

Certified Kubernetes Application
Developer (CKAD) Study Guide

In-Depth Guidance and Practice

Benjamin Muschko

Certified Kubernetes Application
Developer (CKAD) Study Guide

by Benjamin Muschko

Copyright © 2021 Automated Ascent, LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc.,
1005 Gravenstein Highway North,

Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our corporate/insti-
tutional sales
department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins

Development Editor: Michele Cronin

Production Editor: Beth Kelly

Copyeditor: Holly Bauer Forsyth

Proofreader: Justin Billing

Indexer: Judy McConville

http://oreilly.com/

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

February 2021:
First Edition

Revision History for the First Edition

2021-02-02:
First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492083733
for re-
lease details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.

Certified Kubernetes Application Developer (CKAD) Study Guide, the
cover
image, and related trade dress are trademarks of O’Reilly Me-
dia, Inc.

The views expressed in this work are those of the author, and do not
represent the publisher’s views. While the publisher and the
author
have used good faith efforts to ensure that the information and
in-
structions contained in this work are accurate, the publisher and the
author disclaim all responsibility for errors or omissions, including
without limitation responsibility for damages resulting from the use of

http://oreilly.com/catalog/errata.csp?isbn=9781492083733

or
reliance on this work. Use of the information and instructions con-
tained
in this work is at your own risk. If any code samples or other
technology
this work contains or describes is subject to open source
licenses or the
intellectual property rights of others, it is your respon-
sibility to
ensure that your use thereof complies with such licenses
and/or rights.

978-1-492-08373-3

[LSI]

Preface

Microservices architecture is one of the hottest areas of application
development today, particularly for cloud-based, enterprise-scale ap-
plications. The benefits of building applications using small, single-
purpose services are well documented. But managing what can
sometimes be enormous numbers of containerized services is no
easy task and requires the addition of an “orchestrator” to keep it all
together. Kubernetes is among the most popular and broadly used
tools for this job, so it’s no surprise that the ability to use, trou-
bleshoot, and monitor Kubernetes as an application developer is in
high demand. To help job seekers and employers have a standard
means to demonstrate and evaluate proficiency in developing with a
Kubernetes environment, the Cloud Native Computing Foundation
(CNCF) developed the Certified Kubernetes Application Developer
(CKAD) program. To achieve this certification, you need to pass an
exam.

The CKAD is not to be confused with the Certified Kubernetes Ad-
ministrator (CKA). While there is an overlap of topics, the CKA focus-
es mostly on Kubernetes cluster adminstration tasks rather than de-
veloping applications operated in a cluster.

https://oreil.ly/sq-Po
https://oreil.ly/-uTol

In this study guide, I will explore the topics covered in the CKAD
exam to fully prepare you to pass the certification exam. We’ll look at
determining when and how you should apply the core concepts of
Kubernetes to manage an application. We’ll also examine the
kubectl command-line tool, a mainstay of the Kubernetes engi-
neer. I will also offer tips to help you better prepare for the exam and
share my personal experience with getting ready for all aspects of it.

The CKAD is different from the typical multiple-choice format of other
certifications. It’s completely performance based and requires you to
demonstrate deep knowledge of the tasks at hand under immense
time pressure. Are you ready to pass the test on the first go?

Who This Book Is For

The primary target group for this book is developers who want to pre-
pare for the CKAD exam. The content covers all aspects of the exam
curriculum, though basic knowledge of the Kubernetes architecture
and its concepts is expected. If you are completely new to Kuber-
netes, I recommend reading Kubernetes Up & Running by Brendan
Burns, Joe Beda, and Kelsey Hightower (O’Reilly) or Kubernetes in
Action by Marko Lukša (Manning Publications) first.

What You Will Learn

The content of the book condenses the most important aspects rele-
vant to the CKAD exam. Given the plethora of configuration options
available in Kubernetes, it’s almost impossible to cover all use cases
and scenarios without duplicating the official documentation. Test tak-
ers are encouraged to reference the Kubernetes documentation as
the go-to compendium for broader exposure.

The outline of the book follows the CKAD curriculum to a tee. While
there might be a more natural, didactical structure for learning Kuber-
netes in general, the curriculum outline will help test takers with pre-
paring for the exam by focusing on specific topics. As a result, you

https://oreil.ly/mwKc-
https://kubernetes.io/docs/home

will find yourself cross-referencing other chapters of the book de-
pending on your existing knowledge level.

Be aware that this book only covers the concepts relevant to the
CKAD exam. Certain primitives that you may expect to be covered by
the certification curriculum—for example, the API primitive Ingress—
are not discussed. Refer to the Kubernetes documentation or other
books if you want to dive deeper.

Practical experience with Kubernetes is key to passing the exam.

Each chapter contains a section named “Sample Exercises” with
practice questions. Solutions to those questions can be found in the
Appendix. You can get additional hands-on training by working
through the 30+ scenarios in the CKAD Exam Practice Scenarios
playlist.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

https://learning.oreilly.com/playlists/8aa87dce-f9a9-4206-83af-c8c730faa430

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data-
bases, data types, environment variables, statements, and
keywords.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values
or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples

The source code for all examples and exercises in this book is avail-
able on GitHub. The repository is distributed under the Apache Li-
cense 2.0. The code is free to use in commercial and open source
projects. If you encounter an issue in the source code or if you have a
question, open an issue in the GitHub issue tracker. I’ll be happy to
have a conversation and fix any issues that might arise.

This book is here to help you get your job done. In general, if example
code is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example,

writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by cit-
ing this book and quoting example code does not require permission.

Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example:

“Certified Kubernetes Application Developer (CKAD) Study Guide by

https://github.com/bmuschko/ckad-study-guide
https://oreil.ly/WKl2y

Benjamin Muschko (O’Reilly). Copyright 2021 Automated Ascent,
LLC, 978-1-492-08373-3.”

If you feel your use of code examples falls outside fair use or the per-
mission given above, feel free to contact us at permissions@oreilly.-
com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and business
training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge
and expertise through books, articles, and our online learning plat-
form. O’Reilly’s online learning platform gives you on-demand access
to live training courses, in-depth learning paths, interactive coding en-
vironments, and a vast collection of text and video from O’Reilly and
200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

mailto:permissions@oreilly.com
http://oreilly.com/
http://oreilly.com/

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,

and any additional information. You can access this page at https://or-
eil.ly/ckad.

Email bookquestions@oreilly.com to comment or ask technical ques-
tions about this book.

