeper and explore how
we can customize Tailwind either by adding new utilities or by tweak-

ing existing ones.
Customizing Tailwind

Tailwind is already like a CSS Swiss Army knife, but nevertheless
there will be times when we’ll want to add extra features to it. In this
section, we’ll explore the most common ways Tailwind can be cus-

tomized to suits our needs.

PROJECT CODE

You can find the finished project for this chapter in the

code repo for this book.

Firstly, we need to create a new Tailwind project (which we covered in

the second chapter).

Next, create an index.html file in the root directory and add the

following content to it:

https://github.com/spbooks/tailwind/tree/master/part-4

<!-- /index.html -->

<!doctype html>

<html>

<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-wic
<link href="tailwind.css" rel="stylesheet">
<link href="https://cdnjs.cloudflare.com/ajax/.
<link href="https://fonts.googleapis.com/css2?:

</head>

<body>

</body>
</html>

We have a bunch of links here:

« The first link includes the compiled Tailwind styles.
« The second link includes the Font Awesome icons library. We'll
use its icons in the examples later on.

« The third link includes the Carter One font from the Google Fonts

collection. We’'ll incorporate this font into the examples later on.

The image below shows what this font looks like.

https://fontawesome.com/icons
https://fonts.google.com/specimen/Carter+One

Carter One

Vernon Adams

Almost before
we knew it, we

had left the
ground.

To demonstrate Tailwind’s customization features, we’ll reuse the re-

sponsive header that we created in the second chapter. We’ll copy

the header section from CodePen and add it to the index.html

file:

<!-- /index.html -->
<!doctype html>
<html>

https://codepen.io/SitePoint/pen/xxppVdv?editors=1010

<body>
<header class="flex items-center justify-betwec
<div class="flex-shrink-0 ml-6">

<i class="fas fa-drafting-compass fa-2x 1
<span class="ml-1 text-3xl text-blue-200

</div>

<button id="nav-toggle" class="md:hidden p-2
<i class="fas fa-bars fa-2x"></i>
</button>

<div class="pl-6 w-full md:w-auto hidden md:!
<ul class="md:flex">
<li class="mr-6 p-1 md:border-b-2 border-
<a class="text-blue-200 cursor-default'
</1li>
<li class="mr-6 p-1">
<a class="text-white hover:text-blue-3(
</1li>
<li class="mr-6 p-1">
<a class="text-white hover:text-blue-3I
</1li>
<li class="mr-6 p-1">
<a class="text-white hover:text-blue-3I
</1li>

<li class="mr-6 p-1">

<a class="text-white hover:text-blue-3l

<li class="mr-6 p-1">

<a class="text-white hover:text-blue-3|(

</1li>

</div>

</header>

<script>
document.getElementById('nav-toggle').onclick -

document.getElementById("nav-content").class]

}
</script>
</body>
</html>

We need to remember to add the script part too, as otherwise the
menu won’t work.

Now we’re ready to dive into the actual customization.
Customizing the Default Tailwind Theme

As we saw in the second chapter, to create a Tailwind configuration

file we run this command:

https://tailwindcss.com/docs/theme

npx tailwindcss init

Doing so creates the following file:

// tailwind.config.js
module.exports = {

content: [],

theme: {
extend: {},

by

plugins: [],

We've already explored the content key. Now we’ll focus on the

theme key. The plugins key will be explored in the next chapter.

The default Tailwind theme can be either overridden or extended, or

both. This gives us a great amount of flexibility.

The theme key allows us to customize four base things: screens,

colors, spacing, and core plugins such as borderRadius,

fontFamily , and so on. We’'ll explore each one next, starting with

the screens.

Customizing Tailwind Theme’s Responsive
Breakpoint Modifiers

The default responsive utility variants can be overridden by adding

our own under the screens key like this:

module.exports = {
theme: {
screens: {
'sm': '576px',
'md': '960px',
'lg': '1440px',

In this case, the default variants are discarded and won’t be available

along with the newly added ones.

If we want to keep the existing breakpoints and to extend them with

one or more variants, we have two options.

First, if we want to add larger variants, we just add them under the

extend key:

https://tailwindcss.com/docs/screens

module.exports = {
theme: {
extend: {
screens: {
'3x1': '1600px',

Here, the default variants are kept and the new one is added to them.
This approach can be used also to override a single breakpoint. In
such a case, we use one of the default names and replace its value

with a new one. For example:

module.exports = {
theme: {
extend: {
screens: {
'md': '960px',

Here, the md variant’s value is replaced, while the rest of the variants

keep their default values.

Second, if we want to add smaller breakpoints, things get a bit more
complicated. In such a case, we first need to add our smaller break-

points, and then we must provide the default utilities after them like

SO:

const defaultTheme = require('tailwindcss/defauli

module.exports = {
theme: {
screens: {
'xs': '475px’,
...defaultTheme.screens,

Here, we first import the default theme and use its screens key to
include the default responsive utilities after the xs variant. You may
notice that we don’t use the extend key here. So in fact, we “ex-

tend” the breakpoints by redefining them. This is because, if we use

the extend key, smaller breakpoints will be added to the end of the

list and the order from smallest to largest will be incorrect. In such a

case, the breakpoints won’t work as expected.

Customizing Tailwind’s Theme Colors

Tailwind offers a precisely selected color palette that will be enough in
many scenarios. However, in some cases, we might want to add
some specific colors or shades to it—such as our brand colors. In this

case, we can extend the default colors like so:

module.exports = {
theme: {
extend: {
colors: {

maroon: {
50: '#ed6464',
100: '#d05050',
200: '#bc3c3c',
300: '#a82828',
400: '#941414°',
500: '#800000°',
600: '#6c0000"',
700: '#580000',
800: '#440000°',
900: '#300000'

b

indigo: {

https://tailwindcss.com/docs/customizing-colors

950: '#ldlaé6d'

Here, we’ve added our new maroon color shades to the default col-
ors, and also extended the default indigo color with one more

darker shade.

The image below shows what the maroon color palette looks like.

< Tailwind colors

+ Color 4+ Default color

maroon + Lighter shade + Darker shade % Delete Color
50 x 100 * 200 x
Fodpdatd i #d05050 #he3cic
300 ® 400 ® 500 ®
#aB2B28 #341474 #800000
600 » 700 ® 800 ®
#6c0000 #380000 2440000

To generate the palette, I've used the Tailwind colors online tool,

which automatically generates the required code.

