

Modern CSS with Tailwind, Second
Edition

Flexible Styling Without the Fuss

by Noel Rappin

Version: P1.0 (May 2022)

Copyright © 2022 The Pragmatic Programmers, LLC.
This book is licensed to
the individual who purchased it.
We don't copy-protect it
because that would limit your ability to use it for your
own purposes. Please don't break
this trust—you can use
this across all of your devices but please do not share this copy
with other members of
your team, with friends, or via
file sharing services. Thanks.

Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as
trade-
marks. Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a
trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic
Starter Kit, The Pragmatic Programmer, Pragmatic
Programming, Pragmatic Bookshelf and the linking g
device
are trademarks of The Pragmatic Programmers,
LLC.

Every precaution was taken in the preparation of this book.
However, the publisher assumes no responsibility
for errors
or omissions, or for damages that may result from the use
of information (including program listings)

contained
herein.

About the Pragmatic Bookshelf

The Pragmatic Bookshelf is an agile publishing company.
We’re here because we want to improve the lives of
developers.
We do this by creating timely, practical titles, written by programmers for programmers.

Our Pragmatic courses, workshops, and other products can
help you and your team create better software and
have more
fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.-
com.

Our ebooks do not contain any Digital Restrictions
Management, and have always been DRM-free. We pio-
neered the
beta book concept, where you can purchase and read a book
while it’s still being written, and pro-
vide feedback to the
author to help make a better book for everyone. Free
resources for all purchasers include
source code downloads
(if applicable), errata and discussion forums, all
available on the book's home page at
pragprog.com. We’re
here to make your life easier.

New Book Announcements

Want to keep up on our latest titles and announcements, and
occasional special offers? Just create an account
on
pragprog.com (an email address and a password is all it takes)
and select the checkbox to receive newslet-
ters. You can
also follow us on twitter as @pragprog.

About Ebook Formats

http://pragprog.com/
https://pragprog.com/

If you buy directly from
pragprog.com, you get
ebooks in all available formats for one price. You can
synch your
ebooks amongst all your devices (including
iPhone/iPad, Android, laptops, etc.) via Dropbox.
You get free up-
dates for the life of the edition. And, of
course, you can always come back and re-download your books
when
needed. Ebooks bought from the Amazon Kindle store are
subject to Amazon's polices. Limitations in Ama-
zon's file
format may cause ebooks to display differently on different
devices. For more information, please see
our FAQ at
pragprog.com/#about-ebooks. To learn
more about this book and access the free resources, go to
https://pragprog.com/book/tailwind2, the book's homepage.

Thanks for your continued support,

The Pragmatic Bookshelf

The team that produced this book includes: Dave Rankin (CEO), Janet Furlow (COO),

Tammy Coron (Managing Editor), Katharine Dvorak (Development Editor),
L. Sakhi MacMillan (Copy Editor), Gilson Graphics (Layout), Andy Hunt and Dave Thomas (Founders)

For customer support, please contact
support@pragprog.com.

For international rights, please contact
rights@pragprog.com.

https://pragprog.com/
https://pragprog.com/support/#about-ebooks
https://pragprog.com/book/tailwind2
mailto:support@pragprog.com
mailto:rights@pragprog.com

Table of Contents

1. Acknowledgments

2. Preface to the Second Edition

3. Introduction

1. Why Tailwind?

2. About This Book

3. Who This Book Is For

4. Running the Sample App

4. 1. Getting Started with Tailwind

1. What the Tailwind CLI Does

2. Using the Sample Code

3. Adding Tailwind to Your App

4. Quick Start

5. 2. Tailwind Basics

1. Utilities

2. Preflight

3. Duplication

4. Modifiers

5. CSS Units

6. 3. Typography

1. Size and Shape

2. Color and Opacity

3. Alignment and Spacing

4. Special Text

5. Lists

6. Typography Plugin

7. Tailwind Forms

7. 4. The Box

1. Can You See the Box?

2. What’s in the Box?

3. Padding and Margins

4. Borders

5. Background Color

6. Background Images

7. Filters

8. Height and Width

8. 5. Page Layout

1. Containers

2. Floats and Clears

3. Position and Z-Index

4. Tables

5. Grids

6. Columns

7. Flexbox

8. Box Alignment

9. 6. Animation

1. Helpful Small Animations

2. Transitions

3. Transformation

4. Other Appearance Things

10. 7. Responsive Design

1. Tailwind Screen Widths and Breakpoints

2. Hide Based on Size

3. Fewer Grid Columns on Small Devices

4. Flex on Larger Devices

11. 8. Customizing Tailwind

1. Configuration File Basics

2. Change Default Values

3. Change Generated Classes

4. Variant Modifiers

5. Integrate with Existing CSS

6. Access Tailwind from JavaScript

7. Plugins

8. The End

Copyright © 2022, The Pragmatic Bookshelf.

Early Praise for Modern CSS with
Tailwind:

Flexible Styling Without the Fuss

This book is a great introduction to the Tailwind utility CSS frame-
work. Having used Tailwind on a project for the first time after reading
the book, it helped to prime knowledge I needed to use Tailwind suc-
cessfully and also served as a valuable reference guide.

→Kevin Murphy
Software Developer

I think this book is a wonderful resource and will give many readers
the insight they need to be proficient with Tailwind CSS.

→John Saltarelli
Chief Technology Officer, Unit 5 Ventures, Inc.

This book helped my team and me migrate our project with hundreds
of templates to Tailwind. It covers all the important topics, encourages
a useful mindset when working with the framework, and includes
many great little tips along the way.

→Matouš Borák

Chief Technology Officer, NejRemeslnici.cz

Acknowledgments

This book was a surprise. I didn’t intend to write it, but I got excited
about the subject and had an unusual window of time to get this
done.

Thanks to Katharine Dvorak, who edited this book and has now edit-
ed several of my books. Katie was very supportive of this from my ini-
tial suggestion. We’ve been working together for years now, and her
observations have been a tremendous help in structuring and plan-
ning this book.

Dave Rankin at The Pragmatic Bookshelf was enthusiastic about this
book when I first suggested it, and then he was flexible in approach
when the original plan for the book’s structure didn’t seem like the
best way to present the material.

Thanks to Adam Wathan for creating Tailwind and to all the people
who have contributed to its development.

Gary Bernhardt and Dave Copeland both in different ways helped me
see the value in utility-based CSS, and Aly Fluckey showed me that
CSS could be beautiful.

The first edition of this book was reviewed by Erik Benoist, Matouš
Borák, Kevin Murphy, John Saltarelli, and Jonathan Yeong, and the
second edition was again reviewed by Matouš Borák, Kevin Murphy,

and John Saltarelli. The book is better because of their input and
advice.

Thanks always to my family. Amit and Elliot continue to be amazing
and delightful. Erin makes everything I do easier, better, and more
fun.

Copyright © 2022, The Pragmatic Bookshelf.

Preface to the Second Edition

This book covers Tailwind 3.0, which significantly changes the way
Tailwind CSS works and the way most developers will interact with it.

Tailwind 3.0 adds a just-in-time (JIT) engine, which changes the way
Tailwind determines what Cascading Style Sheets (CSS) code to
generate and make available to the browser. Tailwind is a large set of
CSS classes that each stand in for some set of CSS properties. In
previous versions, Tailwind generated a list of its CSS classes and
then allowed you to specify any classes in that list you wanted re-
moved to limit the size of the Tailwind file for performance purposes.

The JIT engine reverses that process. The Tailwind command-line
tool now starts with an empty file and adds utility CSS classes to that
file based on patterns it matches with your front-end code. By no
longer needing to be able to pre-enumerate all the possible Tailwind
classes, the tool is freed up to be far more flexible and powerful. For
example, Tailwind now allows you to specify the background color
and opacity in one class, as in bg-yellow-700/50, with the color listed
first and the opacity after the slash. Previously, the number of poten-

tial classes that syntax would allow would have made managing it
prohibitively expensive.

Tailwind provides a series of modifiers that conditionally apply class-
es under certain conditions, such as hover or focus. In previous ver-
sions of Tailwind, only a small subset of the modifiers were enabled
by default because each added its own entire Tailwind-sized set of
potential classes. With the JIT engine, and no longer needing to start
from a list of potential classes, all the modifiers are enabled by de-
fault, and several new ones have been added.

In Tailwind 3.0, many features that previously had only a set amount
of potential values allow you to use arbitrary values, as in m-[43px] for
a margin of exactly 43 pixels. It’s not recommended to do that very of-
ten—one advantage of Tailwind is the consistency of measurements.

Sometimes, though, you need a one-off value, and Tailwind 3.0

makes doing so much easier.

Because of the JIT engine, it’s true both that almost all the features
you used in Tailwind 2.0 are still here and that they’ve all gotten a lot
more flexible. I’ve tried to navigate that in this text, to note the addi-
tional ability to use arbitrary values in many patterns without endors-
ing the continual use of those patterns.

In addition, the installation instructions for Tailwind have changed,

and there’s a new option to use a stand-alone command-line tool that
doesn’t require NodeJS to be used. Because of that, I’ve been able to
make the sample code for this book much simpler—now it’s just a
static HTML file and an associated Tailwind CSS file. There have also
been some significant changes to specific Tailwind features such as
color, and the configuration options have changed somewhat.

So welcome to Tailwind 3.0! If this is your first experience, I hope this
book helps you navigate the complexities of the tool. If you were with
me for the first edition, I hope you find in this edition a clear guide to
the newest version of Tailwind.

Noel Rappin
May 2022

Copyright © 2022, The Pragmatic Bookshelf.

Introduction

Many web developers underrate CSS.

Cascading Style Sheets (CSS) enable you to control the display of
your information and enhance your page with visual effects. CSS is
powerful, as a quick glance at a site like http://www.csszengarden.-
com shows. With CSS, you can do amazing things to the basic text
and images on your site, and with a little bit of client-side code to add
and remove CSS classes, you can do exponentially more.

CSS can also be hard to debug, complicated to write, and difficult to
control.

But it doesn’t have to be.

Enter Tailwind. Tailwind CSS—a “utility-first” CSS framework to
“rapidly build modern websites without ever leaving your HTML” —
can make the CSS for your site easier to control and debug. In this
book, you’ll dive into the Tailwind CSS framework, taking a look at its
typography, page layout, responsive design, and more.

[1]

http://www.csszengarden.com/

Why Tailwind?

Bootstrap or similar CSS frameworks provide CSS classes whose
names describe the semantics how they are to be used, like “button”
or “card” or “nav.” These classes tend to define a number of CSS
styles together.

Tailwind is different.

Nearly all of the basic Tailwind utility classes are thin wrappers
around a single CSS style setting, like using m-4 to provide a margin:

1rem or text-lg to change the text size to font-size: 1.125rem.

For example, a button in the Bulma framework can be styled like this:

<button class="button is-primary">Click Me</button>

But in Tailwind, you might use something more like this:

<button
 class="bg-green-500 text-white font-bold
 py-3 px-4 rounded-lg text-center">
 Click Me
</button>

In the Tailwind version, each individual style of the button—the green
background, the white text, the bold font, the padding, the rounded

corners, and the text centering—gets its own class in the class list.

Now, if you’re like me, your first reaction to seeing that list of classes
may be something along the lines of, and I quote, “ugh.” It certainly
takes some time to get used to having all those small class names in
the HTML markup. If that’s your reaction, I get it. All I ask is that you
give it a chance and see how you feel after you’ve tried it out.

The Tailwind code is extremely explicit and makes it possible to un-
derstand the display simply by looking at the HTML markup. It works
well with front-end frameworks that have an aesthetic of putting a
bunch of CSS or JavaScript data in the HTML markup. If you want to
package a collection of classes for reuse, Tailwind provides an @apply

directive that you can use to build new CSS classes out of Tailwind’s
utilities, but it’s recommended that you use features of your web pro-
gramming language and framework to manage the duplication.

One advantage of the Tailwind setup is that it’s extremely easy to pro-
totype, iterate, and customize the display. If you want to change the
horizontal padding on a button, you can do so by changing px-4 to,

say, px-6. You don’t need to guess about the scope of the change or
what other parts of your page might be affected. You can keep mak-
ing small changes until you get the display just right. And you don’t
need to continually come up with names for CSS property combina-
tions that might not be reused.

Another advantage is that Tailwind offers a set of modifiers that allow
you to specify behavior in particular cases. For example, you could
add a class such as hover:bg-blue-500, where the hover modifier caus-
es the background color to be changed only when the user hovers
over the button. Tailwind also provides a set of modifiers that allow
you to specify different behaviors at different screen sizes. These
modifiers are one reason why using a Tailwind class like bg-blue-500 is
better than using the document object model (DOM) style attribute
directly, as in style="background-color: #cdcdcd".

And last but not least, a Tailwind app requires less CSS to be written,

with most of the design coming from the composition of Tailwind utili-
ties. This means you spend less time naming CSS and managing
global CSS, allowing you to spend more effort on the actual display of
your site. Tailwind makes it easy to make incremental changes, see
the results, and understand the scope of your changes, which makes
it especially useful when prototyping a new site.

About This Book

In this book, you’re going to look at how to design web pages using
Tailwind CSS version 3.0 and up. You’ll start with the typography of
individual elements, and then you’ll get to “the box”—the rectangle of
space each element takes up—and how to manipulate it. Once you
have your elements in boxes, you’ll take a look at page layout with
flexbox or grids.

After that, you’ll look at turning individual pages into full sites. You’ll
also look at common site-wide page layouts, managing a design on
different screen sizes, and handling a site-wide amount of styles and
CSS.

Tailwind has been evolving pretty quickly, so there’s a good chance
new features have been added since I wrote this. The Tailwind docu-
mentation includes pages for release notes and upgrade guides.

(Sorry, the release notes’ URLs change with each release, but they’re
linked from the main Tailwind documentation at https://tailwindcss.-
com/docs.) Check those out for the latest changes.

https://tailwindcss.com/docs

Who This Book Is For

To keep this book short and to the point, I’ve made some
assumptions:

I’m assuming you already know the basics of CSS syntax and con-
cepts. This book focuses on Tailwind, not raw CSS. If you want to
get better grounded in CSS and its quirks, you might want to try
the zine Hell Yes! CSS! by Julia Evans.

I’m assuming you’re able to access the Tailwind reference docu-
mentation. The Tailwind documentation is comprehensive and
easy to navigate. This book isn’t going to be a complete reference
on all of Tailwind’s features; instead, it’ll focus on the most com-
mon ones and how to use them successfully.

[2]

[3]

[1]

[2]

[3]

Running the Sample App

The sample code for this book is extremely simple. It consists of a
few pages of static HTML linked to a static CSS page that was gener-
ated using the Tailwind CLI without using any framework or dynamic
content.

To run the sample code, you need to download it from the book’s
page on the
Pragmatic Bookshelf website. To view the code sam-
ples, just open any of the HTML pages in the html directory in a
browser as a file. They will link to the css/output.css file, which has
been pre-generated using the Tailwind CLI. (For more information
about using the Tailwind CLI with that code, jump ahead to ​Using the
Sample Code​.)

Please note that the world has possibly changed since this book was
released, and the distribution setup and commands for the Tailwind
CLI has changed. If these instructions don’t work for you, please
check out the book forum for more discussion and support. Thanks!

FOOTNOTES

https://tailwindcss.com

https://wizardzines.com/zines/css

https://tailwindcss.com/docs

[4]

[5]

https://tailwindcss.com/
https://wizardzines.com/zines/css
https://tailwindcss.com/docs

[4]

[5]

https://www.pragprog.com/titles/tailwind2

https://devtalk.com/books/modern-css-with-tailwind-second-edition/errata

Copyright © 2022, The Pragmatic Bookshelf.

https://www.pragprog.com/titles/tailwind2
https://devtalk.com/books/modern-css-with-tailwind-second-edition/errata

Chapter
1

Getting Started with Tailwind

Before going deep into Tailwind’s utilities, let’s take a quick tour to get
a feel for how Tailwind CSS works.

Tailwind is both a set of utility classes and a tool that generates CSS
files based on those classes. It also provides the @apply directive to
allow you to compose Tailwind classes. To get started with Tailwind,

we need to install the framework itself and then patch it into our CSS
processing tool chain. First, we’ll take a look at what the Tailwind
command-line interface (CLI) does.

What the Tailwind CLI Does

Tailwind, as a set of utility classes, provides a wide variety of patterns
that you can use to assign CSS classes to HTML elements in your
code.

When you use Tailwind, you write CSS classes whose names match
the patterns Tailwind defines. For example, you write <div class="m-4">

and Tailwind defines that in CSS as .m-4 {margin: 1rem;}. Tailwind has
the potential to define millions of different CSS classes given that the
patterns are both extensive and can be combined with different modi-
fiers, and can even in many cases use arbitrary values. In fact, it’s not
feasible to enumerate all the potential classes Tailwind might define
or use, and your project is likely to only use a small fraction of those
classes.

Defining all these potential classes—the vast majority of them un-
used—and then sending them to the browser would be a huge perfor-
mance problem. To avoid that problem, Tailwind uses a just-in-time
engine to detect the CSS you are using and limit the amount of CSS
that is defined, generating only the CSS your project uses. A com-
mand-line interface (CLI) to that engine is provided, and your front-
end build tool can use that CLI to generate the CSS needed for your
project.

You provide Tailwind with a list of the files in your project that declare
CSS classes, Tailwind scans those files for text patterns that match
Tailwind classes and then creates a CSS file that only contains the
Tailwind classes that are actually used.

The Tailwind command line is set up to run fast and err on the side of
including extra classes rather than try and guess whether the usage
of, say, m-4 is actually part of a CSS declaration. If the text m-4 is in
the file anywhere, Tailwind will add m-4 to the resulting CSS.

This is fine because Tailwind patterns are odd enough to only rarely
occur accidentally and because including the odd extra CSS class is
a small price to pay for excluding millions of others while still including
the Tailwind classes you are actually using.

Using the Sample Code

This book has a small amount of sample code associated with it. It’s
delivered as a set of static HTML files that read a static CSS file. The
CSS file was generated using the Tailwind CLI, and you can install
that CLI locally if you want to experiment.