For news and information about our books and courses, visit http://or-
eilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

https://oreil.ly/ckad
mailto:bookquestions@oreilly.com
http://oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

Follow the author on Twitter: https://twitter.com/bmuschko

Follow the author on GitHub: https://github.com/bmuschko

Follow the author’s blog: https://bmuschko.com

Acknowledgments

Every book project is a long journey and would not be possible with-
out the help of the editorial staff and technical reviewers. Special
thanks go to Jonathon Johnson, Mohammed Hewedy, Sebastien
Goasguen, Michael Hausenblaus, and Peter Miron for their detailed
technical guidance and feedback. I would also like to thank the edi-
tors at O’Reilly Media, John Devins and Michele Cronin, for their con-
tinued support and encouragement.

https://twitter.com/bmuschko
https://github.com/bmuschko
https://bmuschko.com/

Chapter 1. Exam Details and
Resources

In this introductory chapter, I want to address the most burning ques-
tions frequently asked by candidates planning to prepare and suc-
cessfully pass the Certified Kubernetes Application Developer
(CKAD) exam. We won’t discuss the actual Kubernetes concepts or
how to apply them yet, but rather talk about the certification and the
necessary skills at a high level.

Exam Objectives

More and more application developers find themselves in projects
transitioning from a monolithic architectural model to bite-sized, cohe-
sive, and containerized microservices. There are pros and cons to
both approaches, but we can’t deny that Kubernetes has become the
de facto runtime platform for deploying and operating applications
without needing to worry about the underlying physical infrastructure.

Nowadays, it’s no longer the exclusive responsibility of an administra-
tor or release manager to deploy and monitor their applications in tar-
get runtime environments. Application developers need to see their
applications through from development to operation. Some organiza-

https://oreil.ly/sq-Po

tions like Netflix live and breathe this culture, so you, the application
developer, are fully responsible for making design decisions as well
as fixing issues in production. It’s more important than ever to under-
stand the capabilities of Kubernetes, how to apply the relevant con-
cepts properly, and how to interact with the platform.

The CKAD exam has been designed specifically for application de-
velopers who need to design, build, configure, and manage cloud na-
tive applications on Kubernetes.

KUBERNETES VERSION USED DURING THE EXAM

At the time of writing, the exam is based on Kubernetes 1.19. All content in this book
will follow the features, APIs, and command-line support for that specific version.

It’s certainly possible that future versions will break backward compatibility. While
preparing for the certification, review the Kubernetes release notes and practice

with the Kubernetes version used during the exam to avoid unpleasant surprises.

Curriculum

At a high level, the curriculum covers the following topics. Each topic
carries a different weight when it comes to the overall score:

13% – Core Concepts
18% – Configuration

https://oreil.ly/dbSMp

10% – Multi-Container Pods
18% – Observability
20% – Pod Design
13% – Services & Networking
8% – State Persistence

NOTE

The outline of the book follows the CKAD curriculum to a tee. While there might be
a more natural, didactical organization structure to learn Kubernetes in general, the
curriculum outline will help test takers with preparing for the exam by focusing on
specific topics. As a result, you will find yourself cross-referencing other chapters of

the book depending on your existing knowledge level.

Let’s break down each domain in detail and identify what they actual-
ly entail.

Core Concepts

The Kubernetes environment is defined by a collection of objects,

also called primitives. Each Kubernetes object represents a specific
functionality of the system. Why are they called “objects,” you might
ask? In the very early days of Kubernetes, the source code was im-
plemented in Java, which has the concept of classes to represent
specific types in the system. The code has since been written in Go,

but the terminology remained. This portion of the exam covers the
general structure of a Kubernetes object and its representation in
YAML. You’ll need to be familiar with the different ways to create,

delete, and modify a Kubernetes object from the command line. The
most important object in the Kubernetes object model is a Pod. A Pod
is what you use to deploy an application and run it in a container. This
section focuses on the basics of Pod management: creating, config-
uring, and inspecting Pods.

Configuration

This section of the exam drills into the advanced configuration op-
tions for Pods, primarily with the help of other Kubernetes objects.

ConfigMaps and Secrets help with centralizing configuration data
needed by a Pod at runtime. You will have to understand how to cre-
ate and use both concepts. Furthermore, this section covers the ins
and outs of defining privileges and access control for containers us-
ing a security context. A ResourceQuota limits the amount of re-
sources like CPU and memory granted to a namespace. As part of
the exam, you will need to know how to define such a resource limit
as well as minimum and maximum resource boundaries for a contain-
er. Finally, this section covers Service Accounts, the Kubernetes ob-
jects that allow defining the identities for processes running in a Pod.

Multi-Container Pods

Oftentimes, Pods only contain a single container. There are viable
use cases that require running multiple containers in a Pod. For the
exam, you will need to understand init containers and the various es-
tablished patterns for multi-container Pods. The curriculum explicitly
spells out three patterns you need to be familiar with: the sidecar pat-
tern, the adapter pattern, and the ambassador pattern.

Observability

Containers don’t always walk the happy path. Like in real life, things
can go wrong, and that’s OK; however, we’ll need to be able to deal
with it appropriately. Kubernetes provides readiness, liveness, and
startup probes that can identify the health state of the application run-
ning in the container and potentially act accordingly to correct a fail-
ure situation. Sometimes, there’s no way around digging deep. You
will have to understand how to debug containers that failed with
proven mitigation strategies. While this section also covers monitor-
ing, it’s not very high on the list of exam topics, as it requires the use
of commercial products. Its relevance to the exam is likely
insignificant.

Pod Design

Labels are an integral concept in Kubernetes. They are key-value
pairs used for querying, sorting, and filtering Kubernetes objects.

While annotations look similar to labels on the surface, they serve a
different purpose. For the exam, you will need to understand labels
and annotations and how to apply the concepts to solve different use
cases. This section also covers Deployments, so make sure you fully
understand the replication and scalability features of a Deployment.
Moreover, practice the use of Jobs for running batch-processing op-
erations and CronJobs for operations that should run at specific
times.

Services & Networking

A services is an abstraction layer on top of a set of Pods that provides
a single interface for defining the network communication. You will
need to understand how to create such a Service, its port-mapping
mechanism, as well as the different types of Services. Network poli-
cies describe the access rules for incoming and outgoing traffic for
Pods. In the context of defining network policies, get a good handle
on label selectors, port rules, and the typical use cases that may ben-
efit from applying the network policies to strengthen security.

State Persistence

Applications in a container perform file I/O only to the container’s file
system. If the read/write location is not associated to an external
mount, then the files are lost at the end of the container’s life. This
section covers the different types of volumes for reading and writing
data. Learn how to create and configure them. Persistent Volumes
ensure permanent data persistence even beyond a cluster node
restart. You will need to be familiar with the mechanics and how to
mount a Persistent Volume to a path in a container.

The main purpose of the exam is to test your practical knowledge of
Kubernetes primitives. It is to be expected that the exam combines
multiple concepts in a single problem. Refer to Figure 1-1 as a rough
guide to the applicable Kubernetes resources and their relationships.