If we want to completely replace the default Tailwind color palette with

our own custom colors, we can do it this way:

module.exports = {
theme: {
colors: {

transparent: 'transparent',

https://tailwind-colors.meidev.co/

current: 'currentColor',
'white': '#ffffff',
'‘black': '#000000',
'tahiti': {
100: '#cffafe',
200: '#a5f3fc’,
300: '#67e8f9"',
400: '#22d3ee’,
500: '#06b6d4',
600: '#0891b2',
700: '#0e7490°',
800: '#155e75',
900: '#164e63',

Here, we’ve added simple white and black colors and tahiti color
shades. We've also included values like transparent and cur-

rentColor in case we want to use them in our project.

If we want to use some of Tailwind’s default colors, we can do so by

importing them and using the ones we need like so:

const colors = require('tailwindcss/colors')

module.exports = {
theme: {
colors: {
transparent: 'transparent',
current: 'currentColor',
black: colors.black,
white: colors.white,
gray: colors.gray,
emerald: colors.emerald,
indigo: colors.indigo,
yellow: colors.yellow,
by
by

Now you can use your colors as usual—for example, text-yel-

low-500, bg-indigo-300, and so on.

NAMING COLORS

We can use different names for our colors if we wish.
For example, green: colors.emerald. Inthis sce-
nario, we would use it like this: text-green-400,

bg-green-700, and so on.

Customizing Tailwind’s Spacing_Utilities

https://tailwindcss.com/docs/customizing-spacing

Tailwind has a rich set of spacing utilities—which are detailed in the

documentation on Tailwind’s default spacing_scale.

However, sometimes we might need a bit more precision. In such a

situation, we can add the needed utilities again in two ways.

We can just discard the Tailwind utilities and replace them with our

own:
module.exports = {
theme: {
spacing: {
sm: '8px',
md: '12px',
lg: 'lépx',
x1l: '24px',
}
}
}

Here, we’ve overridden Tailwind’s default spacing utilities and gener-

ated classes like w-1g and h-md instead.

Alternatively, we can add the “missing” utilities while keeping all the

defaults as well:

https://tailwindcss.com/docs/customizing-spacing#default-spacing-scale

module.exports = {
theme: {
extend: {
spacing: {
"13': '3.25rem’',
"15': '3.75rem’',
'128': '32rem’',
'144': '36rem’',

We can use these new utilities in the same way as default ones. For
example, to apply our custom utilities for width and height, we write
them like this: w-15 h-13.

Customizing Tailwind’s Core Plugins

The last thing we can customize in the theme key is core plugins.

A core plugin is a utility with a series of different variations.

Here’s the default definition for the blur plugin/utility:

https://tailwindcss.com/docs/theme#core-plugins

none: '0',
sm: '4px',
DEFAULT: '8px',
md: '12px’,
lg: 'lépx',
xl: '24px',
'2x1': '40px',
'3x1': '64px',

The blur plugin applies a blur filter to an element. Each variation

applies a different amount of blurring.

Let’'s see now how we can customize it. As with all utilities, we can ei-

ther extend a plugin or override it.

In my view, the default blurring values are way too high. | prefer to
have gentler blurring variations with a smooth transition between

them. So here’s an example of overriding a plugin’s values:

module.exports = {
theme: {
blur: {
‘none': 'blur(0)',

'sm': 'blur(2px)"',
DEFAULT: 'blur(4px)’',
lmdl : lblur(6pX) 1 ,

https://developer.mozilla.org/en-US/docs/Web/CSS/filter

'lg': 'blur(8px)',
'x1': 'blur(1l0px)'’

We’ve added the plugin name as a key and provided our custom vari-
ations. The code above will produce the following classes: blur-

none, blur-sm, blur, blur-md, and blur-1g.

DEFAULT KEY

It's a common convention to use a key of DEFAULT for
the class without a suffix. This is supported by all core

plugins.

I’'ve removed the 2x1 and 3x1 variations because they’re too ex-

aggerated for me. The image below shows the difference.

Blur plugin with default values

....u a3

Blur plugin with custom values

The last two variations in the default version are barely visible. In my

opinion, the customized version looks much better.

You can find instructions for customization of each core plugin at the

end of each plugin’s documentation page —like this one for the blur

plugin.

It’s also worth reading up on the default theme configuration for all

core plugins.
A Practical Customization Example

In this section, we’ll apply all we'’ve learned so far. We’'ll replace the

default responsive breakpoints with our own, we’ll extend the theme

https://tailwindcss.com/docs/blur#using-custom-values
https://tailwindcss.com/docs/theme#configuration-reference

with additional colors and spacing utilities, and we’ll add the font we

included in our HTML file earlier to the default font stack.

Openthe tailwind.config.js file and replace its content with

the following:

// /tailwind.config.js

const colors = require('tailwindcss/colors')

module.exports = {
content: ['./index.html'],
theme: {
screens: {
'phone': '640px',
'tablet': '768px',
"laptop': '1024px’,
'desktop': '1280px’',
by
extend: {
colors: {
primary: colors.yellow,
secondary: colors.blue,
neutral: colors.gray,
by
spacing: {
'4.5': '1.125rem’,
'5.5': '1.375rem’',
'6.5': 'l1.625rem’,

'7.5': '1.875rem’',
'8.5': '2.125rem’',
'9.5': '2.375rem’,

b
fontFamily: {

'display': ['"Carter One"'],

by
plugins: [],

Here, we've firstly added index.html tothe content array.

Next, we’'ve added four breakpoints with custom names that com-
pletely replace the default variants. The breakpoints are now more

verbose but also more descriptive and easy to grasp.

Next, under the extend key, we've created custom named colors
and used the Tailwind colors to define them. The reason here is simi-
lar. We want more descriptive names so they can be applied more in-

tuitively —for example, when we create buttons.

Next, we’ve extended the spacing utilities with custom ones that give
us a bit more precision. Sometimes our design needs to be pixel-per-

fect, so we might need a more precise scale.

Finally, we’ve extended the fontFamily core plugin to have a
display font set. We've used only the Carter One font here, but we
can add as many as we like. Using a custom font instead of the de-
fault fonts can make our design stand out. After all, we want our de-

signs to be unique, right?

Now, to apply the changes, we should rebuild the styles manually —if
we didn’t run the build script with the watch flag. To do so, run npm

run dev:watch.