You can experiment with the sample code as is using the stand-alone
version of the Tailwind CLI, which doesn’t require Node.js to run. This
may not be the mechanism you use on a full front-end app, so take a
look at the next section as well.

To get started with the stand-alone Tailwind CLI, download the latest
release for your operating system at
https://github.com/tailwindlabs/tailwindcss/releases and place the file
at the top level of book’s code directory, adjacent to the
tailwind.config.js file.

You might want to rename that download to just tailwindcss. For me,

that command was mv tailwindcss-macos-arm64 tailwindcss. Your com-
mand will vary based on what file you downloaded. You’ll also need to
make the file executable with something like chmod +x tailwindcss;

again your operating system might vary.

With the stand-alone CLI in place, you can tinker with the existing
code or add new HTML files in the html directory. Then, when you run

https://github.com/tailwindlabs/tailwindcss/releases

the CLI with ./tailwindcss -o css/output.css, it will re-parse the HTML files
and regenerate the css/output.css file. Don’t worry, we’ll talk about
everything that command is doing later in the book.

Please note that it’s possible that the distribution setup and com-
mands for the Tailwind CLI have changed since the book was written.

If these instructions don’t work for you, please check out the book fo-
rum for guidance.[6]

Adding Tailwind to Your App

The process of installing Tailwind to a front-end app depends on how
your project is managing client-side assets. As such, a complete
guide to installing Tailwind is outside the scope of this book and
would quickly become outdated. The golden source is the Tailwind
documentation itself. Please check there if you have difficulty in-
stalling Tailwind in your specific setup. This section gives a general
overview of how Tailwind is installed for most projects.

The Tailwind developers recommend that the easiest way to install
Tailwind for most projects is via the Node.js version of the Tailwind
command-line tool. Start by installing Tailwind itself:

$ npm install -D tailwindcss

Next, run the following command to create a Tailwind configuration
file:

$ npx tailwind init

This creates the following empty configuration file:

tailwind.config.js

module.exports = {

 content: [​"./html/*.html"​],

[7]

http://media.pragprog.com/titles/tailwind2/code/tailwind.config.js

 theme: {

 extend: {},

 },

 plugins: [],

};

You need to add one piece of information to the configuration file for
the Tailwind CLI to work. You need to tell Tailwind all the files that
might use a CSS class. The Tailwind CLI uses this information as in-
put to the CSS generation process we talked about at the beginning
of the chapter.

The information goes in the content property of the configuration and
uses standard file matching syntax, where * matches any text, and **

matches any and all subdirectories.

A standard React app might look like this, where Tailwind is directed
to look at all files in any subdirectory under src that end in html, js, or
jsx:

module.exports = {

 content: ["./src/**/*.{html,js,jsx}"],
 theme: {

 extend: {},

 },

 plugins: [],

}

A basic Ruby on Rails setup might look like this, matching all view
files with html.erb, all helper files with .rb, and all JavaScript files with
.js:

module.exports = {

 content: [
 './app/views/**/*.html.erb',
 './app/helpers/**/*.rb',
 './app/javascript/**/*.js'
],

 theme: {

 extend: {},

 },

 plugins: [],

}

Your application will likely have some slightly different setup, but the
goal is to have all files that might have CSS information passed to the
Tailwind CLI.

If you’re using Visual Studio Code, the Tailwind extension uses the
existence of the configuration file to determine if the project uses Tail-

wind. Other integrated development environments (IDEs) and editors
also have various plugins and other forms of Tailwind support.

Finally, we need to add Tailwind to our CSS files. In general, you put
the following lines in a CSS file that’s being imported. The exact loca-
tion of the file depends on your tooling, but we want it to look like this:

css/input.css

​@tailwind​ ​"tailwindcss/base"​;
​@tailwind​ ​"tailwindcss/components"​;
​@tailwind​ ​"tailwindcss/utilities"​;

Here we’re importing Tailwind in three layers. The base contains Tail-
wind’s reset classes, components is a small layer containing Tailwind’s
component class, and most of what I’ll be talking about in this book is
in the utilities layer. The layers become important as you customize
Tailwind—if you want to compose your classes with Tailwind modi-
fiers, the classes need to be defined before the utilities layer.

Other build systems might require you to use @import instead of
@tailwind as the command; check the official docs as a final source.

That should get you started. Let’s now see what Tailwind can do.

http://media.pragprog.com/titles/tailwind2/code/css/input.css

Quick Start

We’ll quickly run through styling a hero segment for a sample page
for a concert series called NorthBy. The sample page in the code
shows all the versions one after the other. This is only a page in the
public HTML of our server app, so there’s no server-side information
needed to explain this. (If you’re running the sample code, the page
should be visible by opening the intro.html page in a browser.)

Here’s our first version:

html/intro.html

<h1>Welcome to NorthBy</h1>

You should see no styling applied to the text at all, not even the nor-
mal size and bold styling you’d usually associate with an HTML h1

tag. This is a good test of whether Tailwind is installed. If you see any
styling applied to the text, then Tailwind isn’t loading and you should
walk through the installation steps again.

Let’s go back and forth between the code and the view to start adding
features here with Tailwind. I’m not going to explore the syntax or oth-

http://media.pragprog.com/titles/tailwind2/code/html/intro.html

er options in depth. All I want is to give a sense of what it’s like to
work with Tailwind as best as I can in a book format.

And, I have to add up front that I’m not a designer.

Here’s a first pass at getting a basic layout with text, subtext, and a
logo:

html/intro.html

<div class=​"flex"​>
 <div>

 </div>

 <div>

 <h1>Welcome to NorthBy</h1>

 <h2>A premium in sight and sound</h2>

 <button>Learn More</button>

 </div>

</div>

This code gives us the following result:

http://media.pragprog.com/titles/tailwind2/code/html/intro.html

This isn’t too different from our first version. There’s still no styling ap-
plied to the text, and there’s no spacing or anything.

Let’s add more changes. We can center the text, put a little bit of dis-
tance between the two parts, vertically center the text against the
logo, and put the logo on the right. The Tailwind classes I’m using do
a pretty good job of representing my intent:

html/intro.html

<div class=​"flex justify-center"​>
 <div class=​"mx-4 order-last"​>

 </div>

 <div class=​"mx-4 self-center"​>
 <h1>Welcome to NorthBy</h1>

 <h2>A premium in sight and sound</h2>

 <button>Learn More</button>

 </div>

</div>

http://media.pragprog.com/titles/tailwind2/code/html/intro.html

We’ve added classes here. The outer div now has two Tailwind class-
es: flex justify-center. The image has another two classes, mx-4 order-

last, and the text block also has mx-4 self-center. The mx-4 classes
specify horizontal margin, while the rest of the classes all deal with
layout using the CSS flexbox structure, which we’ll look at later in ​

Flexbox​.

Now, let’s go after that text. Let’s make the header big, the subhead
less big, and all the lines centered. And let’s give the whole thing a
background:

html/intro.html

<div class=​"flex justify-center bg-gray-300"​>
 <div class=​"mx-4 order-last"​>

 </div>

 <div class=​"mx-4 self-center text-center"​>
 <h1 class=​"text-6xl font-bold text-blue-700"​>Welcome to

NorthBy</h1>

 <h2 class=​"text-3xl font-semibold text-blue-300"​>
 A premium in sight and sound
 </h2>

 <button>Learn More</button>

 </div>

</div>

http://media.pragprog.com/titles/tailwind2/code/html/intro.html

This adds a new class to the outer div, bg-gray-300, which specifies a
background color. We’ve added a bunch of classes to the text ele-
ments, including a text-center class surrounding them. The title ele-
ment is now marked with text-6xl font-bold text-blue-700, which speci-
fies text size, font weight, and color. The subhead is smaller, less
bold, and a lighter shade of blue: text-3xl font-semibold text-blue-300.

Next, let’s make the button look more like a button, realign the image,

and while we’re at it, make the image rounder, too:

html/intro.html

<div class=​"flex justify-center bg-gray-300"​>
 <div class=​"mx-4 order-last self-center"​>
 <img src=​"../media/music.svg"​ size=​"100x100"​ class=​"rounded-full"​
/>

 </div>

 <div class=​"mx-4 self-center text-center"​>
 <h1 class=​"text-6xl font-bold text-blue-700"​>Welcome to

NorthBy</h1>

 <h2 class=​"text-3xl font-semibold text-blue-300"​>
 A premium in sight and sound
 </h2>

http://media.pragprog.com/titles/tailwind2/code/html/intro.html

 <button
 class=​"my-4 px-4 py-2 border-2 border-black rounded-lg​

​ text-white bg-blue-900 "​>
 Learn More
 </button>

 </div>

</div>

The image tag now has a class of rounded-full, which makes the
whole thing appear in a circle (admittedly quite a subtle effect on this
image). The button has grown a lot of classes: my-4 px-4 py-2 specifies
a vertical margin and horizontal and vertical padding; border-2 border-

black rounded-lg specifies the size, color, and shape of the border; and
text-white bg-blue-900 gives us the text and background colors:

Not too bad to start. In each step we were able to incrementally
change the display of the code by adding more Tailwind classes to
the markup, ending up with a pretty elaborate, if still not finished,

design.

[6]

[7]

And that’s only the beginning. We can make this logo look better on
smaller screens, we can make the background a gradient (or we can
make the text color a gradient), and on and on.

A key point here that’s hard to get across in print: this is fun. It’s easy
to make the incremental changes, see the results, and understand
the scope of your changes. Yes, you’re seeing snapshots of a
process, but the process didn’t involve us putting a Tailwind class in
and being surprised that it affected something on the page we weren’t
expecting.

Now, let’s look at how Tailwind works and start with some of the
basics.

FOOTNOTES

https://devtalk.com/books/modern-css-with-tailwind-second-edition/errata

https://tailwindcss.com/docs/installation

Copyright © 2022, The Pragmatic Bookshelf.

https://devtalk.com/books/modern-css-with-tailwind-second-edition/errata
https://tailwindcss.com/docs/installation

Chapter
2

Tailwind Basics

Tailwind seems like a counterintuitive solution to the problem of man-
aging CSS for a complex site. Tailwind is made up of many, many
small utility CSS class names, most of which set one specific CSS
property to one specific value. The preferred way to get complex be-
havior in Tailwind is to compose multiple CSS classes together on the
HTML element.

This pattern goes against a lot of the CSS naming conventions that
have developed over the years. Many CSS frameworks and naming
conventions suggest using names that reflect the semantic meaning
of the element on the page—names like button, nav-bar, or menu-item.

Tailwind classes aren’t semantic at all. They’re utility classes, mean-
ing a Tailwind class represents a specific CSS property like font-bold

for text formatting or m-6 for margin. Other CSS frameworks include
utility classes but consider the semantic class names more important.
Using Tailwind and utility classes suggests the potential for a lot of
duplication, as Tailwind utility classes are often repeated on multiple
DOM elements.

Despite the potential duplication, Tailwind can work on larger sites.

One reason is that when you apply a Tailwind class at any particular
point, both the nature of the styling change and the scope of that
change are exceptionally clear. Tailwind’s short names may seem
cryptic at first, but the naming patterns are consistent and become
easier to read. Also, Tailwind modifiers make it easy to define special
behavior in the HTML, such as hover and responsive behaviors on
differently sized screens. The modifiers also make the entirety of an
element’s styling clearer just by looking at the HTML.

Because you can combine Tailwind classes in arbitrary ways, you
write far less external CSS code in Tailwind than you might in another
CSS style. You don’t need to name as many custom CSS classes
when using Tailwind. And because the Tailwind changes are so
closely tied to the HTML markup, it’s easier to predict the result of
making a change.

With Tailwind you can extract a common CSS class from a list of Tail-
wind utilities and give it a more semantic name. Rather than create
your own classes this way, Tailwind recommends taking advantage of
the same tools you use in your front-end stack to reduce duplication.

For example, rather than creating a separate CSS class for button
styles, Tailwind suggests you create a reusable React component or

a Rails partial or helper method and define the CSS styles only once
for that reusable item.

Tailwind is made up of a few different pieces: the utility classes that
we’ll spend the bulk of our time working with in this book, a reset style
sheet, and functions that make working with Tailwind easier.

Utilities

Tailwind’s utility classes are the most important part of Tailwind to un-
derstand. Here’s how they work and how I’ll talk about them in the
book.

Tailwind is made up of thousands if not millions of utility classes, most
of which set the value of a single CSS property. For example, the
font-bold Tailwind utility class is an alias for the CSS property, font-

weight: 700. You’d use that utility in an HTML element as part of the
class attribute, as in class="font-bold".

There are far, far more potential Tailwind utility classes than you’d
ever use in a single project, or that you’d want to send to your brows-
er. To limit the CSS generated, Tailwind has a command-line tool that
generates the set of utility CSS classes that are used based on your
code. Additionally, the Tailwind configuration file gives you more con-
trol over the patterns and names Tailwind looks for. Unless I clearly
say otherwise, in this book I’ll talk about the default set of classes
used by a minimal configuration, and in Chapter 8, ​Customizing Tail-
wind​, I’ll talk about how to adjust the names you look for.

Tailwind utilities often come in families with a common pattern of be-
ginnings or endings. When I talk about those, I’ll use syntax like this:

.text-{size}, to indicate a family of utilities that include .text-xs, .text-sm,

.text-xl, and so on. When this syntax is used, the dash is only needed
if the part in braces is not empty, so you’ll use text-sm but also poten-
tially just text.

The variable part of the utility name doesn’t have to be at the end of
the name. For example, in margin sizing utilities, .m{direction}-{size} in-
dicates a family of utilities such as .m-0 or .mt-10. As you’ll see, the
variable part of utilities is often consistent across different parts of
Tailwind. For example, the options for {size} and {direction} in the mar-
gin utilities are shared by the padding utilities and several other utility
families.

Although Tailwind provides a set of defaults for things like sizing and
color, you can also use arbitrary values by enclosing them in square
brackets. For example, if you have a one-off margin, you could use m-

[104px] to indicate a 104 pixel margin, which is not one of the default
sizes provided. In general, any place you see a variable placeholder,
you can use square brackets to insert an arbitrary value. The use of
these arbitrary values is meant for one-off fixes. If you’re using the
same arbitrary value over and over, you might want to add that value
to the configuration file to make it available generally and keep the
design consistent.

You can even use square brackets to insert an entire CSS style prop-
erty if you need to use one that Tailwind doesn’t support, like [mask-

type:alpha].

Preflight

When you install Tailwind, you need to import three different files with
the commands: @tailwind base, @tailwind components, and @tailwind

utilities. Each of these files contains a different set of CSS rules. (In
some installations, you use the more generic file import command
@import rather than @tailwind.)

@tailwind base contains Tailwind’s reset style sheet called Preflight. A
reset style sheet is a restyling of all the base HTML elements to a
minimal set of styling properties. Without a reset style sheet, each
browser defines its own default set of style properties for how to ren-
der individual HTML elements that don’t have further CSS properties.

Using a reset style sheet gives our application control over this base-
line, eliminating differences between browsers and providing a more
minimal backdrop into which we insert our own custom styling.

You can see the full set of reset styles Tailwind uses by looking at the
file, node_modules/tailwindcss/dist/base.css. Essentially, though, Preflight
does a few things:

It overrides all styling from headers, so for example, an h1 is visual-
ly identical to the base text.
It removes styling from ul and ol lists, resulting in no bullets by de-
fault, which is an ironic thing to mention in a bulleted list.

It sets all margins to zero for elements that would normally have
margins.

It sets all borders to a 0-pixel width, solid, and the defined border
color by default.
It gives buttons a default border.
It sets images and image-like objects to display: block rather than
display: inline, meaning they’ll set themselves up as separate para-
graphs (as if they were div tags) rather than inline (as if they were
span tags).

If you only use the Preflight styles, you’ll get a pretty boring page. But
that’s the point. Using Preflight ensures that any change to the dis-
play properties are affirmatively and explicitly added by us.

The @tailwind components file is small, and it only consists of the defini-
tions of the container CSS classes, which are usually used at the top
level of a page to define the box that the whole page is drawn in. I’ll
talk about this more in Chapter 5, ​Page Layout​.

The bulk of what’s considered to be Tailwind is in the @tailwind utilities

file, which defines all the utilities and their modified variants. I’ll spend
most of this book describing the contents of this file.

Duplication

A common concern when looking at Tailwind and the long sets of
class lists you often need to accomplish your design goals is how to
manage duplication. That is, if you need to type class="text-6xl font-bold

text-blue-700" for every h1, as we did in ​Introduction​, isn’t that a lot of
typing that needs to be consistent every time you need an h1? What if
your h1 design changes?

Managing Duplication in Code

Tailwind does have a way to manage CSS class list duplication, but
you’re also encouraged to see the duplication issue as part of your
larger code setup, not only as a CSS issue. No matter what tool
you’re using to build your HTML markup, it likely has component or
function mechanisms you’re already using to reduce code duplica-
tion. When using Tailwind, it’s a great idea to see your CSS class lists
as part of that code.

For example, if you’re using React, you have components. Many oth-
er client-side frameworks offer components as well. Rather than man-
age duplication in CSS, you could create React components with the
common Tailwind classes:

​export​ ​const​ Header = ({children}) => {

 ​return​ (

 <div className=​"text-6xl font-bold text-blue-700"​>
 {children}

 <​/div​​>​

)

}

​export​ ​const​ SubHeader = ({children}) => {

 ​return​ (

 <div className=​"text-4xl font-semibold"​>
 {children}

 <​/div​​>​

)

}

​export​ ​const​ SubSubHeader = ({children}) => {

 ​return​ (

 <div className=​"text-lg font-medium italic"​>
 {children}

 <​/div​​>​

)

}

Then you’d use this:

<Header>Cool Text<​/Header​​>​

<SubHeader>Less Cool Text<​/SubHeader​​>​

<SubSubHeader>Kind ​of​ boring text<​/SubSubHeader​​>​

In plain JavaScript, you could also create a function that returns the
list of Tailwind classes:

​const​ title = () => { ​return​ ​"text-6xl font-bold text-blue-700"​ }

And in React you’d use this:

<Component className={title}>Cool Text<​/Component​​>​

In Ruby on Rails, you can similarly define helper methods for lists of
Tailwind classes:

​def​ ​title​

 ​"text-6xl font-bold text-blue-700"​
​end​

Or you can define an ERB partial with a name like
app/views/partials/_title.erb:

<div className=​"text-6xl font-bold text-blue-700"​>
 ​<%=​ ​yield​ ​%>​

</div>

The yield is important here because it allows you to call the partial
with a block containing children. The syntax is a little weird:

​<%=​ render ​partial: ​​"partials/_title"​ ​do​ ​%>​

 <h2>Whatever</h2>

​<%=​ ​end​ ​%>​

The inside of the block contains arbitrary ERB code that’s inserted in
place of the yield.