You might have noticed that the exam does not cover all the Kuber-
netes resources you would have expected to find in the diagram. Cer-
tain Kubernetes primitives like ReplicaSet, StatefulSet, or Ingress did
not find their way into the curriculum, which means do you not neces-
sarily have to study them. Nevertheless, it’s a good idea to get a good
lay of the land and understand the most prominent concepts at a high
level.

While this book covers all Kubernetes resources shown in the dia-
gram, it’s almost impossible to explain all imaginable scenarios and
configuration options. Use the information explained in the following

chapters as a starting point to dive deeper. Don’t be afraid to explore
uncharted territory!

Figure 1-1. Kubernetes primitives relevant to the exam

Exam Environment and Tips

The exam is conducted and proctored online. As a result, you can
register and take the exam from the comfort of your home. It’s recom-

mended that you clear your desk and ensure a silent environment by
preventing any interruptions by other people or distracting noises. An
exam representative will watch over you via video and audio. Cheat-
ing attempts will result in your exam being terminated prematurely.

The exam consists of practical problems you have to solve within a
two-hour time frame. You will work on a preconfigured set of Kuber-
netes clusters. The focus of the exercises is to simulate typical situa-
tions you would encounter as an application developer using
Kubernetes.

Once you enter the exam environment, you are presented with a
web-based command-line environment. Most of your interaction hap-
pens inside of that terminal. I personally felt that the terminal was a bit
laggy—whatever I typed didn’t show up on screen until a split second
later. Be aware that the terminal does not provide any sophisticated
auto-completion functionality for kubectl commands.

You are permitted to access and browse the Kubernetes documenta-
tion in single browser tab. In preparation for the exam, read through
the bulk of the information at least once. While you can reference
anything in the documentation, know where and how to find relevant
iinformation to avoid spending too much time browsing. Do not open
links to external web pages, even if they’re referenced in the Kuber-
netes documentation. I made heavy use of the documentation page’s

https://kubernetes.io/docs

search functionality, which helped me find the right information based
on search terms quickly. Additionally, I would like to point you to two
gems in the documentation: the kubectl cheat sheet and the API
reference. Both pages might come in handy as quick reference
guides. You can’t print these out beforehand, but you can have one
tab open during the exam. For more information about the exam envi-
ronment, see the Frequently Asked Questions for the certification
program.

Candidate Skills

The certification assumes that you already have a basic understand-
ing of Kubernetes. You should be familiar with Kubernetes internals,

its core concepts, and the command-line tool kubectl . The CNCF
offers a free “Introduction to Kubernetes” course for beginners to
Kubernetes.

Your background is likely more on the end of an application develop-
er, although it doesn’t really matter which programming language
you’re most accustomed to. Here’s a brief overview of the back-
ground knowledge you should bring to the table to increase your like-
lihood of passing the exam:

Kubernetes architecture and concepts

https://oreil.ly/3wgkY
https://oreil.ly/d-Pdt
https://oreil.ly/br0Gv
https://oreil.ly/GJ1mp

The CKAD exam won’t ask you to install a Kubernetes cluster
from scratch. Read up on the basics of Kubernetes and its ar-
chitectural components. Don’t expect to encounter any multi-
ple-choice questions during the exam.

The kubectl CLI tool

The kubectl command-line tool is the central tool you will
use during the exam to interact with the Kubernetes cluster.
Even if you only have a little time to prepare for the exam, it’s
essential to practice how to operate kubectl , as well as its
commands and their relevant options. You will have no access
to the web dashboard UI during the exam.

Working knowledge of Docker

Kubernetes uses Docker by default for managing images. You
are not expected to run Docker commands, though it’s useful to
understand its basic concepts and know how to operate it from
the command line. At a minimum, understand Dockerfiles, im-
ages, containers, and their corresponding CLI commands.

Other relevant tools

Kubernetes objects are represented by YAML or JSON. The
content of this book will only use examples in YAML, as it is
more commonly used than JSON in the Kubernetes world. You

https://oreil.ly/2tZBk

will have to edit YAML during the exam to create a new object
declaratively or when modifying the configuration of a live ob-
ject. Ensure that you have a good handle on basic YAML syn-
tax, data types, and indentation conforming to the specification.

How do you edit the YAML definitions, you may ask? From the
terminal, of course. The exam terminal environment comes
with the tools vi and vim preinstalled. Practice the keyboard
shortcuts for common operations, (especially how to exit the
editor). The last tool I want to mention is GNU Bash. It’s imper-
ative that you understand the basic syntax and operators of the
scripting language. It’s absolutely possible that you may have
read, modify, or even extend a multiline Bash command run-
ning in a container.

Time Management

I mentioned earlier that you’ll have two hours to solve the problems
presented to you. While two hours sounds like a long time, in reality, it
isn’t. To be precise, you have an average of 6.4 minutes per problem.

The exam is very time constrained on purpose. It’s designed to put
you under pressure to ensure that your knowledge of Kubernetes has
been deeply ingrained into muscle memory.

I can provide you with a couple of time-management tips that helped
me get the most out of my alloted time. The exam presents you with a
mix of questions with varying degrees of complexity. It’s a good idea
to start with question one. If you can’t solve the issue right away or
only partially, move on to the next question. Sooner or later you will
encounter a problem you can solve quickly and confidently. Solving
easy problems first will help you score the points you need to pass.

There’s no value in getting stuck on a hard question and wasting too
much time. When taking the exam myself, I left one question com-
pletely unsolved and one question only partially solved before I ran
out of time. Nevertheless, I passed, which speaks to staying laser-fo-
cused on scoring points.

TAKING NOTES

The exam environment provides a little notepad you can use to track unsolved
problems. Simply mark down the questions you are planning to revisit later.

Command Line Tips and Tricks

Let me give you some additional tips and tricks for operating the com-
mand line. Not only did they help me with time management, but also
with avoiding missteps during the exam.

Setting a Context and Namespace

Every question in the exam will ask you to operate on the exam-pro-
vided Kubernetes cluster and namespace. The introductory text of
the question clearly states the command you need to run. Don’t forget
to execute the command, especially if you are rapidly jumping back
and forth between different questions.

You may not be working with namespaces in Kubernetes on a day-to-
day basis, especially in smaller organizations, which may simply
manage Kubernetes objects in the default namespace. The exam
makes heavy use of custom namespaces. You can decide to spell out
the namespace for every single command while working through the
exam; however, this mode of operation comes at the risk of forgetting
to set the namespace.

To avoid issues, run the following command once before working
through the steps of a question. The command sets the context and
the namespace at the same time:

$ kubectl config set-context <context-of-question
 --namespace=<namespace-of-question>

Using an Alias for kubectl

The kubectl command-line tool is your primary interface to the Ku-
bernetes cluster. For every command you need to execute, you will
have to type kubectl in the terminal. No big deal, you might say.