We have the required styles, so now let’s use them. Replace the

header section in the index.html file with the following:

<!-- /index.html -->
<!doctype html>
<html>

<body>
<header class="flex items-center justify-betwes
<div class="flex-shrink-0 ml-6">

<i class="fas fa-drafting-compass fa-2x i
<span class="ml-1 text-3xl text-secondar:

</div>

<button id="nav-toggle" class="tablet:hidden
<i class="fas fa-bars fa-2x"></i>
</button>

<div class="pl-6 w-full tablet:w-auto hidden
<ul class="tablet:flex">
<li class="mr-5.5 p-1 tablet:border-b-2 1}
<a class="text-secondary-200 cursor-de:
</1li>
<li class="mr-5.5 p-1">
<a class="text-white hover:text-second:
</1li>
<li class="mr-5.5 p-1">
<a class="text-white hover:text-second:
</1li>
<li class="mr-5.5 p-1">
<a class="text-white hover:text-second:
</1li>
<li class="mr-5.5 p-1">
<a class="text-white hover:text-second:
</1li>
<li class="mr-5.5 p-1">
<a class="text-white hover:text-second:
</1li>

</div>

</header>

</body>
</html>

What we’ve just done here is replace the following classes:

« all md: occurrences with tablet:
« yellow, blue, and gray classes with primary, sec-
ondary, and neutral respectively

e mr-6 with mr-5.5
We've also added a font-display class in the header.

The image below shows the final result after the changes.

Home Services Projects Team About Contocts
A WebCraft

Of course, visually the most notable difference is the new font. The
other changes (apart from the margin tweaks) are just class-name re-
placements that affect the visual appearance, although the code is

now a bit more descriptive.

Adding Base Classes

As we already know, Tailwind automatically adds Preflight base styles

to each project by default. These settings do things like remove the

https://tailwindcss.com/docs/adding-base-styles
https://tailwindcss.com/docs/preflight

default browser styles for the headings, paragraphs, lists, and so on,

which may be unwanted.

So if we don’t want Preflight styles, we can disable them by setting

the preflight value to false:

module.exports = {
corePlugins: {

preflight: false,

Usually this isn’t necessary, but it’s still worth knowing it’s an option.

In either case, with Preflight classes or without them, we can add our
own base classes that can override or extend Preflight, depending on

whether a class already exists or not.

In the next example, we’ll override the classes for <h1>, <h2>, and

<p> elements.

Open styles.css and add the following:

/* /styles.css */
@tailwind base;

@tailwind components;

@tailwind utilities;

@layer base {
hl {
@apply text-2x1;
}
h2 {
@apply text-x1;
}
hl, h2, p {
@apply my-6 mx-4;

Here, we’ve changed the size for some headings and added margins

for the same headings and all paragraphs.

REBUILDING STYLES
You should rebuild the styles to apply the changes. To

do so, runthe npm run dev:watch command.

To see this in action, open index.html and add this content below

the header:

<!-- /index.html -->
<!doctype html>
<html>

<body>

<hl>Main Heading Is Here</hl>

<p>Lorem ipsum dolor sit amet, consectetur adij
<h2>Second Heading Is Here</h2>

<p>Donec tempor odio sed sem porttitor, ac sod:
<p>Vestibulum ante ipsum primis in faucibus oxr«

</body>
</html>

Now, when you open it, you should see the headings and paragraphs

displayed with a space between them.

ﬂq WebCraft Home Services Projects Team About Contacts

Main Heading Is Here

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce quis urna vitae sapien valutpat commoda nec in nulla, Cras
consectetur lorem pharetra turpis iaculis, vel finibus ante facilisis. Morbi auctor, elit sit amet congue sollicitudin, mi mi aliquam
neque, ac condimentum purus leo nec felis. Pellentesque bibendum vel massa vel sodales, Nam semper dolor ac pharetra
ultrices. Etiam lectus purus, congue rutrum mi a, gravida finibus ipsum. Donec at auctor orci. Praesent sagittis augue in eleifend
volutpat. Integer blandit consequat fermentum,

Second Heading Is Here

Daonec tempor odio sed sem porttitor, ac sodales dolor ultrices. Phasellus nec enim et nibh vestibulum placerat. Nam sed lobaortis
tortor. Etiam at ipsum risus. Vestibulum erat elit, iaculis a pulvinar at, interdum nec mi. Aenean in consectetur ipsum, vitae
rhoncus arcu. Vestibulum quis sapien nibh, Curabitur feugiat vestibulum lorem, vitae volutpat lectus porttitor tincidunt. Praesent
diam sem, ultrices quis nibh luctus, pharetra tristique elit. Donec mattis velit eget nulla hendrerit dictum. Maecenas dictum orci
at sagittis interdumn. Etiam posuere, eros nec suscipit convallis, mi est tempor purus, congue ultrices ipsum massa nec lectus.
Fusce id odio vel diam tristique iaculis. Cras dapibus facilisis suscipit. Donec rutrum molestie nibh, in tempus augue venenatis
sed. Pellentesque eget mauris in magna ornare pharetra.

WVestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Nam non urna in mi dictum tempor.
Quisque leo odio, pretium ut egestas ew, pulvinar eget lacus. Nulla quis orci ac dui hendrerit mattis quis a ex. Phasellus facilisis
rutrum ante a auctor. Morbi non gravida risus. Integer convallis leo odio, nec pulvinar magna condimentum eleifend. Cras at
massa a libero mattis vestibulum eget ac purus, Pellentesque at libero eget sem sollicitudin interdum. Interdum et malesuada
fames ac ante ipsum primis in faucibus. Nam nulla sapien, venenatis nec elit accumsan, laoreet mattis ligula. Sed faucibus vitae

ex sed ultricies. Nulla odio nisi, pretium eget lacus nec, dapibus luctus nunc, Vestibulum consequat est at risus faucibus
consequat. Curabitur iaculis lorem eget rutrum fermentum. Ut pulvinar condimentum dignissim.

Creating Configuration Presets

If we want to reuse our configuration across different projects, Tail-
wind offers us a way to do so by creating reusable configuration pre-
sets. A configuration preset is a number of settings defined in the
exact same way as those fromthe tailwind.config.js file. The

only difference is that they’re put in a different, separate file.

https://tailwindcss.com/docs/presets

Using presets is very useful for creating branding and/or design

systems.