If you don’t like any of these syntax options and would rather have a
CSS-based solution for duplication, Tailwind provides a CSS directive
called @apply and a directive called @layer, which we’ll take a look at
next.

Using @apply for Duplication

The @apply directive lets you use Tailwind classes in the definition of
other CSS selectors. So we can redefine our header classes in CSS
like this:

​@layer​ components {

 .title { ​@apply​ ​text-6xl​ ​font-bold​ }

 .subtitle { ​@apply​ ​text-4xl​ ​font-semibold​ }

 .subsubtitle { ​@apply​ ​text-lg​ ​font-medium​ ​italic​ }

}

And you can then use those like any other CSS classes:

<div class=​"title"​>Title</div>

The @layer directive can either be base, components, or utilities. As far
as the browser is concerned, if you use @layer, the selectors are de-
fined as part of whatever layer you declare, no matter where in your
CSS files the selector definitions are actually located.

Using @layer components defines the selector as part of the components

and before the utilities. This means if you combine one of our own de-
finitions with a Tailwind utility, the utility wins, which is what we want.
So we can define, say, an extra big title with:

<div class=​"title text-5xl"​>Title</div>

To understand why @layer is important, you need to know a general
principle of CSS: all else being equal, if two CSS classes are trying to
adjust the same underlying property, the one defined last wins. (If
you’re familiar with CSS, you know that there’s also a principle of
specificity, where the most specific definition wins, but because all the
Tailwind utilities have the same specificity, that’s not an issue here.)

In a CSS file, if you have two definitions for the same CSS selector
that define the same property, the selector defined later in the file
wins. In Tailwind, if you have two utility classes that define the same

property, the one that’s later in the list wins, so class="text-xl text-2xl"

will give you text that’s sized 2xl.

By defining a custom selector inside a layer, the selector is loaded at
the end of that layer and before the next layer. This has some conse-
quences for how custom CSS might interact with other Tailwind utili-
ties or CSS. For example, we can make our definitions part of the
HTML by using @apply on tags, not class selectors. In this case, we
put the definition in the base layer:

​@layer​ base {

 h1 { ​@apply​ ​text-4xl​ ​font-bold​ }

 h2 { ​@apply​ ​text-2xl​ ​font-semibold​ }

 h3 { ​@apply​ ​text-lg​ ​font-medium​ ​italic​ }

}

Here, we’re redefining the h1, h2, and h3 elements directly, so we can
use this:

<h1>Title</h1>

By being in the base layer, these definitions are before all utilities, so
that <h1 class="text-6xl"> behaves as you’d want, with the 6xl taking
precedence. If the h1 was defined in the utilities layer, then the h1

would have precedence because it’d be defined later than the text-6xl.

And because we’ve moved the layer to base, Tailwind will consider

this part of the Preflight styles and define it before any components.

Again, this placement allows you to mix tags, components, and utili-
ties as expected.

This is all quite useful, and it allows you to effectively build up your
own framework using Tailwind utilities as building blocks. But it helps
to realize that you’re, in fact, building up a framework and taking upon
yourself all the attendant naming and maintenance responsibilities.

Modifiers

There’s one more Tailwind feature to talk about before we get to the
utility classes: modifiers.

Modifiers are Tailwind’s way of using CSS pseudo-classes, pseudo-
elements, and media queries in the HTML markup. For example, it’s
common to want objects to display differently when the user drags a
mouse over them, which corresponds to the CSS pseudo-class,

hover.

In Tailwind, you can define utilities in terms of CSS pseudo-classes
by adding modifiers to other Tailwind utilities. If you want an anchor
tag to have an underline when the mouse goes over it, you could do
this:

Click me

That’s compact, reasonably straightforward to read, and defined
along with the HTML so it’s clear when it applies. You can use hover:

with any Tailwind utility. You can even use hover: with an arbitrary
CSS style as in hover:[mask-type:luminance]. You can also combine
modifiers: hover:dark:underline.

As you’ll see in Chapter 7, ​Responsive Design​, Tailwind also uses
modifiers to allow different utilities to be invoked based on the width

of the screen, so you could write class="sm:m-2 lg:m-4, and your ele-
ment would grow a bigger margin as the screen gets wider. Tailwind
defines more than two dozen modifiers, and the resulting CSS is
automatically generated by the Tailwind CLI when you use them.

You can even use the modifiers in conjunction with @apply. So @apply

hover:underline is a legal way to define a new CSS class.

[8]

CSS Units

Most values in CSS that define length or width can take a number
with a unit. Height and width definitions can also take a percentage.

CSS defines two kinds of units: absolute and relative.

Absolute units are defined in terms of real-world units, so you could
define a width as, say, 5in for inches. More commonly, you’ll see px

for pixels. In the long-ago time, a px represented one actual display
pixel, but computer and phone displays are much denser now, and a
CSS pixel is defined as 1/96 of an inch. (You know, the commonly
used split of an inch into 96ths.) For fonts you’ll often see points, as in
font-size: 20pt. A point is 1/72 of an inch, which is a measurement that
far predates computers.

In CSS, you’re more likely to see relative units, of which the most
common is em, which is the size of the element, as in width: 10em. It’s
common to define font size in relative terms, but because font-size:

1.5em would be a circular definition, for the purposes of typographical
properties, em refers to the font-size of the parent, rather than the ele-
ment being matched.

If that’s confusing—which it is—it’s also unstable, because changing
a font size can have weird downstream effects on anything defined
with an em. A more stable alternative is rem, which is the font size of

[8]

the root element and which defaults to 16 points in the Tailwind reset
system. Most distances in Tailwind are either defined as a percentage
or in terms of rem.

Now, let’s look at what Tailwind gives us for our typographic styling
needs.

FOOTNOTES

https://tailwindcss.com/docs/hover-focus-and-other-states

Copyright © 2022, The Pragmatic Bookshelf.

https://tailwindcss.com/docs/hover-focus-and-other-states

Chapter
3

Typography

Odds are your web application is displaying text to a reader. Much of
the design of a website is about the placement, size, weight, and lay-
out of text. In this chapter, we’ll look at how Tailwind lets you control
the display of text.

Size and Shape

Perhaps the first thing you notice about text on a web page is its size
and styling. Tailwind provides a series of utilities for each.

The effective default for text size is the text-base class, which defines
the CSS properties font-size: 1rem and line-height: 1.5rem, meaning the
font size for text-base is the same as the font size for the root element
of your page, and the line height is 1.5 times that size. Tailwind pro-
vides a family of utilities, text-{size}, which includes two smaller steps,

ten larger ones, and the base class, giving us thirteen sizes overall.
Each step defines a font size and a line height, as listed in the table.

Class Font Size Line Height

text-xs 0.75rem 1rem

text-sm 0.875rem 1.25rem

text-base 1rem 1.5rem

text-lg 1.125rem 1.75rem

text-xl 1.25rem 1.75rem

Class Font Size Line Height

text-2xl 1.5rem 2rem

text-3xl 1.875rem 2.25rem

text-4xl 2.25rem 2.5rem

text-5xl 3rem 1

text-6xl 3.75rem 1

text-7xl 4.5rem 1

text-8xl 6rem 1

text-9xl 8rem 1

This is our first encounter with one of Tailwind’s explicit design goals,

which is to provide a consistent set of steps for a potentially infinite
set of values. With the text-{size} family of utilities, Tailwind makes it
easy to keep sizing and spacing consistent throughout the site. As
mentioned in ​Utilities​, you can use square brackets to define an arbi-

trary value as the size, as in text-[20px]; you do need to include the
unit as well as the number.

Font styling—your basic bold, italic, underline—is covered by a few
different CSS properties, but from Tailwind’s perspective, these styles
are just utility classes: italic and not-italic, and underline and no-

underline. You’d only use not-italic and no-underline if you want the text
to have different characteristics under different states. This is usually
tied to responsive behavior at different screen sizes, which we’ll look
at later in Chapter 7, ​Responsive Design​. You can also use overline

and line-through.

If you have underline, overline, or line-through specified, you can add an
additional class to style the line. Your options are decoration-solid,

decoration-double, decoration-dotted, decoration-dashed, and decoration-

wavy, all of which basically do what they say they do. A pattern speci-
fies the width of the decoration, decoration-{width}, where the default
values are 0, 1, 2, 4, and 8 corresponding to width in pixels. There’s
also decoration-auto and decoration-from-font, or you can use an arbi-
trary measurement. A similar pattern, underline-offset-{width}, specifies
the offset from the line and uses the same set of numerical values,

plus auto. You can specify the color of the underline as well with the
pattern decoration-{color}. (See the next section for what goes into the
color placeholder.)

For bold fonts, CSS provides nine grades of boldness from 100 to
900; normal text is 400. Tailwind also provides nine utility classes, one
for each grade:

font-hairline

font-thin

font-light

font-normal

font-medium

font-semibold

font-bold

font-extrabold

font-black

Not all fonts will have distinct lettering at all weights, but commonly
used web fonts should. I don’t know why Tailwind doesn’t use font-

weight-100, which would seem to be more consistent with other nam-
ing. You can get it to do so by changing the configuration, though (see
Chapter 8, ​Customizing Tailwind​). You can also put in an arbitrary val-
ue, as in font-[1200].

You might also want to ensure the case of the text. For example, you
might want a header to be all uppercase. Tailwind provides four utility
classes for case, all of which wrap the CSS text-transform property to
provide the behavior the utility name describes:

uppercase

lowercase

capitalize

normal-case

With these in hand, we can start to build up styles for our actual head-
ers. The following is, more or less, the default styling for a popular
CSS framework’s title and subtitle defaults:

<h1 class="text-3xl font-semibold">Title</h1>

<h2 class="text-xl">Subtitle</h2>

This gives us a title that’s 1.875rem (30-point type) with a line height of
2.5rem (36 points) and semibold, and a subtitle that’s 1.25rem (20

points) at normal weight and a line height of 1.75rem. I often like my
headers to be a little more attention-grabbing, so I might do some-
thing like this:

<h1 class="text-4xl font-bold">Title</h1>

<h2 class="text-2xl font-semibold">Subtitle</h2>

<h3 class="text-lg font-medium italic">Header</h3>

This gives us a slightly bolder and bigger title and subtitle, plus a
third-level header that’s a little bit bigger than regular text, a little bit
bolder, and also italic. I might also add some spacing around the
headers; we’ll look at how to do this in Chapter 4, ​The Box​.

Remember that Tailwind’s reset styles make it so that h1, h2, and so
on have no default styling, so using those tags with Tailwind is a se-
mantic note that the text is a header of some kind. It has no stylistic
effect.

Right now, there’s a good chance you’re asking whether I’m seriously
telling you it’s a good idea to have to type text-lg font-medium italic

every time you want a header. That’s a lot of typing, it’s on the cryptic
side, and it’s a lot of typing. See ​Duplication​, for ideas on how to man-
age duplication in Tailwind.

Color and Opacity

Tailwind lets you adjust the color and opacity of text.

Let’s talk about color first. Tailwind offers hundreds of color utilities
out of the box, and those utilities behave similarly across many differ-
ent color-related families of classes.

Text colors are of the pattern text-{color}. There’re three special colors:

text-transparent, text-inherit, and text-current. The text-transparent class
makes the text transparent, meaning you can see the background
color through it. You can sometimes use this class for effect, especial-
ly with bg-clip-text, which makes the background match the shape of
the text. The text-current and text-inherit options are both useful resets.

text-inherit uses the color inherited from a parent. The text-current

class uses the CSS currentColor, which is normally used to set other
color properties to the same color as the text; for text itself it should
behave the same as text-inherit.

Tailwind also defines text-black, which sets the color to #000000, and
text-white, which sets the color to #ffffff.

Most of the time, though, Tailwind uses combined classes: .text-

{color}-{level}. Tailwind sets 22 different colors by default at 10 different
levels, from the lightest at 50 and then every multiple of 100 from 100

to the darkest at 900. Following are the default colors, grouped by
similarity:

Slate, Gray, Zinc, Neutral, Stone
Red, Orange, Pink, Rose
Amber, Yellow
Lime, Green, Emerald, Teal
Cyan, Sky, Blue,

Indigo, Violet, Purple, Fuchsia

Any combination of color and level can be used, like .text-yellow-400 or
.text-blue-200. I’m not going to put the exact RGB hex values for all
eighty combinations, but you can see them online in the Tailwind doc-
umentation. The Tailwind documentation describes the levels as
“expertly-crafted,” which I take to mean that they aren’t automatically
calculated.

Custom colors can be defined in the configuration file (see Chapter 8,

​Customizing Tailwind​), or you can do one-offs, such as text-[#34da33].

As you’ll see, many prefixes use the same colors and levels through-
out Tailwind.

You can count on the default colors getting darker as the numbers in-
crease, and you can take advantage of this for some subtle effects:

[9]

<div class="text-gray-300 hover:text-gray-700">
 Hi
</div>

This gives you lighter gray text that darkens when the user hovers
over it. You can even turn this into a function that returns a string of
classes. Here’s the JavaScript version:

const hoverDarker = (color) => {

 return `text-${color}-300 hover:text-${color}-700`
}

But see ​Change Generated Classes​, for a reason why you might not
want to use this exact implementation.

Now, let’s talk about opacity. Changing the opacity makes colors
more or less visible. Tailwind allows you to specify the opacity as an
extension to the color declaration using the pattern, text-gray-300/50.

What that means is to specify opacity, you add a slash and then the
opacity level after the color. The list of default opacity levels is a little
weird—it’s every multiple of 10 between 0 and 100, plus 5, 25, 75, and
95. The number represents a percentage, so, text-gray-300/20 for 20%

or text-gray-300/95 for 95%. You can use square brackets for an arbi-
trary value, as in text-gray-300/[42].

All the same color patterns can be used to specify the color of the text
pointer using the pattern caret-{color}, as in caret-fuschia-300 or caret-
current. This includes arbitrary colors with caret-[#ababab].

Color Patterns

You’ll see this pattern a few different times in Tailwind: a
class name made up of a prefix followed by the same set
of color and opacity options. You’ll see this for borders
(border-), background colors (bg-), and many other color-
based CSS properties. Later, in Chapter 8, Customizing
Tailwind​, you’ll see that colors can be customized in one
place, and the change will apply to all of the properties
that use colors.

Alignment and Spacing

Several Tailwind classes are used to specify the horizontal alignment
of text:

text-left

text-center

text-right

text-justify

They all change the CSS text-align property. The exact bounds of the
alignment depend on the box the text is in. (I’ll talk more about that in
Chapter 4, ​The Box​.)

The CSS property for vertical alignment is vertical-align, and these are
the Tailwind classes:

align-baseline

align-top

align-middle

align-bottom

align-text-top

align-text-bottom

align-sub

align-super

As with the horizontal alignment, exact positioning depends on the
text box.

For line spacing, Tailwind has both a relative and an absolute option.

The relative option starts with leading-none, which makes the line
height exactly the size of the font. (“Leading” is the printing term for
line height, and it rhymes with “wedding,” not “beading.”) That’s nor-
mally going to feel a little tightly packed, and Tailwind lets you sepa-
rate the line height with the following classes in order from most
closely packed to farthest apart:

leading-tight

leading-snug

leading-normal (1.5 times the font size, usually your default)

leading-relaxed

leading-loose

The absolute option is based on rem, meaning it’s derived from the
root element size, not the size of the DOM element it’s attached to.

You’ve got leading-3 through leading-10, which takes us from 0.75rem to
2.5rem in 0.25 increments. You have the arbitrary option here, with
something like leading-[4.3rem].

Next is the property CSS calls letter-spacing and Tailwind calls tracking.

You’ve got tracking-normal, then two utilities for pushing the text closer
together:

tracking-tight

tracking-tighter

Also, you have three utilities for making the letter spacing wider:

tracking-wide

tracking-wider

tracking-widest

These utilities can add nice effects on headers with big text.

Special Text

Tailwind allows you to use modifiers to match CSS pseudo-classes
for a few different types of text that you might want to treat differently.

The modifier selection applies to text that has been selected by the
user, so you can apply color (selection:bg-red-400) or other styling
(selection:font-bold). The selection modifier, if applied to a parent ele-
ment, will be carried through to all child elements.

If you are into newspaper or magazine style effects, Tailwind offers
both first-line and first-letter modifiers. This seems most applicable for
size and weight, as in first-letter:text-9xl first-letter:font-bold first-

line:text-2xl and so on.

Also, Tailwind allows before: and after: as modifiers for the CSS
before:: and after:: pseudo-classes, which allow you to insert content
that doesn’t show up in the DOM. In most cases, though, it’s easier
and more effective to use actual HTML spans to put the content in the
right place rather than using the CSS before and after utilities.

Lists

Tailwind includes two sets of classes to manage tags. The first is
the style of the list: you’ve got list-disc (bulleted), list-decimal (num-
bered), and list-none. You can also choose whether the bullet or num-
ber is inside or outside the text box with list-inside and list-outside.

The special modifier marker: lets you apply a style to the bullet or
number in a list. Likely you’d use this for color (marker:text-blue-300) or
size (marker:text-2xl). A nice thing about the marker modifier is that it
can be inherited: you can apply it to the ul or ol tag and it will automat-
ically cover the included li tags.