Do yourself a favor and define a shell alias as a shortcut to reference
the kubectl command. I personally prefer to use the single letter
command, k . You will only need to set the alias once at the begin-
ning of the exam to shave off a couple of seconds for every command
you run going forward:

$ alias k=kubectl

$ k version

I’m going to continue to use the full kubectl command throughout
the other chapters to avoid confusing those who didn’t reference this
particular section.

Internalize Resource Short Names

Some Kubernetes resources have excruciatingly long names. Just
imagine having to type persistentvolumeclaims every time
you need to reference the Kubernetes resource Persistent Volume
Claim. Thankfully, kubectl provides short names for some of the
resources. The following command lists all of them in the terminal:

$ kubectl api-resources

NAME SHORTNAMES APIGROUP NAM

...

persistentvolumeclaims pvc tru

...

You can see in the output that persistentvolumeclaims offers
the short name pvc . Consequently, a command that interacts with a
Persistent Volume Claim could look as simple as this:

$ kubectl describe pvc my-claim

Deleting Kubernetes Objects

It’s inevitable that you will make mistakes during the exam. For exam-
ple, you might create Kubernetes objects with incorrect configuration,

or you may simply want to start a question over from scratch. By de-
fault, Kubernetes tries to delete objects gracefully, which can can
take up to 30 seconds. Given that we’re dealing with a test environ-
ment, there’s no point in waiting. Use the command line option --

grace-period=0 and --force to send a SIGKILL signal. The
signal will delete a Kubernetes object immediately:

$ kubectl delete pod nginx --grace-period=0 --fo

Finding Object Information

Some questions in the exam present you with an existing setup of
Kubernetes objects. Don’t be surprised to find that the context you’re
working in already contains a couple of Pods with non-trivial configu-
ration. As part of the question, you may be asked to identify specific
Kubernetes objects and continue to work on those.

You can always inspect Kubernetes objects one by one, but again,

this would be a major time sink. It is helpful to remember that you can
combine a kubectl command with other Unix commands using a
pipe call. For example, you could run a describe pods command
and then filter the output with the grep command to find assigned
labels. The -C command-line option helps with rendering the lines
before and after the search term:

$ kubectl describe pods | grep -C 10 "author=John
$ kubectl get pods -o yaml | grep -C 5 labels:

Discovering Command Options

Even though you have access to the Kubernetes documentation, you
might not be able to find the exact information you’re looking for right
away. The kubectl command has help functionality built in. The

option --help works for every command available and renders de-
tails on subcommands, command-line options, and usage examples.

The following command demonstrates its use for the create

command:

$ kubectl create --help

Create a resource from a file or from stdin.

JSON and YAML formats are accepted.

Examples:

 ...

Available Commands:

 ...

Options:

 ...

Furthermore, you can explore the fields of every Kubernetes resource
from the command line with the explain command. As a parame-
ter, you have to provide the JSONPath for the field of interest. For ex-
ample, say you wanted to list all fields of a Pod’s spec; you would use
the following command:

$ kubectl explain pods.spec

KIND: Pod

VERSION: v1

RESOURCE: spec <Object>

DESCRIPTION:

 ...

FIELDS:

 ...

Practicing and Practice Exams

In preparation for the exam, it’s essential to practice using kubectl .

You’ll need to have access to a Kubernetes cluster and kubectl

preinstalled. Consider the following options:

Find out if your employer already has a Kubernetes cluster set
up and will allow you to use it to practice.

Installing Kubernetes on your developer machine is an easy and
fast way to get set up. The Kubernetes documentation provides
various installation options, depending on your operating system.

At some point during my Kubernetes learning journey, I installed
Kubernetes on four Raspberry Pis, which turned out to be a fun

https://oreil.ly/jA165

and exciting hobby project. You can find information on how to
get started on the Kubernetes blog.

If you’re a subscriber to the O’Reilly Learning Platform, you have
unlimited access to scenarios running a Kubernetes environment
in Katacoda.

In addition, you may also want to try out one of the following free or
paid practice exams:

The Certified Kubernetes Application Developer (CKAD) Prep
Course is a video-based Learning Path on the O’Reilly Learning
Platform, created by yours truly.

Certified Kubernetes Application Developer (CKAD) Cert Prep:

Exam Tips is a video-based course on LinkedIn Learning that fo-
cuses exclusively on exam preparation.

CKAD Exercises is a GitHub repository containing a variety of
free exercises that span all topics relevant to the curriculum.

Other online training providers offer video courses for the CKAD
exam, some of which include an integrated Kubernetes practice
environment. I would like to mention KodeKloud and Linux Acad-
emy. You’ll need to purchase a subscription to access the con-
tent for each course individually.

Summary

https://oreil.ly/iCOdP
https://oreil.ly/OLP
https://oreil.ly/Uucxp
https://oreil.ly/MFAjT
https://oreil.ly/MPofV
https://oreil.ly/G4hOP
https://oreil.ly/hHYyi
https://oreil.ly/ute7r

The CKAD exam is a completely hands-on test that requires you to
solve problems in multiple Kubernetes clusters. You’re expected to
understand, use, and configure the Kubernetes primitives relevant to
application developers. The exam curriculum subdivides those focus
areas and puts different weights on topics, which determines their
contributions to the overall score. Even though focus areas are
grouped in a meaningful fashion, the curriculum doesn’t necessarily
follow a natural learning path, so it’s helpful to cross-reference chap-
ters in the book in preparation for the exam.

In this chapter, we discussed the exam environment and how to navi-
gate it. We also went over tips and tricks that can help you save time.

In preparation for the exam, explore the architectural basics of Dock-
er and Kubernetes. The key to acing the exam is intense practice of
kubectl to solve real-world scenarios. The following chapters will
provide you with sample exam exercises. For full exposure, reference
the resources provided in “Practicing and Practice Exams”.

Chapter 2. Core Concepts

By “core concepts,” the CKAD curriculum is referring to Kubernetes’
basic concepts, its API, and the commands to operate an application
on Kubernetes. In this chapter, we’ll discuss the basic structure of Ku-
bernetes primitives and the main entry point for interacting with them:

the command line–based client, kubectl .

A Pod is the Kubernetes primitive for running an application in a con-
tainer. We’ll touch on the predominant aspects of a Pod and also
briefly discuss Docker, the containerization technology employed by
Kubernetes.

At the end of the chapter, you’ll understand how to create Kubernetes
objects imperatively and declaratively and know how to create a Pod
and define its most basic configuration.

At a high level, this chapter covers the following concepts:

Container concepts
Pod
Namespace

Kubernetes Primitives

Kubernetes primitives are the basic building blocks anchored in the
Kubernetes architecture for creating and operating an application on
the platform. Even as a beginner to Kubernetes, you might have
heard of the terms Pod, Deployment, and Service, all of which are
Kubernetes primitives. There are many more that serve a dedicated
purpose in the Kubernetes architecture.