Let’s suppose we have brand colors that we want to use in a project
or perhaps in multiple projects. In this scenario, we can create a pre-
set with the brand colors. Let’s create a brand-colors-pre-

set.js file and put the following content inside:

// /brand-colors-preset.js

const colors = require('tailwindcss/colors')
module.exports = {
theme: {

extend: {
colors: {
primary: colors.yellow,
secondary: colors.blue,

neutral: colors.gray,

Here, we’ve moved the colors from the main configuration file into the
preset. To include the preset into your main configuration, add it un-

derthe presets key, as in the example below:

// /tailwind.config.js
module.exports = {
content: ['./index.html'],
presets: [
require('./brand-colors-preset.js')
1/
theme: {
screens: {
'phone’': '640px’,
'tablet': '768px',
"laptop': '1024px',
'desktop': '1280px‘',
by
extend: {
spacing: {
'4.5': 'l1.125rem’,
'5.5'": '1.375rem’,
'6.5': '1.625rem’,
'7.5': '1.875rem’,
'8.5': '2.125rem’,
'9.5': '2.375rem’,
by
fontFamily: {
'display': ['"Carter One"'],

b

plugins: [],

Here, we’ve removed the colors from the colors key and instead
added them as a preset defining our brand colors. This gives us more
flexibility to easily change the brand colors in future or use completely

different colors if we wish.

REBUILDING STYLES
You should rebuild the styles to apply the changes. To

do so, runthe npm run dev:watch command.

MERGING

Justasthe tailwind.config.js settings are
merged with the default configuration, the preset set-
tings are merged with the tailwind.config. js.

You can learn more about merging in the Tailwind docu-

mentation.

We can also use multiple presets:

module.exports = {
presets: |
require('responsive-breakpoints-preset.js'),

require('brand-colors-preset.js'),

https://tailwindcss.com/docs/presets#merging-logic-in-depth

require('brand-fonts-preset.js'),

If there are overlapping classes in two or more presets, the classes

specified in the last preset will take precedence.

Conclusion

In this chapter, we explored various ways to configure Tailwind, such
as tweaking the default theme by overriding and/or extending it, cre-

ating reusable presets, and tweaking the base Tailwind styles.

In the next chapter, we’ll end this book by exploring the use of plug-

ins, making custom plugins, and building a custom design system.

Chapter 5: Working with Tailwind
Plugins

In the last chapter, we learned the most important ways to customize

and extend a default Tailwind theme.

Now, in this final chapter, we’ll end our journey by exploring the one
of Tailwind’s most powerful features: plugins. We'll firstly look at how
to use the official Tailwind plugins. Then we’ll learn how to create our

own custom Tailwind plugins.

Getting Started

Let’s prepare for this tutorial by creating a new project (a process we

covered in the Chapter 2).

PROJECT CODE

You can find the finished project for this chapter in the

code repo for this book.

Once we have our new project ready, the next step is to modify the

content key,inside tailwind.config. js, like so:

https://github.com/spbooks/tailwind/tree/master/part-5

// /tailwind.config.js
module.exports = {
content: ['./examples/*.html'],
theme: {
extend: {},

by
plugins: [],

We'll create several HTML example files before the end of this tutori-
al, so this tells Tailwind where to look for them to build the required

styles.

Using Official Tailwind Plugins

four plugins officially maintained by the the Tailwind team.
The other three are:

« Forms, which adds minimal default styles to all basic form
elements

« Aspect Ratio, which adds utilities for declaring a fixed aspect ratio
to elements

« Line Clamp, which adds utilities for text truncating after a fixed

number of lines

https://tailwindcss.com/docs/typography-plugin
https://github.com/tailwindlabs/tailwindcss-forms
https://github.com/tailwindlabs/tailwindcss-aspect-ratio
https://github.com/tailwindlabs/tailwindcss-line-clamp

The Typography plugin adds some default typographic styles that are
difficult or impossible to add manually. For example, a post content in
a post template can be included in Markdown format, which will be
converted and rendered as HTML, but we don’t have access to that
HTML in the template:

<!-- A post template -->
<article>
{{ markdown }}

</article>

In a situation like this, the Typography plugin is used to inject the re-

quired classes dynamically in the rendered HTML.

To use the plugin, we need to install it first:

npm install -D @tailwindcss/typography

Then, add the plugin inside the tailwind.config. js file, inthe

plugins array:

// /tailwind.config.js
module.exports = {

//

plugins: [

require('@tailwindcss/typography')

Now, create new a examples directory and add a typogra-

phy.html file in it with the following content:

<!-- /examples/typography.html -->
<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-wic
<title>Tailwind Typography Plugin Example</tit:
<link href="../tailwind.css" rel="stylesheet">
</head>
<body>
<div class="bg-sky-50">
<article>

<hl>Some Nice Title Here</hl>

<p class="lead">Lorem ipsum dolor sit amet,
<h2>1. A Heading 2 Here</h2>
<blockquote><p>Lorem ipsum dolor sit amet,
<p>Aliquam id nulla dignissim felis bibend
<figure>

<img src="https://source.unsplash.com/ZE:

<figcaption>Donec blandit pulvinar leo ef

N/ BN~

</Iigure->
<h2>2. Another Heading 2 Here</h2>
<p>Vestibulum congue felis at posuere comm

List item</1i>
List item</1li>
List item</1li>

<p>Aenean scelerisque urna id dictum tempo:

First item</1li>
Second item</1li>
<1i>Third item</1li>

<p>Pellentesque tincidunt non orci id congi
</article>
</div>
</body>
</html>

Here, we have a bare-bones article structure with most of the ele-
ments the plugin can style typographically. | only added a light blue
background to the <div> container to make the screenshots more
distinguishable. The lead class, in the first paragraph, will be used

by the Typography plugin later on.

Run npm run dev:watch and open the file in the browser. The

image below shows what we should see.

Some Nice Title Here
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas varius vitae ipsum et commodo. In scelerisque
est magna, ut fringilla purus congue eu. Mauris id metus ac metus porta aliquet. Aliquam quam ipsum, consequat
malesuada lectus nec, blandit condimentum enim.

A Heading 2 Here

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas varius vitae ipsum et commodo.

Aliquam id nulla dignissim felis bibendum aliquam. Cras vulputate blandit semper. Nam quam dolor, tincidunt non
odio ac, condimentum molestie justo. In ornare maximus tortor, aliquam consequat arcu sagittis id.