Typography Plugin

If you want some legible defaults for basic typography of long text on
your page, Tailwind provides an official typography plugin.

To install the plugin, you first add the package:

$ yarn add @tailwindcss/typography

Then add it to the Tailwind configuration file, which now should have
this plugins section:

module.exports = {

 plugins: [

 require('@tailwindcss/typography'),
],

}

You use the typography plugin by adding the CSS class prose to any
element, like this:

<article class="prose">
 All your text
</article>

If you want to see what this looks like in more detail, you can visit my
very own blog at https://noelrappin.com/blog, which uses this plugin.

[10]

https://noelrappin.com/blog

To change the size, you use size modifiers, which you must use in
conjunction with a class that already uses prose, like this:

<article class="prose prose-sm">
 All your text
</article>

The base size is 1rem or 16 points. These are the size modifiers:

-sm 14pt

-lg 18pt

-xl 20pt

-2xl 40pt

You can similarly specify using one of the different default gray
scales, with prose prose-gray, prose prose-neutral, prose prose-slate, prose

prose-stone, and prose prose-zinc.

A typical use case for the prose plugin is to surround a chunk of previ-
ously existing text or rendered markdown. In those cases, the markup
inside the prose block will likely have HTML elements that are dy-
namically generated in such a way where you can’t get to the internal

elements of the text. In that case, you can specifically customize the
behavior of HTML elements within the prose block. The general pat-
tern here is prose-{element}:{tailwind}, where element is an HTML ele-
ment (most of your popular HTML elements for prose text will qualify)

and tailwind is a Tailwind utility class. An example might be prose-

h1:font-bold or prose-a:decoration-red-700. There’s a special element
header that matches all the header elements.

Tailwind Forms

Tailwind provides a series of useful defaults for forms using the
@tailwindcss/forms plugin. As with the typography plugin described
earlier, to install the plugin, first add the package:

$ yarn add @tailwindcss/forms

Then add require(’@tailwindcss/forms’) to the Tailwind configuration file:

module.exports = {

 plugins: [

 require('@tailwindcss/forms'),
],

}

This will give reasonable styles to the basic form elements. (See
https://tailwindcss-forms.vercel.app for a demo.) For input forms, the
plugin uses the type attribute to affect sizing, so you do need to have
type=text even for basic inputs for the styling to work. Note that the
Tailwind forms aren’t designed to be a finished work by themselves,

but rather a better reset to start from when adding styling to your cus-
tom page.

Now that we’ve seen how typography works, let’s place that text in-
side a box.

[11]

https://tailwindcss-forms.vercel.app/

[9]

[10]

[11]

FOOTNOTES

https://tailwindcss.com/docs/customizing-colors#default-color-palette

https://tailwindcss.com/docs/typography-plugin

https://github.com/tailwindlabs/tailwindcss-forms

Copyright © 2022, The Pragmatic Bookshelf.

https://tailwindcss.com/docs/customizing-colors#default-color-palette
https://tailwindcss.com/docs/typography-plugin
https://github.com/tailwindlabs/tailwindcss-forms

Chapter
4

The Box

Each HTML element in the DOM takes up a rectangle of space on the
screen. Every browser’s developer tools include a representation of
that rectangle that looks like this:

If you don’t make any customizations, the size of the box is deter-
mined by the content of the element. Tailwind gives you control over
every aspect of the box.

Can You See the Box?

Perhaps the most important feature of any DOM element is whether
the user can see it. By manipulating this feature with a little Java-
Script, you can add interaction cheaply. A common pattern is to load
a lot of potential DOM elements at the initial page load but have many
of them start off as hidden, manipulating visibility to change the page
without needing to call the server for more data.

Most of the time when you want to have a DOM element the user
can’t see, you’ll want to use the hidden Tailwind utility, which wraps
the CSS property, display: none. In Tailwind, the opposite of hidden is
usually block. While many other potential values for display are avail-
able, Tailwind’s Preflight makes a lot of elements use the block value.

The other common value is inline, but in Tailwind, you’re more likely to
construct inline behavior using a flexbox or grid layout (more on this
in Chapter 5, ​Page Layout​).

Tailwind also has visible and invisible utilities. The difference between
invisible and hidden is that a hidden element doesn’t display and also
isn’t part of the DOM layout, and so its existence doesn’t affect the
layout of other elements. In contrast, an invisible element doesn’t dis-
play its contents but does affect the layout of the rest of the page—it’ll
show up as a gap in the page, still sized, but empty.

What’s in the Box?

The CSS box model has four parts. From inside out, they are:

Content—Content is the text or media inside the element. (We
looked at content in the previous chapter.)
Padding—The padding is the space around the content but inside
the border. You can specify the padding separately in each of the
four directions, only horizontally, only vertically, or in all directions
at once. I don’t know you or your website, but odds are pretty good
that a lot of your site could use more padding.

Border—The border is the edge around your padding. The only
thing that distinguishes border from padding is that you can use a
color and a pattern to draw a border around the padding and
content.
Margin—The margin is outside the border and between this ele-
ment and all the other elements. You can specify the margin in all
directions the same way you can specify padding.

You can also specify the height and width of the box, either in abso-
lute sizes or as a percentage of the available width and height. If you
explicitly specify a width or height, any unused space is considered
part of the content. If you do limit the size of the element, you can
also tell the page what to do with any content that overflows that

amount of size. Finally, you can do quite a few things with the back-
ground of an element.

Okay, let’s talk about the parts of the box.

Padding and Margins

Padding and margins aren’t next to each other—they’re always sepa-
rated by the border. But Tailwind handles them similarly enough that
it’s easy to talk about them together.

Tailwind provides, if I’m counting correctly, 245 different classes to
manage padding (not counting arbitrary values). I’m not going to list
them all here (though the Tailwind documentation does), because
there’s a pattern to them: p{direction}-{size}.

All the padding classes start with p, followed by an optional character
for the direction. Six directions exist: t, b, l, and r for top, bottom, left,
and right, respectively; x for horizontal (meaning left and right); and y

for vertical (meaning top and bottom). If there’s no direction charac-
ter, the padding appears in all directions.

By default, Tailwind defines 34 numerical sizes that can be used for
padding and margins. A special size, px, is equal to 1 pixel:

0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 24, 28, 32,

36, 40, 44, 48, 52, 56, 60, 64, 72, 80, 96

Each number corresponds to 0.25rem—or one-fourth of the size of
the root element of the page.

[12]

For example, .p-10 is 2.5rem of padding in all directions, .px-4 is 1rem
of padding horizontally, .pr-1.5 is 0.375rem of padding on the right, and
.pt-px is 1 pixel of padding on top. The goal here is to give you more
fine-grained control at small sizes and then a consistent set of values
for higher amounts of padding. You can have multiple padding class-
es for different directions, such as class="px-10 py-20".

Sizing Pattern

This sizing pattern is another Tailwind pattern that’s used
for several different properties. We see it here for pad-
ding as in p-24, but it’s also used for margin (m-24), height
(h-24), and width (w-24). In all cases, you can use square
brackets for an arbitrary size and unit, as in p-[15px].

Margins follow the same basic structure as padding with a few
changes:

Margin classes start with an m, and the pattern is m{direction}-{size}.

Like padding, you can specify multiple margins in different
directions.

All directions have an additional size option: -auto. Auto is the mar-
gin option that horizontally centers the element within its parent
container. You can do an auto on the top and bottom, but it doesn’t

have any effect. (We’ll look at how to vertically center elements in
Chapter 5, ​Page Layout​.)
Margins can be negative, which moves an element closer to the
next element than it otherwise would be, rather than farther away,

placing it inside the margin of the element next to it. A negative
margin starts with -m instead of m and has the same direction and
size options as regular margins.

Borders

Borders are similar to margins and padding but are more complicated
because they can have their own color and style.

The size options for borders are more limited because you typically
don’t want borders to be as big as margins might get. More important-
ly, the size options for borders are measured in pixels, not rem. The
most basic border option is simply border, which gives you a 1-pixel
border in all four directions.

After that you have .border-{side}-{size}, where the side is optional. But
unlike padding and margins, a dash is included before the side. The
side options are: -b, -t, -l, and -r, and -x and -y, which combine two
sides. Not including a side applies the size to all four sides. The size
is also optional: -0, -2, -4, and -8, which is the width of the border in
pixels. No specified size means a size of 1. Arbitrary values can be
used with square brackets.

If either the side or the size isn’t included, you don’t need the prefixing
dash. For example, valid border width classes include: border-2, which
doesn’t specify a side and gives you a 2-pixel border on all sides;

border-b, which doesn’t specify a size and gives you a 1-pixel bottom
border; and border-r-4, which results in a 4-pixel right border.

Border lines may have a style, for which you’d use a separate Tail-
wind utility class. The default is a solid border, which is indicated with
border-solid. Tailwind also provides utilities for border-dashed, border-

dotted, border-double, and border-none.

Border lines may also have a color and an opacity. The border color
and opacity options are exactly the same as the text color options,

only prefixed with border. For example, you can specify color with
border-{color}, as in border-gray-500, and add an opacity with border-gray-

500/50. The colors and opacity levels are the same as for text. You
can specify border color on a specific side by adding the same side
modifiers, as in border-r-gray-500 or border-x-gray-500.

Finally, borders may be round. Tailwind provides the following nine
basic rounded options, each of which specifies the radius size in rem:

Class Radius Size

round-
ed-none

Specifies a radius of 0, for no rounding at all

round-
ed-sm

0.125rem

Class Radius Size

rounded 0.25rem

round-
ed-md

0.375rem

round-
ed-lg

0.5rem

round-
ed-xl

0.75rem

round-
ed-2xl

1rem

round-
ed-3xl

1.5rem

round-
ed-full

Sets the border radius to effectively infinity (okay,

9999 pixels) allowing for something to look like a cir-
cle rather than a rounded rectangle

Class Radius Size

round-
ed-
[{size}]

Allows you to specify an arbitrary radius with a unit

You might want to round only one or two corners. The only case I can
think of for this offhand is if you have a lot of elements grouped to-
gether into a larger rounded rectangle. If you want, you can insert a
direction between rounded and the size. You can specify both corners
on a side with a direction of b, t, l, or r. You can also specify a single
corner with tl, tr, bl, or br. Legal options might include rounded-tr-md or
rounded-b-full.
Here’s a small example of some of the margin and bor-
der options (see also the image):

html/box.html

<div>

 <div class=​"mb-10"​>
 <button class=​"p-10 border border-black"​>One</button>

 <button class=​"m-10 border border-black"​>Two</button>

 <button class=​"m-2 p-2 border-4 border-black"​>Three</button>

 </div>

 <div>

 <button class=​"m-4 p-4 border-2 border-black rounded-md"​>

http://media.pragprog.com/titles/tailwind2/code/html/box.html

 Four
 </button>

 <button class=​"m-4 p-4 border-2 border-black rounded-2xl"​>
 Five
 </button>

 <button class=​"m-4 p-4 border-2 border-black rounded-full"​>
 Six
 </button>

 </div>

</div>

In the top row, the first button specifies padding and a border outside
the padding, while the second button specifies a margin, and the bor-
der is inside the margin. The bottom row of buttons shows different
rounded radius options.

Tailwind has a different way to specify a border called a ring. Rings
have advantages over borders. For one thing, they actually look good

and work well on rounded elements. Also, rings are implemented us-
ing CSS box shadow properties, so they don’t affect layout spacing.

Rings can have width, color, opacity, and an optional offset. If color
isn’t specified, the default color is a not-fully opaque blue, which
makes it look like the button has focus. The pattern is ring-{width},

where the width is 0, 1, 2, 4, and 8, corresponding to the pixel width of
the ring (like a border). There’s also simply ring, which is three pixels,

and ring-inset, which draws the ring in the content part of the box,

rather than the border part of the box, and you can use ring-[{arbitrary}]

with an arbitrary size and unit.

The pattern ring-{color} works with any defined color to change the col-
or of the ring, and adding a slash, as in ring-{color}/{opacity}, changes
the opacity, again with the same levels as text opacity. ring-offset-

{pixels} offsets the ring slightly, and ring-offset-{color} gives the offset
ring a color.
Here’s an example:

html/box.html

<div>

 <button class=​"m-4 p-4 rounded-md ring"​>Four</button>

 <button class=​"m-4 p-4 rounded-2xl ring-2"​>Five</button>

 <button
 class=​"m-4 p-4 rounded-full ring-4 ring-offset-4 ring-offset-black"​
 >

http://media.pragprog.com/titles/tailwind2/code/html/box.html

 Six
 </button>

</div>

Background Color

Tailwind’s background color is similar to text color and border color:
the pattern is bg-{color}, and uses the same color names as the other
groups (bg-red-700 or bg-orange-300). Tailwind also provides bg-

{color}/{opacity} with the same steps as text opacity. As in other places,

you can use arbitrary values via square brackets for the color (bg-

[#cdcdcd]) or the opacity (bg-red-700/[43]).

Shadows

Technically, a box shadow isn’t a background color, but it’s sort of
used like one. Tailwind provides a few utilities to manage the box
shadow. The base utility, shadow, effectively creates a 10% opacity
black border that’s 1-pixel vertically offset, with a 3-pixel width. You
can then make that smaller with the xs and sm modifiers or bigger with
the md, lg, xl, and 2xl modifiers (shadow-sm, shadow-xl, and so on). Note
that arbitrary values here are more complicated than in other Tailwind
patterns. (See https://tailwindcss.com/docs/box-shadow for details.)

The color of the shadow can be specified with shadow-{color}.

Separately, you can have a small inset shadow with the shadow-inner

class, which makes the element look like it’s lower than the rest of the
screen. (Sorry, no size variants.) And you can cancel all of these with

https://tailwindcss.com/docs/box-shadow

shadow-none. As you can see in the following example, it’s a pretty
subtle effect unless you make it large (see also the image):

html/box.html

<div class=​"bg-gray-50 p-10"​>
 <div class=​"mb-10"​>
 <button class=​"p-10 mx-10 shadow-sm bg-white"​>One</button>

 <button class=​"p-10 mx-10 shadow-sm bg-white"​>Two</button>

 <button class=​"p-10 mx-10 shadow-lg bg-white"​>Three</button>

 </div>

 <div>

 <button class=​"p-10 mx-10 shadow-xl bg-white"​>Four</button>

 <button class=​"p-10 mx-10 shadow-2xl bg-white"​>Five</button>

 <button class=​"p-10 mx-10 shadow-inner bg-white"​>Six</button>

 </div>

</div>

http://media.pragprog.com/titles/tailwind2/code/html/box.html

Tailwind also provides support for the drop shadow filter. The differ-
ence between box shadows and drop shadows is subtle; for our pur-
poses the biggest difference is that the drop shadow will work better if
the element is not rectangular (for example, if it’s an image with a
transparent background). You can get a drop shadow with drop-

shadow and use the same size modifiers that are used by the regular
shadow.

Gradients

Tailwind also lets you set the background as a gradient, which re-
quires you to specify multiple classes on the same element. I think
this is the first time we’ve seen a case where you need multiple Tail-
wind classes to get something to work right, which is a pattern we’ll
see more frequently as we look at page layout options in the next
chapter.

In pure CSS, you specify a gradient by assigning the background-

image: property a value from a linear-gradient function. You specify a
direction, a “from” color (which is the starting point of the gradient),
and a “to” color (which is the ending point). Optionally, you can speci-
fy a “via” color, which is a middle point.

Tailwind provides utilities with the pattern, bg-gradient-to-{direction},

and the four sides as directions: t, b, r, and l. So bg-gradient-to-t

means the gradient “from” color starts at the bottom and shades to
the “to” color, which is at the top, while bg-gradient-to-r means that the
“from” color is at the left, and the “to” color is at the right.

You also get four corner directions: tl, tr, bl, and br, which combine to
provide a diagonal gradient. So bg-gradient-to-tr is a gradient going di-
agonally from bottom left to top right.

bg-none clears the gradient.

With the direction set, we can then add in the colors. We use the
same color names we’ve already seen, but with the prefixes from-, to-,

and via-. To go from red to blue and right to left, you’d need three
classes:

bg-gradient-to-l from-red-500 to-blue-500

If you want to stop at yellow in the middle, you’d add a “via”:

bg-gradient-to-l from-red-500 to-blue-500 via-yellow-500

If you specify a “from” or both “from” and “via” without specifying a
“to” color, the gradient will shade toward transparent.

Because this book isn’t printed in color, I have limited options for
showing the true effects of a gradient, but here’s an example in
grayscale:

html/box.html

<div>

 <div class=​"mb-10 bg-gradient-to-r from-gray-50 to-black p-10 w-
1/2"​>
 <button class=​"p-10 mx-10 bg-white"​>One</button>

 <button class=​"p-10 mx-10 bg-white"​>Two</button>

 </div>

 <div
 class=​"mb-10 p-10 w-1/2​

​ bg-gradient-to-r from-gray-50 via-black to-gray-50"​>
 <button class=​"p-10 mx-10 bg-white"​>Three</button>

 <button class=​"p-10 mx-10 bg-white"​>Four</button>

 </div>

</div>

http://media.pragprog.com/titles/tailwind2/code/html/box.html

Background Images

CSS has a lot of properties for displaying a background image, and
Tailwind provides utilities for almost all of them.

Specifying Images

If you want a background image that comes from a URL, Tailwind
provides utilities for how that image is displayed but not for the URL
itself. You have three options for specifying the background image
URL: you can use the style= attribute of the DOM element, as in <div

style="background-image: url(whatever)"> </div>, or you can use the arbi-
trary syntax and surround it in square brackets, as in class="

[background-image:url({url})]". Finally, you can create your own CSS util-
ity classes:

.bg-pattern-image {

 background-image: url(whatever);
}

Positioning

When you have a background image, you can specify how the back-
ground image is positioned in the box. This tells CSS which side of
the image should touch which side of the box. Tailwind provides nine
utilities. The first one centers the image in the center of the box:

bg-center

Eight directions exist, including four sides:

bg-left

bg-right

bg-top

bg-bottom

And four corner utilities:

bg-left-top

bg-left-bottom

bg-right-bottom

bg-right-top

I’m genuinely not sure why the horizontal side goes first here when
the vertical side has gone first in all the other instances when we’ve

talked about corners. Nor do I know why they’re spelled out.