To draw an analogy, think back to the concepts of object-oriented pro-
gramming. In object-oriented programming languages, a class de-
fines the blueprint of a real-world functionality: its properties and be-
havior. A Kubernetes primitive is the equivalent of a class. The in-
stance of a class in object-oriented programming is an object, man-
aging its own state and having the ability to communicate with other
parts of the system. Whenever you create a Kubernetes object, you
produce such an instance.

For example, a Pod in Kubernetes is the class of which there can be
many instances with their own identity. Every Kubernetes object has
a system-generated unique identifier (also known as UID) to clearly
distinguish between the entities of a system. Later, we’ll have look at
the properties of a Kubernetes object. Figure 2-1 illustrates the rela-
tionship between a Kubernetes primitive and an object.

Figure 2-1. Kubernetes object identity

Each and every Kubernetes primitive follows a general structure,

which you can observe if you have a deeper look at a manifest of an
object, as shown in Figure 2-2. The primary markup language used
for a Kubernetes manifest is YAML.

Figure 2-2. Kubernetes object structure

Let’s discuss each section and its relevance within the Kubernetes
system:

API version

The Kubernetes API version defines the structure of a primitive
and uses it to validate the correctness of the data. The API ver-
sion serves a similar purpose as XML schemas to a XML docu-
ment or JSON schemas to a JSON document. The version
usually undergoes a maturity process—e.g., from alpha to beta
to final. Sometimes you see different prefixes separated by a
slash (e.g., apps). You can list the API versions compatible
with your cluster version by running the command kubectl

api-versions .

Kind

The kind defines the type of primitive—e.g., a Pod or a Service.

It ultimately answers the question, “What type of object are we
dealing with here?”

Metadata

Metadata describes higher-level information about the object—
e.g., its name, what namespace it lives in, or whether it defines
labels and annotations. This section also defines the UID.

Spec

The specification (“spec” for short) declares the desired state—
e.g., how should this object look after it has been created?

Which image should run in the container, or which environment
variables should be set for?

Status

The status describes the actual state of an object. The Kuber-
netes controllers and their reconcilliation loops constantly try to
transition a Kubernetes object from the desired state into the
actual state. The object has not yet been materialized if the
YAML status shows the value {} .

With this basic structure in mind, let’s have a look at how to create a
Kubernetes object with the help of kubectl .

Using kubectl to Interact with the
Kubernetes Cluster

kubectl is the primary tool to interact with the Kubernetes clusters
from the command line. The CKAD exam is exclusively focused on
the use of kubectl . Therefore, it’s paramount to understand its ins
and outs and practice its use heavily.

In this section, I want to provide you with a brief overview of its typical
usage pattern. Let’s start by looking at the syntax for running com-
mands first. A kubectl execution consists of a command, a re-
source type, a resource name, and optional command line flags:

$ kubectl [command] [TYPE] [NAME] [flags]

The command specifies the operation you’re planning to run. Typical
commands are verbs like create , get , describe , or delete .

Next, you’ll need to provide the resource type you’re working on, ei-
ther as a full resource type or its short form. For example, you could
work on a service here, or use the short form, svc . The name of
the resource identifies the user-facing object identifier, effectively the
value of metadata.name in the YAML representation. Be aware
that the object name is not the same as the UID. The UID is an auto-
generated, Kubernetes-internal object reference that you usually
don’t have to interact with. The name of an object has to be unique
across all objects of the same resource type within a namespace. Fi-
nally, you can provide zero to many command line flags to describe
additional configuration behavior. A typical example of a command-
line flag is the --port flag, which exposes a Pod’s container port.

Figure 2-3 shows a full kubectl command in action.

Figure 2-3. Kubectl usage pattern

Over the course of this book, we’ll explore the kubectl commands
that will make you the most productive during the CKAD exam. There
are many more, however, and they usually go beyond the ones you’d
use on a day-to-day basis as an application developer. Next up, we’ll
have a deeper look at the create command, the imperative way to
create a Kubernetes object. We’ll also compare the imperative object
creation approach with the declarative approach.

Object Management

You can create objects in a Kubernetes cluster in two ways: impera-
tively or declaratively. The following sections will describe each ap-
proach, including their benefits, drawbacks, and use cases.

Imperative Approach

The imperative method for object creation does not require a mani-
fest definition. You would use the kubectl run or kubectl
create command to create an object on the fly. Any configuration
needed at runtime is provided by command-line options. The benefit

of this approach is the fast turnaround time without the need to wres-
tle with YAML structures:

$ kubectl run frontend --image=nginx --restart=Ne
pod/frontend created

Declarative Approach

The declarative approach creates objects from a manifest file (in
most cases, a YAML file) using the kubectl create or kubectl
apply command. The benefit of using the declarative method is re-
producibility and improved maintenance, as the file is checked into
version control in most cases. The declarative approach is the recom-
mended way to create objects in production environments:

$ vim pod.yaml

$ kubectl create -f pod.yaml

pod/frontend created

Hybrid Approach

Sometimes, you may want to go with a hybrid approach. You can start
by using the imperative method to produce a manifest file without ac-
tually creating an object. You do so by executing the kubectl run

command with the command-line options -o yaml and --dry-

run=client :

$ kubectl run frontend --image=nginx --restart=Ne
 -o yaml --dry-run=client > pod.yaml

$ vim pod.yaml

$ kubectl create -f pod.yaml

pod/frontend created

$ kubectl describe pod frontend

Name: frontend

Namespace: default

Priority: 0

...

Which Approach to Use?

In earlier Kubernetes versions, you were still able to create objects
other than Pods with the kubectl run command. For example,

with the right combination of command line options you could create

Deployments and CronJobs, however, kubectl run rendered a
deprecation message to remind you that support for it will go away in
a future version.

Kubernetes 1.18 only allows creating Pods with the run command
now. You will have to use the kubectl create command for im-
peratively creating any other primitive. You will find a lot of CKAD
preparation material on the web that still uses the kubectl run

pattern. This will not work in the exam environment anymore as the
Kubernetes version has already been upgraded beyond the point of
version 1.18.

While creating objects imperatively to optimize the turnaround time, in
practice you’ll most certainly want to rather use the declarative ap-
proach. A YAML manifest file represents the ultimate source of truth
of a Kubernetes object. Version-controlled files can be audited,

shared and store a history of changes in case you need to revert to a
previous revision.

Other Notable Commands

So far we only talked about object creation with the imperative and
declarative approach using the run and create command. The
kubectl executable offers other notable commands in the realm of
object management.