Donec blandit pulvinar leo et ti
Another Heading 2 Here
Vestibulum congue felis at posuere commodo. Praesent sapien magna, aliquet ut efficitur et, luctus at neque.
Donec vitae nunc convallis, maximus ex sit amet, consequat tellus. Aenean eleifend cursus urna, sed fermentum
felis cursus eget. Sed accumsan hendrerit turpis at ullamcorper. Integer quam sapien, rutrum ac pharetra eget,

—

ncidunt.

maximus id lacus.

List item

List item

List item

Aenean scelerisque urna id dictum tempor. Pellentesque ipsum orci, convallis eget purus nec, placerat laoreet nulla.
Nullam vitae lectus porta, lacinia neque at, rutrum felis.

First item

Second item

Third item

Pellentesque tincidunt non orci id congue. Donec blandit pulvinar leo et tincidunt. Sed venenatis venenatis justo, ut
congue neque lobortis sit amet. Nam tempus vehicula nisi, vitae commodo magna condimentum id.

At this stage, the article is mostly unstyled. Now it’s time to see the
magic of the Typography plugin. To use it in HTML, we need to in-

clude its classes and to utter the magic word: prose.

prose is the base class used by the Typography plugin. All other

classes also start with this class, as we’ll see shortly.

Add the prose class to the article tag like so: <article
class="prose">. Now reload the page and behold the magic, as

pictured below.

Some Nice Title Here

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Maecenas varius vitae ipsum et commodo. In scelerisque est
magna, ut fringilla purus congue eu. Mauris id metus ac metus
porta aliquet. Aliquam quam ipsum, consequat malesuada
lectus nec, blandit condimentum enim.

A Heading 2 Here

“Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas varius

wvitae ipsum et commodo.”

Aliquam id nulla dignissim felis bibendum aliquam. Cras vulputate blandit

semper. Nam quam dolor, tincidunt non odio ac, condimentum molestie justo.

In ornare maximus tortor, aliguam consequat arcu sagittis id.

Donec blandit pulvinar leo et tincidunt.

Another Heading 2 Here

Vestibulum congue felis at posuere commodo. Praesent sapien magna, aliquet
ut efficitur et, luctus at neque. Donec vitae nunc convallis, maximus ex sit amet,
consequat tellus. Aenean eleifend cursus urna, sed fermentum felis cursus eget.
Sed accumsan hendrerit turpis at ullamcorper. Integer quam sapien, rutrum ac

pharetra eget, maximus id lacus.
List item
List item
List item
Aenean scelerisque urna id dictum tempor. Pellentesque ipsum orci, convallis
eget purus nec, placerat lacreet nulla. Nullam vitae lectus porta, lacinia neque
at, rutrum felis.
1. First item
2. Second item
3. Third item
Pellentesque tincidunt non orci id congue. Donec blandit pulvinar leo et

tincidunt. Sed venenatis venenatis justo, ut congue neque lobortis sit amet.

Mam tempus vehicula nisi, vitae commodoe magna condimentum id.

The article looks much better with the plugin’s styles applied. It’s not

perfect, but it’s a great foundation for further customization.

Now let’s try the Typography plugin’s dark mode. First, replace the
bg-sky-50 class of the container <div> with bg-sky-900 to
create a dark background. Then add the dark:prose-invert
class to the article like so: <article class="prose

dark:prose-invert">.

Reload the page, and boom. The image below shows what we get

NOW.

Some Nice Title Here

Heading 2 Here

“Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas varius

vitae ipsum et commodo.”

Aliquam id nulla dignissim felis bibendum aliquam. Cras vulputate blandit
semper. Nam quam dolor, tincidunt non odio ac, condimentum molestie justo.

In ornare maximus tortor, aliQuam consequat arcu sagittis id.

Another Heading 2 Here

estibulum congue felis at posuere commodo. Praesent sapien magna, aliquet
ut efficitur et, luctus at neque. Donec vitae nunc conwvallis, maximus ex sit amet,
consequat tellus. Aenean eleifend cursus urna, sed fermentum felis cursus eget
Sed accumsan hendrerit turpis at ullamcorper. Integer quam sapien, rutrum ac

pharetra eget, maximus id lacus.

List item

List item

List itermn
Aenean scelerisque urna id dictum tempor. Pellentesque ipsum orci, convallis
eget purus nec, placerat laocreet nulla. Nullam vitae lectus porta, lacinia neque
at, rutrum felis.

First item

Second item

Third item
Pellentesque tincidunt non orci id congue. Donec blandit pulvinar leo et

incidunt. Sed venenatis venenatis justo, ut congue neque lobortis sit amet.

MNam tempus vehicula nisi, vitae commodo magna condimentum id.

This little switch was just for showing you that the dark side exists, in
case you need it! Let’s now go back to the default version and contin-
ue our journey with the light theme. Remove the dark:prose-in-

vert class and set the container background back to bg-sky-50 .

The real power of the Typography plugin is that it provides modifiers

for the typographic elements so you can customize them individually.

Let’s try some of them now. Add the following classes to the <arti-

cle> tag:
<!-- /examples/typography.html -->
<le= ... ==>
<body>

<div class="bg-sky-50 p-6">
<article class="prose
prose-hl:underline prose-hl:underline-offset-
prose-h2:first-letter:text-cyan-600
prose-headings:text-cyan-900
prose-lead:text-cyan-600
prose-p:first-line:italic
prose-blockquote:text-cyan-600 prose-blockquc
prose-figure:mx-6
prose-figcaption:text-center
prose-img:rounded-1g prose-img:drop-shadow-1«

prose-1li:marker:text-cyan-600

https://tailwindcss.com/docs/typography-plugin#element-modifiers

||>
<hl>Some Nice Title Here</hl>

<!__ e o o __>

Don’t Forget prose

The base prose class must always be present before using the oth-

er classes.

Here, I've added some space around the article (for a nicer look and

feel) by adding some padding (p-6) to the container <div>.

I’'ve grouped the prose classes by element (for better readability
and maintainability), so each line contains classes for one specific

element.

To set a utility for a particular element, we start with the prose
class, followed by a colon and then the utility: prose-hl:under-

line.

Only one utility can be added for a prose class instance. We can’t
add a sequence of utilities like this: prose-hl:underline un-

derline-offset-8.