Tiling

If the image is smaller than the box, you have the option to tile it. bg-

repeat tiles the image horizontally and vertically. To go in only one di-
rection, you’d use bg-repeat-x or bg-repeat-y. The utility bg-no-repeat re-
sets everything.

Two special options, bg-repeat-round and bg-repeat-space, change how
the tiling places the images. The default repeat will put a partial im-
age at the end of the box. If you choose bg-repeat-space, there will be
no partial image and any whitespace will be distributed evenly be-
tween the tiled images. If you choose bg-repeat-round, there will be no
whitespace because each image will be stretched to cover the
whitespace.

Scrolling

A common effect is to hold the background in place when the page
scrolls so the viewport shows a different part of the image as the user
scrolls through. Tailwind lets you do this with bg-fixed; the opposite of
which is bg-local or bg-scroll, depending on whether you want a scroll
bar in the viewport itself or not.

Location

You can specify the part of the box that will contain the image. The
default is bg-clip-padding, where the background image displays in the
content and padding parts of the box but not in the border. You can
also make the image cover the border with bg-clip-border, or you can
limit the image to only the content and not the padding with bg-clip-

content.

More interestingly, bg-clip-text shows only the background image in-
side the shape of the content text. You’ll want to combine this with
text-transparent so the text color won’t block it, but then you can see
the background color or image only in the text. If you combine this
with gradients, you get a text gradient as shown in this example:

html/box.html

<div class=​"bg-gray-50"​>
 <div class=​"text-6xl font-bold p-10"​>
 <div
 class=​"bg-clip-text text-transparent py-2​

​ bg-gradient-to-l from-gray-50 to-black"​>
 NorthBy: A Premium in Sight and Sound
 </div>

 </div>

</div>

http://media.pragprog.com/titles/tailwind2/code/html/box.html

Filters

CSS defines a lot of filters that affect the display of an element. Tail-
wind allows you to use them; here’s a set of the most useful.

You can blur the element with blur and blur the background with bg-

blur. Technically, that’s an 8-pixel blur. Tailwind provides one smaller
blur, blur-sm, and four larger ones, blur-md, blur-xl, blur-2xl, and blur-3xl

(adding bg- to any of these works for background only).

You can make an element grayscale with grayscale and negate it with
grayscale-0. Similarly, you can make an element sepia toned with sepia

and negate it with sepia-0.

You can adjust the brightness of an element with brightness-{level},

where the level can be 0, 50, 75, 90, 95, 100, 105, 110, 125, 150, or 200,

where brightness-100 is 100%, or neutral. Similarly, you can adjust the
contrast with contrast level, but the standard values are just 0, 50, 75,

100, 125, 150, and 200. Finally, you can saturate with saturate-{level},

which has even fewer defaults—just 0, 50, 100, 150, and 200. Arbitrary
values can be used with square brackets for all three of these utilities.

Height and Width

The height and width of elements are notoriously difficult to manage
in CSS. Tailwind provides some utilities for sizing, but remember that
sizing is also often dependent on the available size based on both the
parent elements and the content.

Tailwind uses the patterns w-{size} and h-{size} for the width and height
utility classes. For both directions, Tailwind offers a set of fixed size
options based on the same sizing scale and the same set of numbers
we’ve seen for padding and margins, with each number correspond-
ing to 0.25rem.

Special options include these:

-auto auto-sizing

-px single pixel

-full 100% of the parent container

-screen 100% of the viewport

-min minimum content size (CSS min-content)

-max maximum content size (CSS max-content)

-fit fit content size (CSS fit-content)

You can use these in classes like h-0, w-8, or h-px.. The -min content
sizes the box to the smallest amount that content can be in; -max con-
tent goes to the widest amount; and -fit content is the widest amount
that fits between the min-content and max-content.

A series of relative width options are also available. Tailwind gives
you a series of fractional options, such as .w-1/2 for 50%. You get frac-
tions for halves, thirds, quarters, fifths, sixths, and twelfths (twelfths
only exist for width, not height). All of these are actual Tailwind utility
classes: .w-3/4, .h-2/6, .w-7/12. You can use these widths to fake a grid
layout, but it’s easier to use an actual grid layout, as you’ll see in
Chapter 5, ​Page Layout​.

CSS also allows you to specify the minimum and maximum height
and width, and Tailwind gives you limited utilities for them. On the
minimum side, you have .min-h-0 and .min-h-full, and .min-w-0 and min-

w-full, giving you a minimum size of zero or of the entire parent con-
tainer. You also have -min, -max, and -fit as suffixes for both.

For height, you also have a viewport option: .min-h-screen.

[12]

On the maximum side, for height, you have max-h-{size}, with all the
same list of size numbers, plus .max-h-full and .max-h-screen for the full
parent container height or the full screen height, respectively.

Maximum width has different options. You have max-w-0 for zero
width, and max-w-none for no width, which are different things in CSS.

There are a bunch of size options, max-w-{size}, where the size is xs,

sm, md, lg, xl, 2xl, up through 7xl. The xs option is 20rem, the 7xl option
is 80rem.

You’ll find a special option for text, max-w-prose, which is 65 characters
wide. There’s a 100% of parent option, .max-w-full. You also have
screen options based on screen size: .max-w-screen-sm, .max-w-screen-

md, .max-w-screen-lg, .max-w-screen-xl, and .max-w-screen-2xl. (I’ll talk
more about the screen widths in Chapter 7, ​Responsive Design​.)

Now that we’ve got our boxes set, let’s talk about laying out entire
pages.

FOOTNOTES

https://tailwindcss.com/docs/padding

Copyright © 2022, The Pragmatic Bookshelf.

https://tailwindcss.com/docs/padding

Chapter
5

Page Layout

In the previous chapter, we looked at ways you can use Tailwind to
control the display of a single DOM element. In this chapter, we’ll look
at how Tailwind can manage the layout of multiple elements.

With Tailwind, you can lay out the elements on an entire page and
manage common features like navigation, sidebars, and footers. You
can also use Tailwind to put together complex groupings of elements
within a page, such as cards or hero blocks.

Let’s start with some general utilities Tailwind provides to help place
elements on a page: the box-to-box relationships.

Containers

Many CSS frameworks use a container class as the general top-level
container to specify page width. While Tailwind does offer a container

utility, Tailwind’s version does much less than similar classes do in
other frameworks. All the container utility does in Tailwind is specify
the max-width of the element based on the width of the browser view-
port. For example, any viewport between 640 and 768 pixels wide
would be set to a max-width of 640 pixels. Once the viewport goes over
768, the max-width stays at 768 pixels until the viewport hits 1024 pixels
and then jumps again when the viewport reaches 1280 pixels.

The advantage of using a container is that it allows you to only worry
about those specific widths in your design rather than having to take
into account any possible width the viewport might have.

Viewports

Viewports

In CSS, the viewport is the area of the browser where the
user can see content. Usually, the dimension of concern
is the width of the viewport because that determines how
much content can be placed across the screen without
scrolling horizontally. The HTML meta tag is used to con-
trol the viewport width on mobile screens. By default, mo-
bile browsers often assume a wider display than the ac-
tual device (often 980 pixels) and scale the content to fit
on screen. That usually looks terrible. You should use the
content="width=device-width,initial-scale=1" attribute for the
browser to use the device size as the viewport rather
than scaling the display down from a wider size.

If you’re familiar with other frameworks, Tailwind’s container won’t
have features you may be expecting. A Tailwind container doesn’t au-
tomatically horizontally center its child elements. To get centering be-
havior, you pair the container with mx-auto. A Tailwind container also
doesn’t introduce a padding or margin to pull its elements away from
the browser’s border. To get this behavior, you pair the container with
an m- or p- utility. So a plausible class list for your top-level element
might be class="container mx-auto py-12 px-6".

Floats and Clears

Although a fresh new design will likely use the grid and flexbox tools
described in the rest of this chapter to position elements, if you’re us-
ing Tailwind in a legacy project, you might still need to deal with floats
and clearfixes.

In CSS, the float property positions content inside its container. Typi-
cally, the float property is used to position a particular element, often
an image, to one side or the other of its container, allowing the rest of
the container, often text, to stay completely on the other side, rather
than mixing the elements together.

Tailwind provides float-left and float-right for positions, and float-none

as a reset option.

The CSS clear property forces an element to be placed below any ele-
ments it might otherwise overlap with on one or both sides. (Techni-
cally, it prevents other elements from floating, which amounts to the
same thing.) Tailwind provides utilities to specify a clear behavior on
either side, both sides, or no sides: clear-left, clear-right, clear-both, and
clear-none.

Position and Z-Index

In CSS, the z-index property is an integer determining how items stack
on top of each other along what would be the “z axis” if you ran an
axis outward perpendicular to the screen. Tailwind provides the pat-
tern, z-{index}, where the index can be 0, 10, 20, 30, 40, 50, or auto. You
can use a negative z-index of those values by using the -z pattern, -z-

20, or with an arbitrary value z-[-1].

Tables

The classic way of spacing HTML pages is the table. Unless you’re
actually displaying tabular data, a CSS grid is now preferable for lay-
out purposes, so Tailwind doesn’t provide many specific table utilities.

Tailwind lets you use table-auto to keep the default browser behavior
of auto-spacing the columns of a table based on its content. If you
want to explicitly specify column widths, you can use table-fixed on the
<table> element and then put an explicit width helper on each column
of the table—the fractional helpers are useful for this:

html/page.html

<table class=​"table-fixed border border-collapse"​>
 <tr>
 <th class=​"border border-black w-1/6"​>Small</th>

 <th class=​"border border-black w-2/6"​>Medium</th>

 <th class=​"border border-black w-3/6"​>Large</th>

 </tr>
</table>

Tailwind also lets you merge the borders of adjacent table cells with
the help of the border-collapse utility, which is reset with border-separate.

http://media.pragprog.com/titles/tailwind2/code/html/page.html

Tailwind offers the odd: or even: modfier to give tables alternating row
colors, such as class="odd:bg-white even:bg-grey-300", for example.

Grids

One of the great innovations of the first round of CSS frameworks
was support for a grid layout where you could easily place things on a
12-column grid. The existence of grid spacing made page layout
much easier. Over time, the frameworks became even more flexible
and eventually grid support was built directly into CSS.

Grids are still great for a lot of layout choices, and Tailwind offers use-
ful utilities for setting up a grid layout using the CSS grid properties.

First, there’s grid, which is a utility for the CSS property, display: grid.

You need the grid utility as part of the class list at the top level of your
grid, above the individual elements of the grid.

Once you’ve created a grid element, you can use Tailwind to specify
the number of rows or columns in that grid. You can also adjust the
behavior of individual elements in the grid. You can specify a start or
end point for an element in the grid, specify the span of rows or col-
umns the element takes up, or change the spacing of each element
inside the grid.

The most common use of a grid is to separate the page into a series
of columns, which you can do in Tailwind with the grid-cols-{count}

helpers. These go from .grid-cols-1 to .grid-cols-12, each of which sepa-

rates the page into that many columns. The reset out of grid-land is
grid-cols-none.

Unlike some other CSS grid frameworks, you don’t need to explicitly
specify a row. Inside a grid, CSS will autofill down to the next row
based on the number of columns you declare. For example, you can
use something like this:

html/page.html

<div class=​"grid grid-cols-2 w-1/4 gap-4"​>
 <div class=​"border bg-gray-300 text-center"​>A</div>

 <div class=​"border bg-gray-300 text-center"​>B</div>

 <div class=​"border bg-gray-300 text-center"​>C</div>

 <div class=​"border bg-gray-300 text-center"​>D</div>

</div>

You wind up with a 2x2 grid with A and B on the top row and C and D
on the bottom row, like this:

http://media.pragprog.com/titles/tailwind2/code/html/page.html

A cool feature of CSS grids that’s hard to do in some of the other CSS
frameworks is that you can use a 90-degree twist by specifying the
number of rows. In Tailwind, this is done with the grid-rows-{count}

helper, which can have a suffix of 1 to 12 or none.

You can also specify the direction in which data flows through the
grid. The default, grid-flow-row, causes elements inside the grid to flow
horizontally in rows, as you saw in the earlier example. This is the
normal behavior of DOM elements that you’re probably familiar with.

Or you can use grid-flow-col, in which case elements in the grid fill ver-
tically column by column, like so:

html/page.html

<div class=​"grid grid-rows-2 w-1/4 gap-4 grid-flow-col"​>
 <div class=​"border bg-gray-300 text-center"​>A</div>

 <div class=​"border bg-gray-300 text-center"​>B</div>

 <div class=​"border bg-gray-300 text-center"​>C</div>

 <div class=​"border bg-gray-300 text-center"​>D</div>

</div>

This gives you a 2x2 grid, but the A and B are the left column, while C
and D are the right column, like this:

http://media.pragprog.com/titles/tailwind2/code/html/page.html

As you can see in the previous examples, you can add a gap be-
tween table cells with the conveniently named gap-{size} helper, which
takes a suffix that’s the size of the gap, using the same “some num-
bers from 0 to 96 and also px” measurement scheme we saw for pad-
ding and margins. If you want the gap sizing to only be horizontal, you
can use gap-x-{size}. And if you want the gap to only be vertical, use
gap-y-{size}.

Span

As with CSS tables, sometimes you want a cell to cover more than
one row or column. Tailwind offers two ways to manage this: span
and start/end.

Using span, you specify the number of columns or rows you want the
cell to take up with col-span-{count} or row-span-{count}, where the suffix
is the number of columns or rows. The default then is col-span-1 or row-

span-1. The reset helpers are col-span-auto and row-span-auto.

The important part is that the flow behavior still continues. If you add
a span to the first element, our four-cell example is this:

html/page.html

<div class=​"grid grid-cols-2 w-1/4 gap-4"​>
 <div class=​"border bg-gray-300 text-center col-span-2"​>A</div>

 <div class=​"border bg-gray-300 text-center"​>B</div>

 <div class=​"border bg-gray-300 text-center"​>C</div>

 <div class=​"border bg-gray-300 text-center"​>D</div>

</div>

You get this as a result:

You can also span elements row-wise:

html/page.html

<div class=​"grid grid-cols-2 w-1/4 gap-4"​>

http://media.pragprog.com/titles/tailwind2/code/html/page.html
http://media.pragprog.com/titles/tailwind2/code/html/page.html

 <div class=​"border bg-gray-300 text-center row-span-2"​>A</div>

 <div class=​"border bg-gray-300 text-center"​>B</div>

 <div class=​"border bg-gray-300 text-center"​>C</div>

 <div class=​"border bg-gray-300 text-center"​>D</div>

</div>

The result looks like this:

Start/End

You can adjust the placement of a grid item by specifying its start and
end with col-start-{column} and col-end-{column} or row-start-{row} and
row-end-{row}, where the suffix is either the number of the location or
the reset value, auto. The key points are that the lowest start location
is 1 and the end location is exclusive, meaning it’s not part of the item.

Declaring an item as class="col-start-2 col-end-4" means the element will
encompass column 2 and column 3, but not column 4.

By default, the start and end locations are automatically determined
by the placement of the previous items in the grid, and the span is 1.

You can specify any two of the start, end, and span items, and the
layout will work. For example, class="col-span-3, col-end-5" would take
up columns 2, 3, and 4, spanning 3 columns and ending before the
fifth column.

Columns

If you want a more classic magazine layout, you can use column flow,

which is also suitable for photo layouts.

You specify column layouts in Tailwind in one of two ways. You can
specify any number of columns from 1 to 12 with the pattern column-

{count}. Alternately, you can specify the column by width with column-

{size}, where the columns range from 2xs to xs, sm, md, lg, xl, and then
2xl through 7xl. The widths range irregularly from 16rem to 80rem, and
you can specify an arbitrary width with the square bracket notation
column-[{size}]. Using column-auto resets the columns. Just as with
grids, you can use the gap family of classes to separate the columns.

Flexbox

Flexbox is a different way to arrange multiple related elements.

Where a grid is designed as a two-dimensional layout, a flexbox lay-
out is one-dimensional, placing items one after another in a row or
column.

I realize that sounds less useful than a full grid.

But flexbox is likely to be more useful to you than a grid layout for
three reasons:

A flexbox container has better controls for dynamically managing
the size of elements.

Although a flexbox container is conceptually a single row, it can be
made to automatically wrap its contents on the screen when the
contents get too wide.

Flexbox containers can be nested, meaning you can start with a
flexbox row, but elements inside that row could themselves be
flexbox columns, which in turn could contain flexbox rows. Nesting
flexboxes gives you a lot of options for controlling layout.

Grids are still useful for managing content that’s tabular in nature,

which is true of some data display but not true of every kind of layout.

Think about a common page structure, where you have a full-width
header, below that a left and right sidebar with main content in the
middle, and below that, a full-width footer.

You could think of that layout as a grid: the header is the first row of
the grid that has one element with a column span of three. The sec-
ond row has three elements for the sidebars and the main content,
width-adjusted, and the third row has another element with a column
span of 3, like this:

html/page.html

<div class=​"grid grid-cols-3 gap-4 w-1/3"​>
 <div class=​"text-center col-span-3"​>Header</div>

 <div class=​"text-center w-1/5"​>Left Sidebar</div>

 <div class=​"text-center w-3/5"​>Content</div>

 <div class=​"text-center w-1/5"​>Right Sidebar</div>

 <div class=​"text-center col-span-3"​>Footer</div>

</div>

That’s not bad, but you can also think of the layout as a flexbox. Your
flexbox could be a column with three elements, whose second ele-
ment is a row with three elements, like this (we’ll look at what these
utilities mean in a second):

html/page.html

http://media.pragprog.com/titles/tailwind2/code/html/page.html
http://media.pragprog.com/titles/tailwind2/code/html/page.html

<div class=​"flex flex-col w-1/3"​>
 <div class=​"flex-grow"​>Header</div>

 <div class=​"flex flex-row"​>
 <div class=​"text-center w-1/5"​>Left Sidebar</div>

 <div class=​"text-center w-3/5"​>Content</div>

 <div class=​"text-center w-1/5"​>Right Sidebar</div>

 </div>

 <div class=​"flex-grow"​>Footer</div>

</div>

Or, you can think of the page as a single row that happens to wrap
like this:

html/page.html

<div class=​"flex flex-row flex-wrap w-1/3"​>
 <div class=​"w-full"​>Header</div>

 <div class=​"text-center w-1/5"​>Left Sidebar</div>

 <div class=​"text-center w-3/5"​>Content</div>

 <div class=​"text-center w-1/5"​>Right Sidebar</div>

 <div class=​"w-full"​>Footer</div>

</div>

All three of these approaches will give you more or less this layout:

http://media.pragprog.com/titles/tailwind2/code/html/page.html

It turns out that the flexbox is more, well, flexible than a grid. In partic-
ular, flexbox layouts are much easier to adapt to different screen
sizes.