Deleting an object

At any given time, you can delete a Kubernetes object. During the
exam, the need may arise if you made a mistake while solving a prob-
lem and want to start from scratch to ensure a clean slate. In a work
environment, you’ll want to delete objects that are not needed any-
more. The delete command offers two options: deleting an object
by providing the name or deleting an object by pointing to the YAML
manifest that created it:

$ kubectl delete pod frontend

pod "frontend" deleted

$ kubectl delete -f pod.yaml

pod "frontend" deleted

Editing a live object

Say you already created an object and you wanted to make further
changes to the live object. You have the option to modify the object in
your editor of choice from the terminal using the edit command. Af-
ter saving the object definition in the editor, Kubernetes will try to re-
flect those changes in the live object:

$ kubectl edit pod frontend

Replacing a live object

Sometimes, you’ll just want to replace the definition of an existing ob-
ject declaratively. The replace command overwrites the live con-
figuration with the one from the provided YAML manifest. The YAML
manifest you feed into the command must be a complete resource
definition as observed with the create command:

$ kubectl replace -f pod.yaml

Updating a live object

Finally, I want to briefly explain the apply command and the main
difference to the create command. The create command in-
stantiates a new object. Trying to execute the create command for
an existing object will produce an error. The apply command is
meant to update an existing object in its entirety or just incrementally.

That’s why the provided YAML manifest may be a full definition of an
object or a partial definition (e.g., just the number of replicas for a De-
ployment). Please note that the apply command behaves like the

create command if the object doesn’t exist yet, however, the YAML
manifest will need to contain a full definition of the object:

$ kubectl apply -f pod.yaml

pod/frontend configured

In the next section, we’ll put our knowledge in practice by creating
and interacting with Pods.

Understanding Pods

The most important primitive in the Kubernetes API is the Pod. A Pod
lets you run a containerized application. In practice, you’ll often en-
counter a one to one mapping between a Pod and a container, how-
ever, there are use cases we’ll discuss in a later chapter that benefit
from declaring more than one container in a single Pod.

In addition to just running a container, a Pod can consume other ser-
vices like a persistent storage, configuration data, and much more.

Therefore, think of a Pod as a wrapper for running containers includ-
ing the mediator functionality with other Kubernetes objects.

Before jumping deeper into the coverage of a Pod, let’s first explore
the role a OCI-compliant container runtime plays in the Kubernetes

ecosystem. We’ll use the Docker daemon as an example of such a
container runtime.

Containerization Process

Kubernetes is a container orchestrator that uses a container runtime
to instantiate containers inside of Pods. By default, this container run-
time is the Docker. While it is not strictly necessary to understand
Docker as a whole for the exam, you should at least be familiar with
its basics. In this section, we’ll talk about Docker’s foundational con-
cepts and commands. It is safe to skip this section if you’re already
familiar with Docker.

Container Concepts

A container packages an application into a single unit of software in-
cluding its runtime environment and configuration. This unit of soft-
ware usually includes the operating system, the application’s source
code or the binary, its dependencies and other system tools deemed
necessary. The declared goal of a container is to decouple the run-
time environment from the application to avoid the “works on my ma-
chine” problem.

The process of bundling an application into a container is commonly
referred to as containerization. Containerization works based on in-

structions defined in a so-called Dockerfile. The Dockerfile explicitly
spells out what needs to happen when the software is built. The result
of the operation is an image. The image is usually published to a reg-
istry for consumption by other stakeholders. Docker Hub is the prima-
ry registry for Docker images available for public use. Other public
registries like GCR and Quay are available. Figure 2-4 illustrates the
concepts in the context of containerizing an application.

Figure 2-4. Containerization process

To summarize, the Dockerfile is a blueprint of how the software
should be built, the image is the artifact produced by the process, and
the container is an running instance of the image serving the applica-
tion. Let’s have a look at a more concrete example.

Example: Containerizing a Java-Based
Application

https://hub.docker.com/

Let’s assume we’d want to containerize a web application written in
Java. The application doesn’t write core functionality from scratch but
uses the Spring Boot framework as an external library. In addition,

we’ll want to control the runtime behavior with the help of environ-
ment variables. For example, you may want to provide URLs and cre-
dentials to connect to other services like a database. We’ll talk
through the process step by step and execute the relevant Docker
commands from the terminal. If you want to follow along, you can
download a sample application from the project generator Spring Ini-
talizr.

Before we can create the image, we’ll have to write a Dockerfile. The
Dockerfile can reside in any directory and is essentially a plain-text
file. The instructions below use the OpenJDK distribution of Java 11

as the base image. A base image contains the operating system and
the necessary tooling, in this case Java. Moreover, we include the bi-
nary file, an executable Java archive (JAR), into the directory /app

of the image. Finally, we define the Java command that executes the
program and expose the port 8080 to make the application accessible
when run in a container. Example 2-1 outlines a sample Dockerfile.

Example 2-1. Dockerfile for building a Java application

FROM openjdk:11-jre-slim

/

https://oreil.ly/Na9Vb
https://oreil.ly/bXSA4

WORKDIR /app

COPY target/java-hello-world-0.0.1.jar java-hello

ENTRYPOINT ["java", "-jar", "/app/java-hello-worl

EXPOSE 8080

With the Dockerfile in place, we can go ahead and create the image.

The following command provides the name of the image and the tag.

The last argument points to the context directory. A context directory
contains the Dockerfile as well as any directories and files that are
supposed to be included in the image. Here, the context directory is
the current directory we reside in referenced by “ . ”:

$ docker build -t java-hello-world:1.0.0 .

Sending build context to Docker daemon 8.32MB

Step 1/5 : FROM openjdk:11-jre-slim

 ---> 973c18dbf567

Step 2/5 : WORKDIR /app

 ---> Using cache

 ---> 31f9c5f2a019

Step 3/5 : COPY target/java-hello-world-0.0.1.jar

 ---> Using cache

 ---> 6a1deee17e9d

Step 4/5 : ENTRYPOINT ["java", "-jar", "/app/java

 ---> Using cache

 ---> 52a91ca70d86

Step 5/5 : EXPOSE 8080

 ---> Using cache

 ---> 3e9c22451a17

Successfully built 3e9c22451a17

Successfully tagged java-hello-world:1.0.0

As indicated by the terminal output, the image has been created. You
might have noticed that the base image has been downloaded as
part of the process. Both images can be found in your local Docker
Engine environment by running the following command:

$ docker images

REPOSITORY TAG IMAGE ID C

java-hello-world 1.0.0 3e9c22451a17 A

openjdk 11-jre-slim 973c18dbf567 2

It’s time to run the application in a container. The run command
points to an image and executes its logic in a container:

$ docker run -d -p 8080:8080 java-hello-world:1.0
b0ee04accf078ea7c73cfe3be0f9d1ac6a099ac4e0e903773

We told the command to forward the port 8080 accessible on local-
host to the container port 8080. This means we should now be able to
resolve the application’s endpoint from the local machine. As you can
see in the following command, a simple curl to the root context
path renders the message “Hello World!”:

$ curl localhost:8080

Hello World!