Instead, we must define them individually: prose-hl:underline

prose-hl:underline-offset-8.

When we stack prose classes with other modifiers, we start with
the prose class, followed by the modifier(s), and lastly the utility,

like so: prose-h2:first-letter:text-cyan-600.

prose-lead targets an element with class lead as the first para-
graph of the article.

Basically, these are the rules for using the prose classes.

Let’s go back to the browser now to see what we’ve achieved so far.

Reload the page and enjoy a fully styled article, as shown below.

Some Nice Title Here

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Maecenas varius vitae ipsum et commodo. In scelerisque est
magna, ut fringilla purus congue eu. Mauris id metus ac metus
porta aliquet. Aliquam gquam ipsum, consequat malesuada
lectus nec, blandit condimentum enim.

1. A Heading 2 Here

“Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas

varius vitae ipsum et commodo.”

Aliquam id nulla dignissim felis bibendum aliquam. Cras vulputate blandit
semper. Nam quam dolor, tincidunt non odio ac, condimentum molestie justo.

In ornare maximus tortor, aliquam consequat arcu sagittis id.

Donec blandit pulvinar leo et tincidunt.

2. Another Heading 2 Here

Vestibulum congue felis at posuere commodo. Praesent sapien magna, aliguet ut
efficitur et, luctus at neque. Donec vitae nunc convallis, maximus ex sit amet,
consequat tellus. Aenean eleifend cursus urna, sed fermentum felis cursus eget.
Sed accumsan hendrerit turpis at ullamcorper. Integer quam sapien, rutrum ac

pharetra eget, maximus id lacus.
= List item

= List item

« List item

Aenean scelerisque urna id dictum tempor. Pellentesque ipsum orci, convallis eget
purus nec, placerat laoreet nulla. Nullam vitae lectus porta, lacinia neque at,

rutrum felis.
1. First item

2. Second item

3. Third item

Pellentesque tincidunt non orci id congue. Donec blandit pulvinar leo et
tincidunt. Sed venenatis venenatis justo, ut congue neque lobortis sit amet.

Nam tempus vehicula nisi, vitae commodo magna condimentum id.

Building Custom Tailwind Plugins

In this section, we’ll look at how to create custom Tailwind plugins.

We’'ll create two small plugins:

« a counters plugin, which will add the ability to automatically add
numbers to the document headings or whatever other elements
we want

« an arrows plugin, which will add the ability to incorporate CSS

arrow shapes/icons into our designs

RUNNING DEV:WATCH

From now on, we don’t need to stop and run the
dev:watch command again, because the custom
plugins don’t need to be installed. But it’s good to make
sure the command is still running before we test the
HTML example files. Sometimes, while we’re making
changes, a syntactic error can stop the execution of the
script. In this case, we’ll see an appropriate error mes-
sage in the terminal, such as SyntaxError: Unex-
pected identifier . To apply the changes we’ve
made and see a proper HTML result, we need to start

the script again with npm run dev:watch.

https://tailwindcss.com/docs/plugins

Creating the Counters Plugin

This plugin will take advantage of the CSS counters feature. It will
add automatic numbers for document headings by default. Also, it will
allow for automatic numbering of any other elements to be added by

using the necessary classes provided by the plugin.

To start, create a new plugins directory and add a new coun-

ters. js filein it with the following content:

// /plugins/counters.js

const plugin = require('tailwindcss/plugin')

const counters = plugin(function({ addBase, addCc

// put plugin logic here
})

module.exports = counters

A plugin is created by the plugin() function (required in the begin-
ning), which takes an anonymous function as its first argument. The
anonymous function takes a single object as argument, which we can

destructure for convenience. The destructured properties are Tailwind

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Counter_Styles/Using_CSS_counters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

functions for customizing various layers of Tailwind’s default styles.

Here’s a list of each available function:

addBase () adds base styles

+ addComponents () adds static component styles

« matchComponents () adds dynamic component styles
« addutilities() adds static utility styles

« matchUtilities() adds dynamic utility styles

« addvariant() adds custom variants

« theme() provides access to values in the user’s theme
configuration

config() provides access to values in the user’s Tailwind

configuration

corePlugins () checks if a core plugin is enabled

e () manually escapes strings meant to be used in class names

Now, add the following addBase () function:

// /plugins/counters.js

const plugin = require('tailwindcss/plugin')

const counters = plugin(function({ addBase, thems
addBase ({
'hl': {
counterReset: 'level-1'

b

11 A1

https://tailwindcss.com/docs/plugins

‘nz : 4§

counterReset: 'level-2'

}r
'h3': {

counterReset: 'level-3'
o

'h2::before, h3::before, hd::before': {
color: theme('colors.slate.600')

by

'h2::before': {
counterIncrement: 'level-1',

content: 'counter(level-1) ". "'

}y
'h3::before': {

counterIncrement: 'level-2',

content: ‘'counter(level-1) "." counter(levc
by
'hd::before': {

counterIncrement: 'level-3',

content: 'counter(level-1) "." counter(lev
by

})
})

module.exports = counters

Here, we’ve created three counters by using the counterReset

property.

Then we’ve set the counters to be used for h2, h3,and h4 head-
ing elements by using the counterIncrement property. We've set
the actual numbers by using the content property, where we've
used the counter () function—which returns the current value of
the named counter. We’ve also concatenated each nested heading

with the previous one(s).

Finally, we’ve added a color for the numbers in the headings by using
the theme () function, which allows us to reuse the default Tailwind
colors. Note that the dash we usually see between color name and
number (such as slate-600) is replaced by a dot here:
slate.600 . This is because the colors for the Tailwind theme are
represented by JavaScript objects, so we need to use dot notation to

access their properties and methods.

Let’s test what we’ve achieved so far. To do so, in the examples di-
rectory, create a new counters.html file with the following

content:

<!-- /examples/counters.html -->
<!DOCTYPE html>
<html lang="en">

<head>

<meta charset="UTF-8">

<meta http-equiv="X-UA-Compatible" content="IE:
<meta name="viewport" content="width=device-wic
<title>CSS Counters Example</title>

<link href="../tailwind.css" rel="stylesheet">
</head>
<body class="prose">
<div class="m-3">
<p class="text-3xl text-red-700">Counters Ba:
<h1>Web Development Languages</hl>
<h2>HTML</h2>
<h2>CSS</h2>
<h3>Tailwind</h3>
<h3>Bootstrap</h3>
<h2>JavaScript</h2>
<h3>Node</h3>
<h4>Express</h4>
<h3>Vue</h3>
<h4>Vuetify</h4>
<h4>Nuxt</h4>
</div>
</body>
</html>

Here, to make things more readable, we've used the prose class

from the Typography plugin.