Direction and Axis

The foundation of how a flexbox lays out elements is its direction,

which you set with Tailwind utilities. The direction can be either hori-
zontal, with flex-row, or vertical, with flex-column. You can go backward
in your flow with flex-row-reverse and flex-col-reverse. The axis in the di-
rection of the flow is referred to as the main axis, while the other di-
rection is referred to as the cross axis.

In Tailwind, the parent flexbox container must include the class, flex

(in the same way grids need to have the class, grid).

An important thing to know about the row direction is that it’s not nec-
essarily left to right; the rows flow in the direction of the text. So, if you
internationalize your text to, say, Hebrew, all your flexboxes will auto-

matically flip direction. The column’s main axis is always top to
bottom.

Order and Wrap

The next most important property of the flexbox is whether it’ll wrap,

which is a property of the parent of the box. The default is not to wrap,

flex-no-wrap, but if you specify flex-wrap, then your row container will
automatically move items to the next row if the item would overflow
the main axis of the container. Normally, that’d be going over the
width of a row flexbox, but you could also explicitly set the height of a
column box and have it wrap. If for some reason you’re living in the
Upside Down, Tailwind provides flex-wrap-reverse.

You can explicitly specify the order of the elements in the flexbox with
the order-{integer} utility, where the suffix is any integer from 1 to 12, or
you can use order-first, order-last, or order-none. This is also a good
place for the arbitrary value syntax, if you have more than twelve
items, such as order-[42]. If the order is specified for one or more ele-
ments in the flexbox, then that order property determines where in the
box that element goes, overriding the order in which the element ap-
pears in the source HTML.

One great use of this property is to allow the main content to come
before the other elements in the source order but still display correct-

ly. This code provides the same layout as the snippet shown earlier:

html/page.html

<div class=​"flex flex-row flex-wrap w-1/3"​>
 <div class=​"text-center w-3/5 order-3"​>Content</div>

 <div class=​"w-full order-1"​>Header</div>

 <div class=​"text-center w-1/5 order-2"​>Left Sidebar</div>

 <div class=​"text-center w-1/5 order-4"​>Right Sidebar</div>

 <div class=​"w-full order-5"​>Footer</div>

</div>

A reason why you’d want to do that is to allow an adaptive screen
reader to get to the content quickly while still allowing the visual dis-
play of the page to place the content in the middle.

Grow, Shrink…Flex

The “flex” in flexbox comes from the ability of a flexbox container to
change the size and placement of its items dynamically. Tailwind
gives you access to common defaults. These are properties that are
placed on the elements inside a flexbox, not on the parent.

If you want to specify the size of an element within a flexbox, you can
use the basis-{size} Tailwind classes, which use the CSS flex-basis

property. Flex basis specifies the element’s size along the main axis of
the flex, meaning width for row boxes, and height for column boxes. If

http://media.pragprog.com/titles/tailwind2/code/html/page.html

set, flex basis will be used instead of the applicable width or height
properties for elements inside a flexbox. The size options for basis are
almost the same as the options for width. You have the same set of
standard numbers with a low of zero and a high of 80 plus fractions
for halves, thirds, quarters, fifths, sixths, and twelfths, plus auto, px,

and full, so basis-4 or basis-3/5, or basis-auto. And remember that you
have the option for arbitrary values, as in basis-[20px].

If a specific width isn’t specified, a flexbox will grow or shrink the
items within it to fill the available space. If you don’t want a specific
item to grow or shrink, you specify it as flex-none, which will keep it at
its default size. If you want the item to be able to grow or shrink as
needed to fill the available size of the container, you use flex-auto or
flex-1. The difference between the two is that flex-auto starts with each
element’s default size and then increases or decreases size for each
element that’s able to grow or shrink, whereas flex-1 resets each item
to zero size and equally assigns space to all items, regardless of their
natural size. In general, using flex-1 on a set of items will give you
equally sized items, and flex-auto won’t.

You can choose to specify shrink behavior without touching grow be-
havior. To allow shrinking, use flex-shrink, and to prevent shrinking,

use flex-shrink-0. Similarly, flex-grow and flex-grow-0 allow and prevent
element growth without affecting shrink behavior.

Box Alignment

In addition to using flexbox to place items on the page, Tailwind in-
cludes utilities that allow you to be more specific about the alignment
and justification of elements within the flexbox. These utilities also
work for grid layouts, where appropriate.

I talked about how a flexbox container has a main axis and a cross
axis. The Tailwind utilities that affect placement along the main axis
all start with justify-, and utilities that affect placement across the
cross axis don’t. These names are chosen to match the names of the
underlying CSS properties.

Main Axis

Let’s look at the main axis first. Item placement can be specified
along the main axis in two ways: placement of the item along the
main axis of the entire flexbox, and placement of an individual item
along the main axis of its own box within the flexbox container. Both
of these placements can be defined separately and include utilities
that are properties of the parent flexbox container, not individual
elements.

When placing elements along the main axis, Tailwind includes utilities
for how items are placed if the total width of the items is less then the

width of the flexbox container. These utilities control how the extra
spacing is allocated.

Three utilities squeeze the elements together as closely as possible:

justify-start places the elements against the beginning of the axis,

based on the text direction.

justify-end puts the items against the end of the axis.

justify-center centers the items—a longstanding CSS frustration.

Three utilities space the elements, and they differ in exactly where
the spacing is placed:

justify-between places the first element against the beginning of the
flexbox, the last element against the end of the flexbox, and then
even spacing between internal elements. If the flexbox has three
items, you get two identically sized spaces with a pattern of AxBxC.

justify-evenly places an equal amount of space around each item. If
the flexbox has three items, four identically sized spaces are
placed around them with a pattern of xAxBxCx.

justify-around places identical spacing around each side of each
item. In practice, this makes the end spacing less than the internal
space because each internal space contains the left space of one
element and the right space of the other. If the flexbox has three

items, six equally sized spaces are placed around them with a pat-
tern of xAxxBxxCx.

An element’s placing within its individual box can be controlled with a
class on the container, with the options being justify-items-start, justify-

items-end, and justify-items-center for placement. If you want the item to
expand to fill its space, you’ve got justify-items-stretch, and the reset
option is justify-items-auto. Note that you’d normally use either a regu-
lar justify- to space items or a justify-items- to space items within its
box, but you wouldn’t normally need to do both. If a single element of
the box wants to override the container’s justification, you can use
justify-self-{option} with the same five options that exist for justify-items.

Cross Axis

The utilities along the cross axis are all analogous to those of the
main axis. Instead of justify-, Tailwind offers content- with the same six
options, so content-start pushes items against the top of a multi-row
flexbox, while content-center vertically centers them.

For an individual item, you have the same five options as for justify-
items-, but the prefix is simply items-. So items-center vertically centers
items along the cross axis. Similarly, the same five options exist for a
self override, but the prefix is only self-, as in self-start or self-center.

Finally, you can manage both axes at the same time with the prefixes
place-content-, place-items-, and place-self-, with the result equivalent to
having done both the main and cross axis spacing. So place-content-

center is equivalent to the combined justify-center and content-center,

while place-items-start is equivalent to justify-items-start and items-start.

Now, let’s see how we can make these Tailwind utilities provide more
dynamic behavior.

Copyright © 2022, The Pragmatic Bookshelf.

Chapter
6

Animation

In this chapter, we’re going to look at animations and transitions,

which allow you to move items around the page using CSS proper-
ties. Tailwind doesn’t provide a full implementation of CSS animation
and transformation behavior—that’d be a lot to ask of a utility frame-
work. It does provide useful defaults for common behaviors, but even
the Tailwind documentation admits that these are only suggestions
and that most projects that use animation will need to define custom
behavior.

Helpful Small Animations

Tailwind provides four full animation utilities: animate-bounce, animate-

ping, animate-pulse, and animate-spin. These classes define both the
CSS for an animation and a set of keyframes, so you can use them
on an element as is.

The first utility, animate-bounce, describes a one-second transition
translating the vertical position down by 25% of the size of the ele-
ment and then back to the original position, so it gives a slight down-
ward bounce. For example, you could use hover:animate-bounce to give
a nice “you are here” effect.

You can give a notification effect a little animation with the second
utility, animate-ping, which is a one-second animation from regular size
and opacity to twice the size and 0 opacity, which gives a pretty effec-
tive signal pulse effect.

A common load behavior is to have dummy elements display and be
gradually replaced by data as the server provides it. The third Tail-
wind utility, animate-pulse, gives you a two-second transition between
0.1 opacity and 0.5, which produces a slight fade effect on the
element.

The final utility, animate-spin, animates a full rotation of an object 360

degrees in one second. It’s designed to be used for things like a load-

ing status marker. If you have an SVG or image you want to use, add
animate-spin to the SVG or image element (not its container), and the
element will rotate.

All of these are negated by animate-none.

Transitions

In CSS, you can specify that one or more properties should gradually
transition when they change values, rather than changing instantly. In
a full client-side application, you might change values by using Java-
Script to modify the CSS classes on an element. In Tailwind, you can
use the modifiers to manage some CSS property changes merely in
CSS. For example, an element with a class list of "bg-green-500
hover:bg-yellow-500" will change color from green to yellow when the
user hovers over it, and the Tailwind transition utilities can make that
happen gradually.

In most cases, you’d declare an element to have a class of transition,

which causes the element to use transition effects for the CSS prop-
erties, background-color, border-color, box-shadow, color, fill, opacity,

stroke, and transform. Often that’s all the properties you want to transi-
tion, but if you need to transition other properties, you can use
transition-all to place all properties under the transition banner.

If you want to limit the transition to certain properties, Tailwind pro-
vides several choices. Typically you would use these because there
are changes in other properties that you want to happen instantly.

transition-color

transition-opacity

transition-shadow

transition-transform

For the transition to actually be visible, you need to specify a duration
over which the transition will take place. The default is 0 (but can be
changed in the Tailwind configuration), and Tailwind provides the
duration-{milliseconds} family of utilities, where the suffix is one of 75,

100, 150, 200, 300, 500, 700, or 1000, indicating the number of millisec-
onds the transition should cover, and allowing for the arbitrary value
syntax.

You can also delay the start of the transition with delay-{milliseconds}

and the same set of numbers or arbitrary values, indicating the num-
ber of milliseconds before the transition should start.

By default, the transition is applied linearly, meaning the change to
the property happens in a series of identically sized steps. That de-
fault is denoted by the Tailwind utility, ease-linear. If you want the prop-
erty change to start more slowly, speed up, and then slow down as it
gets closer to the end, you can use ease-in-out. (Or you can use either
ease-in or ease-out if you only want the slowdown on one side of the
change.) The ease difference is subtle, but especially with motion, it

can provide a sense of a change accelerating and then decelerating
in a way that can look more natural and engaging.

Transformation

CSS allows you to transform the box of an element in various ways,

changing its size, location, rotation, or skew. Tailwind again gives you
some reasonable defaults, which when combined with transitions and
animation can allow you to build some great effects easily.

Changing the Scale

Tailwind lets you change the scale of an element with the scale-

{percentage} family, where the suffix is the percentage to scale. The
default, nonarbitrary, options are 0, 50, 75, 90, 95, 100, 105, 110, 125,

and 150, which are, I think, designed to allow for subtle effects like
"transition duration-1000 hover:scale-110" (which would make an element
get slightly bigger on hover over the course of a second). Add in
hover:box-shadow-lg, and it’d seem like the element was getting closer
to the user on hover.

If you only want to scale in one direction, you can use scale-x-

{percentage} or scale-y-{percentage} with the same set of numbers (scale-

x-95, scale-y-125, and so on).

Rotating

You can rotate an element with rotate-{degrees}, which is a clockwise
transformation of a number of degrees. The provided options are 0, 1,

2, 3, 6, 12, 45, 90, and 180, and arbitrary values can use different units.

A counterclockwise rotation is achieved with -rotate-{degrees} and the
same numbers.

Again, the design here is to make it easy for small effects. The rota-
tion is, by default, around an axis in the middle of the element, which
Tailwind denotes as origin-center. You can move the origin around by
adding the suffixes for the same four directions and four corners that
you’ve seen elsewhere to origin- (for example, origin-top, origin-bottom-

right, and so on).

Skew and Translate

For skew, you have skew-x-{degrees}, -skew-x-{degrees}, skew-y-{degrees},

and -skew-y-{degrees}, which take as provided options the numerical
suffixes 0, 1, 2, 3, 6, or 12, as the number of degrees in the skew.

You can flat out move an element with translate-x-{size}, -translate-x-

{size}, translate-y-{size}, or -translate-y-{size}, each of which takes a nu-
merical suffix. This moves the element along the direction using the
same number scale you’ve seen for padding, margins, and the like,

where each number represents 0.25rem. Positive directions are right
and down, and negative directions are left and up.

In addition to the number set, you have as suffixes px for a single pix-
el, full for “move this the exact amount of its size in that dimension,”

and 1/2 for “move it half the amount of its size in that dimension,” as in
translate-x-full or translate-y-1/2.

Other Appearance Things

You can also do other changes to cursors and text. You can override
the cursor the user sees on hover with another standard cursor by us-
ing the utilities cursor-auto, cursor-default, cursor-move, cursor-not-allowed,

cursor-pointer, cursor-text, and cursor-wait.

You can disallow text selection for copy and paste purposes in an ele-
ment with select-none and allow it with select-text, or make the entire
text autoselect on click with select-all. (Please don’t do this. It’s some-
what user-hostile, but you may be asked to for certain kinds of per-
ceived security or compliance reasons.)

You can also give an element a resize handle with resize, and limit the
handle to one direction with resize-x or resize-y, and reset it with reset-

none.

Next, let’s look at how Tailwind allows us to make our site look great
at different screen sizes.

Copyright © 2022, The Pragmatic Bookshelf.

Chapter
7

Responsive Design

All the examples we’ve seen so far in this book have one thing in
common: they’re designed for computer screens and aren’t designed
to look good on smaller screens, like on a smartphone or tablet. The
process of making a CSS design that works on multiple-sized
screens is called responsive design.

In plain CSS, responsive design can be a complicated tangle of CSS
classes and @media tags. Tailwind provides modifiers that can be ap-
plied to any Tailwind utility to control the set of screen sizes.

Tailwind doesn’t take away all the complexity of responsive design;

you still need to consider many factors when you’re designing for
multiple sizes. For example, you need to think about which elements
of your site are most important and need to be emphasized when the
user is looking at a smaller screen. But Tailwind does make it easier
to experiment with different designs at different sizes and to be able
to see all the different size behaviors at a glance. That said, respon-
sive design in Tailwind can lead to extremely long CSS class declara-
tions that can be hard to read.

In this chapter, we’ll take a look at the responsive utilities in Tailwind
as well as common patterns for applying them.

Tailwind Screen Widths and Breakpoints

In CSS, various properties may be applied conditionally based on the
width of the screen. These conditions are managed with the @media

tag. The specific screen widths at which the design changes are often
called breakpoints. In Tailwind, you can put a responsive modifier on
any Tailwind utility to specify the minimum screen width where that
utility should be applied.

Tailwind’s responsive behavior is a little different than you might be
used to from other frameworks. Some important behaviors to note
include:

Any responsive modifier causes the utility to take effect at the
specified screen width or any larger screen width.

Tailwind utilities define a minimum width to take effect but not a
maximum width.

If no modifier is used, the default minimum width is 0—the utility is
always in effect.

If you define something as being for small screen widths, Tailwind ap-
plies that behavior all the way up—small, medium, large, and beyond.

If you want behavior only on small screens, you define the small-
screen behavior without a modifier and the canceling behavior with a
mid-screen or wide-screen modifier.

Tailwind defines five screen widths by default. For these five screen
widths, the pixel width is the logical width of the screen. On a device
with a retina screen, where a logical pixel would be made up of more
than one physical pixel, we still use the logical screen. The iPhone 13

is 390 logical pixels wide, for example, even though it is 1170 physical
pixels wide.

The five screen widths are:

Small (sm:)—640 pixels and up

Medium (md:)—768 pixels and up

Large (lg:)—1024 pixels and up

Extra large (xl:)—1280 pixels and up

Extra extra large (2xl:)—1536 pixels and up

The following table offers a partial list of existing device widths:

Device Logical Pixels

Galaxy S20 360

[13]

Device Logical Pixels

Galaxy S20 sideways 800

iPhone 13 390

iPhone 13 sideways 844

iPad Air 3 834

iPad Air 3 sideways 1112

iPad Pro 12" 1024

iPad Pro 12" sideways 1366

MacBook Air 2560 (often scaled to 1680)

The key point is that if you define something as sm: (for example,

sm:m-2), that m-2 utility is defined for all screens that are sized 640 pix-
els and up. If you want to change that margin on a larger screen, you
can define a utility with a larger modifier—you are guaranteed that
the larger modifiers will take priority over smaller ones. So you could

do sm:m-2 md:m-4 lg:m-8 to have your margin get progressively wider
as you have more screen width.

The general way to approach these patterns is this: the utilities that
don’t have modifiers should describe the behavior you see on the
smallest screen, and then you bring in modified utilities to adjust be-
havior as the screen gets bigger. The idea is that you’ll define your
design for mobile devices first and then use the modifiers to adjust
the design for larger screens.