To publish an image to a registry, you’ll potentially have to do some
prework. Most registries require you to provide a prefix that signifies
the username or hostname as part of the image name. For example,

Docker Hub requires you to provide the username. My username is
bmuschko and therefore I have to retag my image before pushing it.
If the registry is protected, you’ll also have to provide the credentials.

For Docker Hub, we are logging in with username:

$ docker login --username=bmuschko

Password: *****

WARNING! Your password will be stored unencrypted

.docker/config.json.

Configure a credential helper to remove this warn

https://docs.docker.com/engine/reference/commandl

Login Succeeded

$ docker tag java-hello-world:1.0.0 bmuschko/java
$ docker push bmuschko/java-hello-world:1.0.0

The push refers to repository [docker.io/bmuschko

be6f48684f94: Pushed

ff3b0a3f736e: Pushed

a346421f0657: Mounted from library/openjdk

cab8f1f311d9: Mounted from library/openjdk

0a71386e5425: Mounted from library/openjdk

ffc9b21953f4: Mounted from library/openjdk

1.0.0: digest: sha256:aafd2ab53ba3ff66fe66d7ffc11

62e212f3dcfd size: 1578

You experienced one of the most common developer workflows: con-
tainerizing an application and pushing the image to a registry. There’s
far more to learn about Docker, but that is outside the scope of this
book and we won’t dive any deeper here. Refer to the Docker docu-
mentation for more information.

Creating Pods

In this chapter, we will only look at the creation of a Pod running a sin-
gle container. Jump right over to the Chapter 4, “Multi-Container
Pods”, if you want to learn more about Pods that run more than one

https://docs.docker.com/

container. That chapter explains applicable design patterns and how
to interact with individual containers using kubectl .

The Pod definition needs to state an image for every container. Upon
creating the Pod object, imperatively or declaratively, the container
runtime engine (CRI) will check if the container image already exists
locally. If the image doesn’t exist yet, the CRI will download it from a
container image registry. By default the registry is Docker Hub. As
soon as the image exists on the node, the container is instantiated
and run. Figure 2-5 demonstrates the execution flow on a high-level.

Figure 2-5. CRI interaction with Docker images

The run command is the central entry point for creating Pods imper-
atively. Let’s talk about its usage and the most important command
line options you should memorize and practice. Say you wanted to
run a Hazelcast instance inside of a Pod. The container should use
the latest Hazelcast image, expose port 5701, and define an environ-
ment variable. In addition, we’ll also want to assign two labels to the
Pod. The following command combines of this information and does
not require any further editing of the live object:

$ kubectl run hazelcast --image=hazelcast/hazelca
 --port=5701 --env="DNS_DOMAIN=cluster" --labels

The run command offers a wealth of command line options. Exe-
cute the kubectl run --help or refer to the Kubernetes docu-
mentation for a broad overview. For the CKAD exam, you’ll not need
to understand each and every command. Table 2-1 lists the most
commonly-used options.

https://hazelcast.com/
https://oreil.ly/ChxPI

Table 2-1. Important kubectl run command line options

Option
Example
value

Description

--image nginx The image for the container
to run.

--port 8080 The port that this container
exposes.

--rm - Deletes the Pod after com-
mand in the container
finishes.

--env PROFILE=dev The environment variables
to set in the container.

--labels app=frontend A comma-separated list of
labels to apply to the Pod.

Some developers are more used to the creation of Pods from a YAML
manifest. Probably you’re already accustomed to the declarative ap-
proach because you’re using it at work. You can express the same
configuration for the Hazelcast Pod by opening the editor, copying a

Pod YAML code snippet from the Kubernetes online documentation
and modifying it to your needs. Example 2-2 shows the Pod manifest
saved in the file pod.yaml .

Example 2-2. Pod YAML manifest

apiVersion: v1

kind: Pod

metadata:

 name: hazelcast

 labels:

 app: hazelcast

 env: prod

spec:

 containers:

 - env:

 - name: DNS_DOMAIN

 value: cluster

 image: hazelcast/hazelcast

 name: hazelcast

 ports:

 - containerPort: 5701

 restartPolicy: Never

Creating the Pod from the manifest is straightforward. Simply use the
create or apply command, as explained in the sections “Object
Management” and “Other Notable Commands”:

$ kubectl create -f pod.yaml

pod/hazelcast created

Listing Pods

Now that you created a Pod, you can further inspect its runtime infor-
mation. The kubectl command offers a command for listing all
Pods running in the cluster: get pods . The following command
renders the Pod named hazelcast :

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

hazelcast 1/1 Running 0 17s

Real-world Kubernetes clusters can run hundreds of Pods at the
same time. If you know the name of the Pod of interest, it’s often
times easier to query by name. We would still only see a single Pod:

$ kubectl get pods hazelcast

NAME READY STATUS RESTARTS AGE

hazelcast 1/1 Running 0 17s

https://oreil.ly/I0Ckf

Pod Life Cycle Phases

Because Kubernetes is a state engine with asynchronous control
loops, it’s possible that the status of the Pod doesn’t show a
Running status right away when listing the Pods. It usually takes a
couple of seconds to retrieve the image and start the container. Upon
Pod creation, the object goes through several life cycle phases, as
shown in Figure 2-6.

Figure 2-6. Pod Life cycle Phases

Understanding the implications of each phase is important as it gives
you an idea about the operational status of a Pod. For example, dur-

https://oreil.ly/Qk5Ob

ing the exam you may be asked to identify a Pod with an issue and
further debug the object. Table 2-2 describes all Pod life cycle
phases.

Table 2-2. Pod life cycle phases

Option Description

Pending The Pod has been accepted by the Kubernetes
system, but one or more of the container im-
ages has not been created.

Running At least one container is still running, or is in the
process of starting or restarting.

Succeeded All containers in the Pod terminated
successfully.

Failed Containers in the Pod terminated, as least one
failed with an error.

Unknown The state of Pod could not be obtained.

Rendering Pod Details

The rendered table produced by the get command provides high-
level information about a Pod. But what if you needed to have a deep-
er look at the details? The describe command can help:

$ kubectl describe pods hazelcast
Name: hazelcast

Namespace: default

Priority: 0

PriorityClassName: <none>

Node: docker-desktop/192.168.65.3

Start Time: Wed, 20 May 2020 19:35:47 -06

Labels: app=hazelcast

 env=prod

Annotations: <none>

Status: Running

IP: 10.1.0.41

Containers:

 ...

Events:

 ...