Now, add the plugin to the Tailwind configuration:

// /tailwind.config.js
module.exports = {
//
plugins: [
require('@tailwindcss/typography'),

require('./plugins/counters’)

THE .Js EXTENSION
There’s no need to add the . js extension. Tailwind

automatically recognizes the file.

Finally, open the counters.html inyour browser. The image be-

low shows what you should see.

Counters Based on Heading Elements:
Web Development Languages

1. HTML

2. CSS

2.1 Tailwind
2.2 Bootstrap

3. JavaScript

3.1 Node
3.1.1 Express
3.2 Vue

3.2.1 Vuetify
3.2.2 Nuxt

As you can see, with no classes added to the HTML, we get nice and

proper numbering for the heading elements.

Great! But what if we want to add numbering for different elements?

We can do this t00. Let’'s see how now.

Gotothe counters. js file and replace its content with the

following:

// /plugins/counters.js

const plugin = require('tailwindcss/plugin')

const counters = plugin(function({ addBase, adduUf
addBase ({
'hl': {
counterReset: 'level-1'

I
'h2': {

counterReset: 'level-2'

by

'h3': {
counterReset: 'level-3'

by

'h2::before, h3::before, hd::before': {
color: theme('colors.slate.600"')

by

'h2::before': {

B | [-1 a1

counterincrement: lLeveL-l1
content: 'counter(level-1)
by
'h3::before': {
counterIncrement: 'level-2'
content: 'counter(level-1)
by
'hd::before': {
counterIncrement: 'level-3'

content: 'counter(level-1)

b

})
addUtilities({

'.collection': {

counterReset: 'collection'

b

'.item: :before': {

counterIncrement: 'collection',

content: 'counters(collection,".")

}
})
})

module.exports = counters

counter (lewve

counter (lewve

Here, we’ve added the addutilities() function (which we first

define in the destructured object) to create two classes. The first—the

collection class—creates a new counter. The second—the
item class—adds a number before the element on which it’s used.
Here, we've used the counters () function (ending with s), which
returns a concatenated string representing the current values of the

named counters.

To test this feature, replace the content of counters.html with the

following:

<!-- /examples/counters.html -->

<!DOCTYPE html>

<html lang="en">

<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE:
<meta name="viewport" content="width=device-wic

<title>CSS Counters Example</title>

<link href="../tailwind.css" rel="stylesheet">
</head>
<body class="prose">
<div class="m-3">
<p class="text-3xl text-red-700">Counters Bas
<hl>Web Development Languages</hl>
<h2>HTML</h2>
<h2>CSss</h2>
<h3>Tailwind</h3>
<h3>Bootstrap</h3>

<h2>JavaScript</h2>
<h3>Node</h3>
<h4>Express</h4>
<h3>Vue</h3>
<h4>Vuetify</h4>
<h4>Nuxt</h4>

<p class="text-3xl text-red-700 mt-12">Counte
<div class="collection">
<p class="item">HTML</p>
<p class="item">CSS</p>
<p class="item">JavaScript</p>
<div class="collection">
<p class="item">Node</p>
<p class="item">React</p>
<p class="item">Vue</p>
<div class="collection">

<p class="item">Nuxt</p>

<p class="item">Vuetify</p>
</div>
</div>
</div>
</div>
</body>
</html>

Here, we’ve added a section—below the first example —in which
we’re using the plugin classes. By nesting our collections with items,

we get nested numbering for the paragraph elements.

Open or reload the counters.html file. The image below shows

what you should see.

Counters Based on Class Utilities:

1 HTML

2 CSS

3 JavaScript
3.1 Node
3.2 React
3.3 Vue
3.3.71 Nuxt

3.3.2 Vuetify

Because of the utilities we’ve added, we can add numbering to any

element we want.

Creating the Arrows Plugin

This arrows plugin will use a technique for creating different shapes

with CSS —which shouldn’t be confused with the CSS Shapes mod-
ule). It will produce four arrows that we can use as icons in our

designs.

To start, create a new arrows. js file inthe plugins directory

with the following content:

// /plugins/arrows.]s

const plugin = require('tailwindcss/plugin')

const arrows = plugin(function({ addComponents }
addComponents ({

".arrow': {
border: 'solid black',
borderWidth: '0 3px 3px 0',
display: 'inline-block',
padding: '3px',
marginLeft: '5px'

by

'.arrow-up': {

https://css-tricks.com/the-shapes-of-css/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Shapes

transform:

b

'rotate(-135degqg)’

'.arrow-right': {

transform:

b

'.arrow-down' :

transform:
}s
'.arrow-left'

transform:

}o
})
})

module.exports

'rotate(-45deqg)"’

{
'rotate(45deg)’

: |
'rotate(135deg)"’

arrows

Here, we've used the addComponents () function to define the

necessary classes. The first arrow class adds the base for all ar-

rows. Then we’ve added the remaining four classes that define the

four possible directions of an arrow.

To test it, create a new arrows.html file inthe examples directo-

ry with the following content:

<!-- /examples/arrows.html -->

<!DOCTYPE html>

<html lang="en">

<head>
<meta charset="UTF-8">

<meta http-equiv="X-UA-Compatible" content="IE:

<meta name="viewport" content="width=device-wic
<title>CSS Arrows Example</title>
<link href="../tailwind.css" rel="stylesheet">
</head>
<body class="prose p-6">
<h2>Tree-View Dynamic List with CSS Arrows:</h.

<span class="toggle cursor-pointer after
<ul class="section hidden">
Node</1li>
React</1li>
<span class="toggle cursor-pointer a:
<ul class="section hidden">
Nuxt</1li>
Vuetify</1li>
<span class="toggle cursor-pointe
<ul class="section hidden">
Components</1li>
Composables</1li>
Directives</1li>

</1li>

</1li>

-/ o

</11~>

<script>
let toggles = document.getElementsByClassName

let sections = document.getElementsByClassNar

for (let i = 0; i < toggles.length; i++) {
toggles[i].addEventListener("click", funct:
let section = sections[i]
section.classList.contains('hidden') ? s¢
this.classList.toggle("after:arrow-down"
})
}
</script>
</body>
</html>

USING PROSE FOR READABILITY

The prose class is used again in this example for bet-
ter readability.