I’ve tried to be consistent throughout the book about pointing out
negation or default utilities even when it isn’t clear where they might
be used. The responsive utilities are where these negation utilities
are used. In Tailwind, the width modifiers apply at their size and up. If
you want to unapply a utility at a wider width, you need to negate it
explicitly at the larger width. For example, something like sm:shadow-xl

md:shadow-none uses the .shadow-none reset utility to undo the .shadow-

xl. Using both of these on an element would give you a box shadow
for a width between 640 and 768 (if for some reason you wanted to do
that).

It’s worth mentioning that you can combine screen size with other
modifiers: md:hover:font-bold lg:hover:font-black is perfectly legal.

Hide Based on Size

One way to make your application fit on a smaller screen is by hiding
parts of the user interface on the smaller screen. In this case, be-
cause the smallest screen behavior is hidden, the unmodified proper-
ty is hidden. At larger sizes, you might want the item to display, so you
add in lg:block (or whatever breakpoint you want to start seeing the
item at), winding up with class="hidden lg:block".

Sometimes you may want to go the other way and display an element
at a smaller size but not at a larger one. It’s quite common to have an
element for a hamburger menu replace a navigation bar on small
size, but then disappear on a device that’s large enough to show all
the navigation. In that case, the small-size behavior is to display,

which is the default, and you add the hiding behavior in as a break-
point, as in class="lg:hidden".

Similarly, it’s common to drop the size of header text on smaller de-
vices. The smaller size is what displays on the smaller widths, so the
resulting DOM classes would look something like class="text-xl md:text-

2xl lg:text-4xl". (See ​Duplication​, for hints on how to avoid needing to
constantly type all that.)

Fewer Grid Columns on Small Devices

In general terms, the goal of a lot of responsive design is to simulta-
neously allow information to be stacked at small sizes and spread out
into rows when the space exists at larger sizes. Exactly how you want
to do this depends on your goal.

One possibility is that you have a set of card-like elements, some-
thing like the featured posts on a news site, where the data isn’t actu-
ally a table but a series of items laid out in a row.

In this case, you might want the items to fill the entire width of the
screen but the number of items to vary based on the size of the
screen. On a smartphone, you might want only one item across the
screen; on a desktop, maybe four. So you can use something like
this:

<div class="grid items-stretch
 md:grid-cols-2 md:gap-4
 lg:grid-cols-4 lg:gap-4">
 <div class="mb-6 lg:mb-0"></div>

 ...

</div>

A couple of things are going on here. The parent div is a grid at all
widths, but the default grid size at the narrowest width is 1, growing to

2 on a medium screen and to 4 on a large screen. items-stretch means
that each individual child element will stretch to fill its portion of the
width, which means they’ll get bigger as the screen gets bigger until
the next breakpoint and then more items will be added to each row.

We also increase the gap between items as the screen gets bigger.
For the child items, we have margin bottom mb-6 when only one ele-
ment is in the row so that there’s some spacing, but the margin bot-
tom goes away when the screen gets larger, with lg:mb-0.

Flex on Larger Devices

Another way to adjust between sizes is to have an element use de-
fault block spacing on smaller devices and then convert to flex spac-
ing on larger devices. The block spacing on small devices ensures
that the items stay in a column, even if some of them are narrow,

while the flex spacing at a larger size spreads them out in a row.

The common pattern here is a navigation bar that’s spread over the
top of the page at a larger size. But at a smaller size, it’s a menu col-
umn, generally hidden until the menu button is clicked.

Here’s a simple example:

<div class="w-full hidden lg:flex lg:flex-grow, lg:items-center lg:width-
auto
 divide-black divide-y lg:divide-y-0"
 id="navbar-menu">
 Blog

 ...

</div>

The outer div here is hidden on small screens to start. This is usually
paired with JavaScript (which we’ll do in a second) to make it not hid-
den. On a small screen, when it’s unhidden it’ll use the default display
mode of block, meaning columns. At larger sizes, the lg:flex overrides

the hidden utility, and the display is flex and flex-grow, meaning the
items will fit across the screen. I’ve also added a dividing line be-
tween items at small scale, divide-y, but the line goes away at larger
sizes. lg:divide-y-0 makes the items more distinguishable in the small
column.

The inner items have a little bit more right margin at large sizes, and
they change their background to gray on hover. They need to be ex-
plicitly set to block because a tags are inline by default. If I’d made
those div tabs, the block wouldn’t be needed.

To make this work as a navbar, you need a little JavaScript. The fol-
lowing snippet, which is vanilla JavaScript without a framework, as-
sumes you have three elements. One is the navbar itself, which we
previously discussed, but with a DOM ID of navbar-menu. The other
two elements are hidden in the same spacing and are the hamburger
menu, navbar-burger, and an x-shaped close element, navbar-close:

<nav class="flex items-center font-bold text-grey=600">
 <div class="block lg:hidden self-start">
 <button id="navbar-burger"
 class="px-3 py-2
 border rounded border-grey-400

 hover:border-black">
 <svg xmlns="http://www.w3.org/2000/svg"

 fill="none" viewBox="0 0 24 24"
 stroke="currentColor">
 <path stroke-linecap="round"
 stroke-linejoin="round"
 stroke-width="2"
 d="M4 6h16M4 12h16M4 18h16" />
 </svg>

 </button>

 <button id="navbar-close"
 class="px-3 py-2
 border rounded border-grey-400

 hover:border-black">
 <svg xmlns="http://www.w3.org/2000/svg"
 fill="none"
 viewBox="0 0 24 24"
 stroke="currentColor">
 <path stroke-linecap="round"
 stroke-linejoin="round"
 stroke-width="2"
 d="M6 18L18 6M6 6l12 12" />
 </svg>

 </button>

 </div>

 <div class="w-full hidden

 lg:flex lg:flex-grow,

 lg:items-center lg:width-auto
 divide-black divide-y
 lg:divide-y-0"
 id="navbar-menu">
 Blog

 AND SO ON
 </div>

</div>

</nav>

The SVG for the hamburger and close icons comes from https://hero-
icons.com, a set of small SVG icons that are also from the makers of
Tailwind CSS.

Next, we add an event listener to the navbar burger and navbar close.

The burger listener hides the burger and shows the close button and
the menu. The close listener hides the close button and menu and
shows the burger:

document.addEventListener('DOMContentLoaded', () => {

 const $navbarBurger = document.querySelector('#navbar-burger')
 const $navbarClose = document.querySelector('#navbar-close')
 const $navbarMenu = document.querySelector('#navbar-menu')

https://heroicons.com/

[13]

 $navbarBurger.addEventListener('click', () => {

 $navbarMenu.classList.remove("hidden")
 $navbarBurger.classList.add("hidden")
 $navbarClose.classList.remove("hidden")
 });

 $navbarClose.addEventListener('click', () => {

 $navbarMenu.classList.add("hidden")
 $navbarBurger.classList.remove("hidden")
 $navbarClose.classList.add("hidden")
 });

})

And that gives you a basic responsive navigation system. Season to
taste.

Next, let’s talk about how to customize Tailwind.

FOOTNOTES

https://ios-resolution.com

Copyright © 2022, The Pragmatic Bookshelf.

https://ios-resolution.com/

Chapter
8

Customizing Tailwind

Throughout this book, I’ve alluded to the idea that Tailwind is cus-
tomizable, and here’s where I explain how and why. Tailwind is an en-
gine that generates many CSS classes based on the patterns in your
code, and this engine has a lot of hooks that allow us to alter the set
of utilities available to us.

You might want to customize Tailwind for several reasons:

Change defaults. Tailwind provides default step values for most of
its utilities, for example, the common steps for margins, padding,

and other spacing items. And it has default screen sizes for re-
sponsive breakpoints. Tailwind also provides a default set of col-
ors, but you may want to add your own. In the configuration file,

you can change these. Even though you can use arbitrary values
in the places where you can insert values, commonly used one-
offs are easier to manage and shorter to type if you turn them into
defaults.

Change the set of classes. Tailwind generates a lot of CSS class-
es. And even though it produces classes based on your own code,

you might still want to explicitly prevent certain classes from being
generated or ensure other classes are generated.

Add new behavior. Although you can write your own extensions in
regular CSS, you can also add new items as plugins that are part
of the Tailwind configuration, which can make them easier to share
and to integrate with other Tailwind behavior.
Integrate with legacy CSS. You may want to start using Tailwind on
a site that already has a lot of CSS. Tailwind provides configuration
options that allow you to ensure that Tailwind utilities don’t conflict
with existing CSS or with the limitations of your HTML templating
tool.

Let’s take a look at how to customize Tailwind to your liking, starting
with the configuration file.

Configuration File Basics

The configuration file is optionally generated as part of your Tailwind
installation. You can also create it at any time after you install the Tail-
wind npm package with the command, npx tailwindcss init. The minimal
configuration file looks like this:

module.exports = {

 content: [],
 theme: {

 extend: {},

 },

 plugins: [],

}

If for some reason you want a configuration file with the entire default
configuration explicitly listed, you can get it with npx tailwindcss init --

full. Most of what we’re going to be looking at will go in the theme

section.

Tailwind considers each family of utilities to be a core plugin; you can
see a complete list in the Tailwind documentation. The theme ob-
ject references these core plugin names to allow you to customize
the core plugins—most of the core plugins have customization
options.

[14]

Change Default Values

In the configuration file, the theme object has keys that are the names
of each core plugin and values that are the configuration options for
that plugin. The three special configuration options, screen, color, and
spacing, aren’t core plugins themselves but are the basis for the con-
figuration of many other core plugins.

It’s worth mentioning here that Tailwind’s use of the word “theme” is
different than the way you might see it used in other places, where
“theme” refers to a set of colors, as in “dark theme” versus “light
theme.” For Tailwind, the theme is the entire set of defaults, and
there’s only one. If you want to change color schemes, you need to
either use CSS variables or use the dark: modifier to specify behavior
under dark mode. (You can see the entire default theme on GitHub.

 This is the theme in the main branch of Tailwind, so it may be
slightly ahead of the released version.)

You can customize the theme in two ways: (1) override entire options
or (2) extend options.

To override, you provide a new set of values for an entire object—ei-
ther a core plugin or one of the special values—in the theme object.
This example changes the entire set of screen breakpoints. Overrid-
ing the theme object this way completely replaces the default values:

[15]

theme: {

 screens: {

 'phone': '640px',
 'landscape': '768px',
 'tablet': '1024px',
 'laptop': '1280px',
 }

 }

If you want to preserve the existing default values but add new ones
on top, you can use theme#extend. This configuration adds an extra,

extra-wide screen breakpoint:

theme: {

 extend: {

 screens: {

 3xl: '2440px',
 }

 }

}

Screen Widths

The screens object inside the key generates the breakpoints used for
the responsive modifiers. The default looks like this:

module.exports = {

 theme: {

 screens: {

 'sm': '640px',
 'md': '768px',
 'lg': '1024px',
 'xl': '1280px',
 '2xl': '1536px',
 }

 }

}

You can modify this in many ways, but note that if you modify the val-
ues here, you need to provide the entire range of sizes. If you only
want to add a new size, you need to go to the extend subject of
themes:

module.exports = {

 theme: {

 screens: {

 extend: {

 3xl: '2440px',
 }

 }

 }

}

These breakpoints are a reasonable set of defaults, but if you only
want to move the values around and about, you can do that here.

You can also change the names of the keys to something like phone,

landscape, tablet, and desktop. Those keys then become the names of
your modifiers, so you’d no longer write sm:m-0; you’d write phone:m-0.

If the value you provide for the screen-width keys is a string, it’s con-
sidered the min-width of the breakpoint when generating the CSS. You
can also pass an object with min and max keys if you want to specify
the breakpoints differently. If you only specify max values, then the re-
sponsive behavior is reversed. Unmodified utilities apply at the
largest size, and modifiers take effect as the screen gets smaller:

module.exports = {

 theme: {

 screens: {

 '2xl': {'max': '9999px'},

 'xl': {'max': '1535px'},

 'lg': {'max': '1023px'},

 'md': {'max': '767px'},

 'sm': {'max': '639px'},

 }

 }

}

You can also supply a min value to those objects, which limits each
breakpoint to a specific range and means that you need to completely
specify all properties at each breakpoint.

Media queries aren’t only based on size. If you want to base a modifi-
er on something else, you can do so with a raw option. Here’s a con-
figuration that adds a print mode:

module.exports = {

 theme: {

 extend: {

 screens: { 'print': {'raw': 'print'} },

 }

 }

}

You can then use this configuration like any other screen with
class="print:bg-white".

Default Colors

Tailwind has a common set of colors that’s used as a suffix for many
utility families, including text-, bg-, and others. Tailwind provides 22

colors. If you want to change that set, you can reach them via a colors

object:

module.exports = {

 theme: {

 colors: {

 gray: colors.warmGray,

 red: colors.red,

 green: colors.green,

 }

 }

}

The complete list of colors is in the Tailwind documentation.

While you can completely replace the set of colors in theme#colors,

you’re more likely to want to add your own extra colors in
theme#extend#colors, like this:

module.exports = {

 theme: {

 extend: {

 colors: {

 "company-orange": "#ff5715",
 "company-dark-blue": "#323C64",

[16]

 "company-gray": "#DADADA",
 }

 }

 }

}

Now you can use text-company-orange or bg-company-gray. You can also
add color families by using the same colors object as the value to any
key.

You can also nest the colors to remove duplication:

module.exports = {

 theme: {

 extend: {

 colors: {

 "company": {
 "orange": "#ff5715",

 "dark-blue": "#323C64",
 "gray": " #DADADA",
 }

 }

 }

 }

}

The resulting classes are still the same as the unnested colors were,

like text-company-orange, for example. If you only want text-company,

then using the key default will stand in for the unsuffixed value.

If you extend colors with an existing color, for example if you provide
red: { ’100’: "#WHATEVER" }, you’ll replace the existing red family with
your new set.

If you want to extend a color with a new level, you can use the spread
operator:

module.exports = {

 theme: {

 extend: {

 colors: {

 "red": {
 ...colors.red,

 "450": " #CC0000",
 }

 }

 }

 }

}

But What If I Really Want Color Themes?

The closest you can get to color themes in standard Tailwind is by us-
ing the dark: modifier. To enable the dark: modifier, you need to add
this line to your Tailwind configuration:

module.exports = {

 darkMode: "media",
}

With that in place, you can now use the modifier dark: to specify be-
havior that changes when the browser is in dark mode. So, you can
have a class list that’s something like class="bg-gray-100 dark:bg-gray-

900 text-gray-700 dark:text-gray-100".

The dark: modifier can be stacked with other modifiers like hover: and
with responsive modifiers like sm:.

If darkMode is set to media, then Tailwind uses the prefers-color-scheme

media setting of the browser. If you’d rather control the mode setting
yourself, you can set darkMode to class, and then Tailwind adds a utility
class dark, which changes any element inside that class to dark
mode. Typically, you’d put that at the top of your DOM tree and use
JavaScript so you can change the entire tree at once:

<body class="container mx-auto py-12 px-6 dark">

 <div class="bg-gray-100 dark:bg-black">
 </div>

</body>

You can do more elaborate things with custom themes and CSS vari-
ables. You’ll find a good overview at dev.to.

Spacing

Spacing, as used for padding, margins, width, height, and other prop-
erties, can also be overridden by using theme#spacing or extended
with theme#extend#spacing. So you could simply replace the spacing
like this:

module.exports = {

 theme: {

 spacing: {

 'small': 4px,

 'medium': 12px,

 'large': 36px
 }

 }

}

These new suffixes would apply anywhere spacing goes, so you’d
now have p-small, h-medium, gap-large, or other possibilities.

[17]

If you like the existing scale but want more options, then use the
extends option:

module.exports = {

 theme: {

 extend: {

 spacing: {

 '15': '60rem',
 '17': '76rem'
 }

 }

 }

}

Other Core Plugins

Nearly every Tailwind utility has a series of suffixes off of a base pat-
tern. And nearly all of them allow you to override or extend them the
same way you do for spacing and colors.

I’ll pick one example, as doing all of them is outside the scope of this
book. Every core plugin’s page in the Tailwind documentation ex-
plains how to modify that plugin. You can add different z-index values
in the configuration file with theme#extend:

module.exports = {

 theme: {

 extend: {

 zIndex: {

 "-1": "-1",
 "-5": "-5",
 "-1000": "-1000"
 }

 }

 }

}

Note that in this case, Tailwind generates the negative classes with a
pattern consistent with negative margins, so the negative classes
here are -z-1, -z-5, and -z-1000.

If I want my own complete set of z-index options, then I wouldn’t use
extend:

module.exports = {

 theme: {

 zIndex: {

 "1": "1",
 "5": "5",
 "1000": "1000"
 "-1": "-1",

 "-5": "-5",
 "-1000": "-1000"
 }

 }

}

Now I have z-1, z-5, and z-100 alongside -z-1, -z-5, and -z-1000, but the
original classes are no longer generated.

Every core plugin with multiple options allows for similar replacement
or extension of the options. Again, the Tailwind documentation has a
full listing.

Change Generated Classes

Under normal circumstances, the Tailwind compiler generates CSS
only for the class names that are used in your application. However,
under some circumstances you might want to modify that
configuration.

First, here’s what the compiler does.

The configuration file has a content key that should contain a list of file
patterns for any file in your project that might reference a Tailwind util-
ity. This includes your static .html files, but also your .jsx files for a Re-
act project or .erb files for a Rails project. It even includes other files
that might reference Tailwind utilities that are called by template files.

(But don’t include other .css files—you want to list the files that use
Tailwind classes, not the files that define Tailwind classes.)

The file patterns use the fast-glob library, which includes * to match
any text except a directory marker, ** to match any text including di-
rectory markers (allowing you to match arbitrary subdirectories), and
curly braces and commas to allow for options, as in *.{html, erb}.

If you use the strategies described in ​Duplication​, to define lists of
Tailwind classes in JavaScript or Ruby or whatever, those files also
need to be listed in the content field of the configuration file. You
might wind up with something like this for a React project:

module.exports = {

 content: [
 "./src/**/*.{html, jsx, tsx}",
],

}

A Rails project might look like this:

module.exports = {

 content: [
 ​"./app/views/**/*.{html, erb}"​,
 ​"./app/helpers/**/*.rb"​
],

}

You want to be a little careful here. Classes that are used in files that
are not in the content list will not generate CSS and will appear to not
work. (In a Rails context, this has bitten me where CSS classes were
defined in a one-off initializer in config/initializers.)

On the other hand, while the cost of including non-front-end files is
small, the cost of including, say, your entire node-modules directory is
high, both in the time it takes to run the command-line tool and in the
amount of unneeded CSS it would generate.

The mechanism Tailwind uses is simple by design. It tries to split the
associated files into individual words and then matches it against a
list of Tailwind patterns to determine which words are potential Tail-
wind utilities that need CSS to be generated for them.

This process errs on the side of caution in that it might capture class
names not being used as class names, which is generally fine and a
million times easier than trying to guess in the general case what is a
real CSS class and what is just a line of JavaScript or a comment.

What it won’t catch is a class name that’s dynamically created via
string concatenation.

In Chapter 3, ​Typography, we looked at the following example for cre-
ating a hover effect:

const hoverDarker = (color) => {

 return `text-${color}-300 hover:text-${color}-700`
}

This function, because it creates a class name dynamically, would
prevent those classes from being found by Tailwind, so you’d either
need to use those classes elsewhere or find another way to create
this feature.

One option would be a safelist. Tailwind provides a configuration key
called safelist that allows you to specify Tailwind classes that you want
to guarantee will be generated. The individual listings in the safelist
can be strings or JavaScript regular expressions, with some
limitations:

module.exports = {

 content: [
 ​"./app/views/**/*.{html, erb}"​,
 ​"./app/helpers/**/*.rb"​
],

 safelist: [
 ​"bg-red-300"​,
 ​"bg-red-700"​,
 {

 pattern: ​/bg-​​(​​gray|slate|zinc|neutral|stone​​)​​-​​(​​300|700​​)​​/​,

 variants: [​"hover"​]
 }

]

}

This configuration file safelists two background colors individually,

then matches all the grayscale ones with the regular expression. The
pattern of the regular expression must start with a Tailwind utility. For
example, you couldn’t match all the places gray is used with +.-gray-+.,

but you can match all red background colors and opacities with bg-

red-+.\\+.. I also don’t think you could match, say, box and border with
bo+.. (At the very least, it’s probably a bad idea.) You can’t match
modifiers in the safelist pattern, but you can make sure the modifiers
are generated by including the modifiers you want generated in the
list of variants as part of the configuration.

You can also create a block list of core plugins by passing an object
to the corePlugins key of the configuration. The keys of this object are
the name of core plugins you want to eliminate, and the values are all
false. You’d only do this if you wanted to block classes you are actual-
ly using for some reason:

module.exports = {

 corePlugins: {

 flex: false,

 flexDirection: false,

 flexGrow: false,

 flexShrink: false,

 flexWrap: false,

 }

}

This configuration gets rid of all the flexbox-related tools, though I
don’t recommend doing that. Flexbox is pretty useful.

Variant Modifiers

We’ve seen variant modifiers in Tailwind like hover and focus, but Tail-
wind defines a couple dozen modifiers, and the command-line tool
only generates the CSS for modifier combinations you actually use.

In addition to the screen size modifiers sm, md, lg, xl, and 2xl, following
is a partial tour of the Tailwind modifiers:

active: Applies when the element is active.

dark: Applies if Tailwind thinks it’s in dark mode.

first-letter: Applies to the first letter of the text.
first-line: Applies to the first line of the text.
hover: Applies when the user is hovering the pointer over the
element.
landscape: Applies if the device is in landscape orientation.

ltr: Applies for text going left to right.
marker: Applies to the list marker.
motion-reduce: Applies if the user has enabled reduce motion on the
system. It’s often applied with hover, and you’d often have a motion-

reduce and a motion-safe variant.
motion-safe: Applies if the user has not enabled reduce motion on
the system. It’s often applied with hover, and you’d often have a
motion-reduce and a motion-safe variant.
portrait: Applies if the device is in portrait orientation.

print: Applies for the print media type.

rtl: Applies for text going right to left.
selection: Applies to text selected by the user.
target: Applies if the element ID matches the current URL.

visited: Applies if a link has been visited.

Two group properties work by declaring a parent element with the
class group. These variant properties apply when any element in the
parent is targeted, not only the element in question:

group-focus: Applies to any child when any child under the parent
gets the focus.

group-hover: Applies to any child when the parent is hovered over.
It’s enabled by default wherever hover is enabled.

A few properties are applied based on the order of the elements with-
in their parent. These variants would go on the child element, not the
parent element, and are particularly helpful if your template language
is generating an entire loop:

empty: Applies if the element has no children.

even: Applies if the element is an even-number child (second,

fourth, sixth, and so on).

first: Applies if the element is the first (topmost) child of its parent
element. Also, first-of-type.

last: Applies if the element is the last (bottommost) child of its par-
ent element. Also, last-of-type.

odd: Applies if the element is an odd-numbered child (first, third,

fifth, and so on).

only: Applies if the element is an only child, also only-of-type.

A few properties apply to form elements:

autofill: Applies if the box has been autofilled by the browser.
checked: Applies if the checkbox or radio button has been checked.

default: Applies if the element still has its default value.

disabled: Applies when the element is disabled.

file: Applies to the button in a file input.
focus: Applies when the element has focus, as in a text field.

focus-within: Applies to a parent class when any child inside that
parent has focus.

indeterminate: Applies if a checkbox or radio button is in the indeter-
minate state.

in-range: Applies if the element’s value is in range, as in a number
spinner.
invalid: Applies if the element has an invalid value.

out-of-range: Applies if the element’s value is out of range, as in a
number spinner.
placeholder: Applies to placeholder text.

placeholder-shown: Applies if the placeholder text is still being
shown.

read-only: Applies if the element is read-only.

required: Applies if the element is required.

Tailwind also uses before and after to match the ::before and ::after

pseudo-classes.

Integrate with Existing CSS

One problem you might have if you’re using Tailwind in conjunction
with a lot of existing CSS is name conflict. Your existing CSS might
already define hidden, flex-grow, or (admittedly less likely) mx-64. Tail-
wind gives you a way to prevent this problem by offering you the abili-
ty to put a common prefix in front of all Tailwind utilities: prefix: "

<SOMETHING>". If you declare prefix: "twind", then all the Tailwind utili-
ties are transformed, so you end up with twind-hidden, twind-flex-grow,

and even twind-mx-64. If you have a modifier, it attaches normally, as
in hover:twind-text-black.

A different problem is that your existing CSS may be set up in such a
way that all the existing CSS selectors have high specificity and thus
override all of the Tailwind utilities. You can get around this with a
configuration of important: true, which adds the CSS marker !important

to all the Tailwind utilities, which should give them precedence over
existing CSS. This can have unwanted side effects if you’re using a
lot of different CSS libraries, so be careful with it.

Some template tools don’t allow you to use the colon (:) character in
class names, making Tailwind’s prefixes illegal. You can specify a
separator: option to choose your own separator, so separator: "--"

means prefixes would look like hover--text-black or lg--m0-4. (I think I
like the look of that more than the colon.)

Access Tailwind from JavaScript

You can access Tailwind configuration from JavaScript. This is useful
if you want to use those values to create dynamic behavior in your
JavaScript framework. You might have some kind of custom anima-
tion that needs to respect existing colors or spacing, or who knows
what.

Whatever you want to do, Tailwind provides a resolveConfig method
that takes as an argument the Tailwind configuration object and al-
lows you to query the configuration—the full configuration, not only
your overrides in the file:

import resolveConfig from 'tailwindcss/resolveConfig'
import myConfig from './tailwind.config.js'

const tailwindConfig = resolveConfig(myConfig)

tailwindConfig.theme.colors

The resulting object from resolveConfig merges your configuration
overrides with the defaults and provides an object you can query.

Plugins

Tailwind plugins are just snippets of JavaScript that you can define
that allow you to insert your own additional classes, patterns, and
prefixes to your Tailwind app. They are actually simple enough that
you can insert them inline in your Tailwind configuration file.

To start, you need to require the plugin function by putting this line at
the top of your tailwind.config.js file:

​const​ plugin = require(​"taiwindcss/plugin"​)

Then, inside the configuration itself, you can call that plugin function.

The argument to plugin is a function.

​const​ plugin = require(​"taiwindcss/plugin"​)

module.exports = {

 content: [​"./html/*.html"​],
 theme: {

 extend: {},

 },

 plugins: [

 plugin(({}) => {

 })

],

};

The anonymous function takes one argument, which the previous
snippet has as an empty JavaScript object, {}. The object that is actu-
ally passed to that function has a number of parameters, each of
which is a helper function that you can call in the body of the anony-
mous function to add Tailwind features. Typically, you’d use Java-
Script destructuring syntax to only capture the helper functions you
want to use.

For example, if you want to add your own variant prefix, one of the
helper functions is addVariant(), and you’d use it like this (this adds
some extra ordinals):

​const​ plugin = require(​"taiwindcss/plugin"​)

module.exports = {

 content: [​"./html/*.html"​],
 theme: {

 extend: {},

 },

 plugins: [

 plugin(({ addVariant }) => {

 addVariant(​"second-of-type"​, ​"&:nth-of-type(2)"​)
 addVariant(​"third-of-type"​, ​"&:nth-of-type(3)"​)

 })

],

};

The addVariant method takes two arguments: (1) the modifier you
want to add, and (2) the CSS pseudo-class or media type it should
convert to.

Similarly, Tailwind provides helper methods for addUtilities,

addComponents, and addBase. The addUtilities method takes two argu-
ments: (1) the name of a new Tailwind utility you want to add, and (2)

a JavaScript object with the CSS property you want that utility to re-
solve to, as in addUtilities(".big-bold-text", {font-size: "1.5rem", font-weight:

"700"}). The addComponents helper does the same thing but puts the
styles in the Tailwind components layer. The addBase helper adds new
styles to the Tailwind base layer, meaning that the first argument is an
HTML selector like h4 rather than a CSS class.

There are also matchUtilities and matchComponents methods that allow
you to define a set of dynamic matchers. Both of these can use a
helper method theme to look up values in the current theme as a way
of determining what’s in the set of dynamic matchers. So,

theme("spacing") gives you all the spacing options. See https://tailwind-
css.com/docs/plugins for full documentation.

https://tailwindcss.com/docs/plugins

[14]

[15]

[16]

[17]

Thank you!

We hope you enjoyed this book and that you’re already thinking
about what you want to learn next. To help make that decision easier,
we’re offering you this gift.

The End

And with that, we’ve reached the end of our Tailwind journey. Tailwind
changes frequently, so you should check out the Tailwind blog at
https://blog.tailwindcss.com for up-to-date changes. Also, you can
find a lot of great screencasts, sample components, and other re-
sources linked in the Tailwind documentation at https://tailwindcss.-
com.

Now, go design something great!

FOOTNOTES

https://tailwindcss.com/docs/configuration#core-plugins

https://github.com/tailwindlabs/tailwindcss/blob/master/stubs/defaultConfig.stub.js

https://tailwindcss.com/docs/customizing-colors

https://dev.to/ohitslaurence/creating-dynamic-themes-with-react-tailwindcss-59cl

Copyright © 2022, The Pragmatic Bookshelf.

https://blog.tailwindcss.com/
https://tailwindcss.com/
https://tailwindcss.com/docs/configuration#core-plugins
https://github.com/tailwindlabs/tailwindcss/blob/master/stubs/defaultConfig.stub.js
https://tailwindcss.com/docs/customizing-colors
https://dev.to/ohitslaurence/creating-dynamic-themes-with-react-tailwindcss-59cl

Rails 5 Test Prescriptions

Does your Rails code suffer from bloat, brittleness,

or inaccuracy? Cure these problems with the regular
application of test-driven development. You’ll use
Rails 5.2, Minitest 5, and RSpec 3.7, as well as pop-
ular testing libraries such as factory_bot and Cu-
cumber. Updates include Rails 5.2 system tests and

Webpack integration. Do what the doctor ordered to make your ap-
plications feel all better. Side effects may include better code, fewer
bugs, and happier developers.

Noel Rappin

(404 pages) ISBN: 9781680502503 $47.95

Release It! Second Edition

A single dramatic software failure can cost a company millions of dol-
lars—but can be avoided with simple changes to design and architec-
ture. This new edition of the best-selling industry standard shows you
how to create systems that run longer, with fewer failures, and recov-

You May Be Interested In…

Select a cover for more information

http://pragmaticprogrammer.com/titles/nrtest3

er better when bad things happen. New coverage
includes DevOps, microservices, and cloud-native
architecture. Stability antipatterns have grown to in-
clude systemic problems in large-scale systems.

This is a must-have pragmatic guide to engineering
for production systems.

Michael Nygard

(376 pages) ISBN: 9781680502398 $47.95

Python Testing with pytest, Second Edition

Test applications, packages, and libraries large and
small with pytest, Python’s most powerful testing
framework. pytest helps you write tests quickly and
keep them readable and maintainable. In this fully
revised edition, explore pytest’s superpowers—sim-
ple asserts, fixtures, parametrization, markers, and

plugins—while creating simple tests and test suites against a small
database application. Using a robust yet simple fixture model, it’s just
as easy to write small tests with pytest as it is to scale up to complex
functional testing. This book shows you how.

Brian Okken

http://pragmaticprogrammer.com/titles/mnee2
http://pragmaticprogrammer.com/titles/bopytest2

(272 pages) ISBN: 9781680508604 $45.95

Rails, Angular, Postgres, and Bootstrap, Second
Edition

Achieve awesome user experiences and perfor-
mance with simple, maintainable code! Embrace
the full stack of web development, from styling with
Bootstrap, building an interactive user interface with
Angular 4, to storing data quickly and reliably in
PostgreSQL. With this fully revised new edition, take

a holistic view of full-stack development to create usable, high-per-
forming applications with Rails 5.1.

David Bryant Copeland

(342 pages) ISBN: 9781680502206 $39.95

Agile Web Development with Rails 6

Learn Rails the way the Rails core team recom-
mends it, along with the tens of thousands of devel-
opers who have used this broad, far-reaching tutori-
al and reference. If you’re new to Rails, you’ll get
step-by-step guidance. If you’re an experienced de-
veloper, get the comprehensive, insider information

http://pragmaticprogrammer.com/titles/dcbang2
http://pragmaticprogrammer.com/titles/rails6

you need for the latest version of Ruby on Rails. The new edition of
this award-winning classic is completely updated for Rails 6 and Ruby
2.6, with information on processing email with Action Mailbox and
managing rich text with Action Text.

Sam Ruby and David Bryant Copeland

(494 pages) ISBN: 9781680506709 $57.95

The Cucumber Book, Second Edition

Your customers want rock-solid, bug-free software
that does exactly what they expect it to do. Yet they
can’t always articulate their ideas clearly enough for
you to turn them into code. You need Cucumber: a
testing, communication, and requirements tool—all
rolled into one. All the code in this book is updated

for Cucumber 2.4, Rails 5, and RSpec 3.5.

Matt Wynne and Aslak Hellesøy, with Steve Tooke

(334 pages) ISBN: 9781680502381 $39.95

Crafting Rails 4 Applications

http://pragmaticprogrammer.com/titles/hwcuc2

Get ready to see Rails as you’ve never seen it be-
fore. Learn how to extend the framework, change its
behavior, and replace whole components to bend it
to your will. Eight different test-driven tutorials will
help you understand Rails’ inner workings and pre-
pare you to tackle complicated projects with solu-

tions that are well-tested, modular, and easy to maintain.
This second
edition of the bestselling Crafting Rails Applications has been updat-
ed to Rails 4 and discusses new topics such as streaming, mountable
engines, and thread safety.

José Valim

(208 pages) ISBN: 9781937785550 $36

Metaprogramming Ruby 2

Write powerful Ruby code that is easy to maintain
and change. With metaprogramming, you can pro-
duce elegant, clean, and beautiful programs. Once
the domain of expert Rubyists, metaprogramming is
now accessible to programmers of all levels. This
thoroughly revised and updated second edition of

the bestselling Metaprogramming Ruby explains metaprogramming

http://pragmaticprogrammer.com/titles/jvrails2
http://pragmaticprogrammer.com/titles/ppmetr2

in a down-to-earth style and arms you with a practical toolbox that will
help you write your best Ruby code ever.

Paolo Perrotta

(276 pages) ISBN: 9781941222126 $38

	Acknowledgments
	Preface to the Second Edition
	Introduction
	Why Tailwind?
	About This Book
	Who This Book Is For
	Running the Sample App

	1. Getting Started with Tailwind
	What the Tailwind CLI Does
	Using the Sample Code
	Adding Tailwind to Your App
	Quick Start

	2. Tailwind Basics
	Utilities
	Preflight
	Duplication
	Modifiers
	CSS Units

	3. Typography
	Size and Shape
	Color and Opacity
	Alignment and Spacing
	Special Text
	Lists
	Typography Plugin
	Tailwind Forms

	4. The Box
	Can You See the Box?
	What’s in the Box?
	Padding and Margins
	Borders
	Background Color
	Background Images
	Filters
	Height and Width

	5. Page Layout
	Containers
	Floats and Clears
	Position and Z-Index
	Tables
	Grids
	Columns
	Flexbox
	Box Alignment

	6. Animation
	Helpful Small Animations
	Transitions
	Transformation
	Other Appearance Things

	7. Responsive Design
	Tailwind Screen Widths and Breakpoints
	Hide Based on Size
	Fewer Grid Columns on Small Devices
	Flex on Larger Devices

	8. Customizing Tailwind
	Configuration File Basics
	Change Default Values
	Change Generated Classes
	Variant Modifiers
	Integrate with Existing CSS
	Access Tailwind from JavaScript
	Plugins
	The End