Here, we’ve created a dynamic tree-view list. Each list item (marked
with a toggle class), which contains a nested list or lists (marked

with a section class), gets a right arrow icon by using the arrow

and arrow-right classes and after: pseudo-element. Each
nested list is hidden by default with the help of the hidden class.

Inthe <script> tag, we first get all toggles and sections. Then we
iterate through toggles and add a click event listener for each one.
When the function is executed, it toggles the hidden and
after:arrow-down classes. This results in showing/hiding the

corresponding nested list(s) and changes the toggle icon accordingly.

Let’s add the plugin to the Tailwind configuration:

// /tailwind.config.js

module.exports = {
//
plugins: [
require('@tailwindcss/typography'),
require('./plugins/counters'),
require('./plugins/arrows')

Now, open arrows.html inthe browser. In the screenshot below,

you can see how the list should look and behave.

Tree-View Dynamic List with CSS Arrows:

JavaScripty

Node
React

ey

Nuxt

Vuetily

Quasar

As you can see, the arrows help to make the tree-view list more intu-

itive and descriptive.
Congratulations! You've just created two useful custom plugins.
Finding Community Plugins

Building your own plugin is great indeed, but it’s always a good idea
to firstly check if there’s already an existing plugin offering the func-
tionality you need. If such a plugin exists, it’s probably a better option

to use that than to reinvent the wheel.

The best place to check for existing plugins and other cool stuff is

Awesome Tailwind CSS.

Another one is Tailwind Toolbox.

When you choose a plugin, check if it’s still maintained, and also
which Tailwind version it’s written for. If it’s popular and widely used,

this can be huge bonus too.

| want to recommend one plugin in particular that can be very useful:

daisyUl, by Pouya Saadeghi.

https://github.com/aniftyco/awesome-tailwindcss#plugins
https://github.com/aniftyco/awesome-tailwindcss
https://www.tailwindtoolbox.com/plugins
https://daisyui.com/
https://twitter.com/saadeghi

a & (A

L

Superpower settings

Audience Report

Card Cc-mpunq-nt pe—

GET STARTED

daisyUl provides a rich set of highly customizable and themeable
components that come in two versions: styled and unstyled. This is

pretty flexible and means we can adapt it to any project.

You may be wondering why we don’t just use Bootstrap components
instead (or any other component-based framework). Well, the differ-
ence is that daisyUl offers a much easier way to customize the com-

Ronents to suit our needs. daisyUl is fully themeable and offers many

pre-made themes out of the box. It even has a theme generator for

building our own themes. So, give it a try.

There’s a full list of the components provided by daisyUl on the
daisyUl site.

https://daisyui.com/docs/customize/
https://daisyui.com/docs/themes/
https://daisyui.com/theme-generator/
https://daisyui.com/components/

Conclusion

In this chapter, we firstly looked at how to use the official Typography
plugin to add beautiful default styling to the most used typographic
elements. We then got our hands dirty by creating two useful custom

plugins.

And this marks the end of this book. Phew, it’s been a pretty long ride.
If you’ve made it through the entire book, congratulations! Let’s sum-

marize what’s been achieved:

1. In the first part, we learned how to create a simple website design
by using the basic Tailwind utilities.

2. In the second part, we ventured a bit deeper and learned how to
create Tailwind components.

3. In the third part, we learned even more advanced Tailwind capabili-
ties such as building grid layouts, creating typographic styles, and
using filters, transforms and transitions.

4. In the forth part, we explored the core of Tailwind theme cus-
tomization and extension.

5. In this fifth and final part, we learned about the last Tailwind cus-
tomization weapon: plugins. We learned both how to create cus-

tom plugins and how to use the existing ones.

Now you can consider yourself to be an advanced Tailwind user. You
have the complete skills package necessary to build any design you

can imagine. The sky’s the limit.

Thanks for traveling with me through this book. Best of luck in your

future journey with Tailwind!

	Crafting HTML Email: Beautiful Emails That Work Everywhere
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint
	About the Author
	Preface
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials

	Getting Started with Tailwind CSS
	Component vs Utility Classes
	What Is Tailwind?
	What Is a Utility Class?

	What a Design System Is, and How It Can Help Us
	Up and Running with Tailwind
	Know Your HTML and CSS

	Exploring Tailwind Basics
	Responsive Web Design
	Layout
	Typography
	Colors
	Imagery: Icons and Images

	Building a Blog Starter Template
	Utility Class Help
	Base Styles
	Creating the Header
	The Design Process

	Chapter 2: Going Beyond the Basics
	Getting Started with Tailwind
	Project Code
	Getting Ready
	Utility Class References
	Base Styles
	npx

	Creating Tailwind Components
	Extracting Classes into Reusable Components
	Building Tailwind Components with Vue
	Learning Vue
	Rebuilding Styles

	Chapter 3: Building Complex Designs with Tailwind
	Building Complex and Flexible Layouts with Tailwind’s Grid Utilities
	CSS Grid
	Project Code
	Exploring Tailwind’s Grid Utilities
	Numbering Grid Lines

	Creating Grid Layouts
	Demo Styles

	Creating a Complete Article Design
	Creating the Base Layout
	Abbreviated Text

	Typography
	Colors and Gradients

	Adding Image Effects
	Adding Effects
	Conclusion

	Chapter 4: Customizing Tailwind and Optimizing Your Workflow
	Customizing Tailwind
	Project Code

	Customizing the Default Tailwind Theme
	Customizing Tailwind Theme’s Responsive Breakpoint Modifiers
	Customizing Tailwind’s Theme Colors
	Naming Colors

	Customizing Tailwind’s Spacing Utilities
	Customizing Tailwind’s Core Plugins
	Default Key

	A Practical Customization Example
	Adding Base Classes
	Rebuilding Styles

	Creating Configuration Presets
	Rebuilding Styles
	Merging

	Conclusion

	Chapter 5: Working with Tailwind Plugins
	Getting Started
	Project Code

	Using Official Tailwind Plugins
	Don’t Forget prose

	Building Custom Tailwind Plugins
	Running dev:watch
	Creating the Counters Plugin
	The .js Extension

	Creating the Arrows Plugin
	Using prose for Readability

	Finding Community Plugins
	Conclusion