The terminal output contains the metadata information of a Pod, the
containers it runs and the event log, such as failures when the Pod

was scheduled. The example output above has been condensed to
just show the metadata section. You can expect the output to be very
lengthy.

There’s a way to be more specific about the information you want to
render. You can combine the describe command with a Unix
grep command. Say you wanted to identify the image for running in
the container:

$ kubectl describe pods hazelcast | grep Image:

 Image: hazelcast/hazelcast

Accessing Logs of a Pod

As application developers, we know very well what to expect in the
log files produced by the application we implemented. Runtime fail-
ures may occur when operating an application in a container. The
logs command downloads the log output of a container. The follow-
ing output indicates that the Hazelcast server started up successfully:

$ kubectl logs hazelcast

...

M 25 2020 3 36 26 PM h l t Lif

May 25, 2020 3:36:26 PM com.hazelcast.core.Lifecy

INFO: [10.1.0.46]:5701 [dev] [4.0.1] [10.1.0.46]:

It’s very likely that more log entries will be produced as soon as the
container receives traffic from end users. You can stream the logs
with the command line option -f . This option is helpful if you want to
see logs in real time.

Kubernetes tries to restart a container under certain conditions, such
as if the image cannot be resolved on the first try. Upon a container
restart, you’ll not have access to the logs of the previous container
anymore; the logs command only renders the logs for the current
container. However, you can still get back to the logs of the previous
container by adding the -p command line option. You may want to
use the option to identify the root cause that triggered a container
restart.

Executing a Command in Container

There are situations that require you to log into the container and ex-
plore the file system. Maybe you want to inspect the configuration of
your application or debug the current state of your application. You
can use the exec command to open a shell in the container to ex-
plore it interactively, as follows:

$ kubectl exec -it hazelcast -- /bin/sh

...

Notice that you do not have to provide the resource type. This com-
mand only works for a Pod. The two dashes (--) separate the
exec command and its options from the command you want to run
inside of the container.

It’s also possible to just execute a single command inside of a con-
tainer. Say you wanted to render the environment variables available
to containers without having to be logged in. Just remove the interac-
tive flag -it and provide the relevant command after the two
dashes:

$ kubectl exec hazelcast -- env

...

DNS_DOMAIN=cluster

Deleting a Pod

Sooner or later you’ll want to delete a Pod. During the exam, you may
be asked to remove a Pod. Or possibly, you made a configuration

mistake and want to start the question from scratch:

$ kubectl delete pod hazelcast

pod "hazelcast" deleted

Keep in mind that Kubernetes tries to delete a Pod gracefully. This
means that the Pod will try to finish active requests to the Pod to
avoid unnecessary disruption to the end user. A graceful deletion op-
eration can take anywhere from 5-30 seconds, time you don’t want to
waste during the exam. See Chapter 1 for more information on how to
speed up the process.

An alternative way to delete a Pod is to point the delete command
to the YAML manifest you used to create it. The behavior is the same:

$ kubectl delete -f pod.yaml

pod "hazelcast" deleted

Configuring Pods

The CKAD curriculum expects you to feel comfortable with editing
YAML manifests either as files or as live object representations. In

this section, I want to point you to some of the typical configuration
scenarios you may face during the exam. Later chapters will deepen
your knowledge by touching on other configuration aspects.

Declaring Environment Variables

Applications need to expose a way to make their runtime behavior
configurable. For example, you may want to inject the URL to an ex-
ternal web service or declare the username for a database connec-
tion. Environment variables are a common option to provide this run-
time configuration.

AVOID CREATING CONTAINER IMAGES PER ENVIRONMENT

It might be tempting to say “hey, let’s create a container image for any target de-
ployment environment I need including its configuration.” That’s a bad idea. One of
the practices of continuous delivery and the Twelve-Factor App principles is to only
build a deployable artifact for a commit once. In this case, the artifact is the contain-
er image. Deviating configuration runtime behavior should be controllable by inject-
ing runtime information when instantiating the container. You can use environment

variables to control the behavior as needed.

Defining environment variables in a Pod YAML manifest is relatively
easy. Add or enhance the section env of a container. Every environ-
ment variable consists of a key-value pair, represented by the attrib-
utes name and value . Kubernetes does not enforce or sanitize

https://oreil.ly/w4_2g
https://12factor.net/

typical naming conventions for environment variable keys. It’s recom-
mended to follow the standard of using upper-case letters and the un-
derscore character (_) to separate words.

To illustrate a set of environment variables, have a look at Example 2-
3. The code snippet describes a Pod that runs a Java-based applica-
tion using the Spring Boot framework.

Example 2-3. YAML manifest for a Pod defining environment
variables

apiVersion: v1

kind: Pod

metadata:

 name: spring-boot-app

spec:

 containers:

 - image: bmuschko/spring-boot-app:1.5.3

 name: spring-boot-app

 env:

 - name: SPRING_PROFILES_ACTIVE

 value: prod

 - name: VERSION

 value: '1.5.3'

The first environment variable named SPRING_PROFILES_ACTIVE

defines a pointer to a so-called profile. A profile contains environ-

ment-specific properties. Here, we are pointing to the profile that con-
figures the production environment. The environment variable
VERSION specifies the application version. Its value corresponds to
the tag of the image and can be exposed by the running application
to display the value in the user interface.

Defining a Command with Arguments

Many container images already define an ENTRYPOINT or CMD in-
struction. The command assigned to the instruction is automatically
executed as part of the container startup process. For example, the
Hazelcast image we used earlier defines the instruction CMD

["/opt/hazelcast/start-hazelcast.sh"] .

In a Pod definition, you can either redefine the image ENTRYPOINT

and CMD instructions or assign a command to execute for the con-
tainer if hasn’t been specified by the image. You can provide this in-
formation with the help of the command and args attributes for a
container. The command attribute overrides the image’s
ENTRYPOINT instruction. The args attribute replaces the CMD in-
struction of an image.

Imagine you wanted to provide a command to an image that doesn’t
provide one yet. As usual there are two different approaches, impera-
tively and declaratively. We’ll generate the YAML manifest with the

help of the run command. The Pod should use the busybox im-
age and execute a shell command that renders the current date
every 10 seconds in an infinite loop:

$ kubectl run mypod --image=busybox -o yaml --dry
 > pod.yaml -- /bin/sh -c "while true; do date;

You can see in the generated, but condensed pod.yaml file shown
in Example 2-4 that the command has been turned into an args at-
tribute. Kubernetes specifies each argument on a single line.

Example 2-4. A YAML manifest containing an args attribute

apiVersion: v1

kind: Pod

metadata:

 name: mypod

spec:

 containers:

 - args:

 - /bin/sh

 - -c

 - while true; do date; sleep 10; done

 image: busybox

 name: mypod

 restartPolicy: Never

You could have achieved the same by a combination of the
command and args attributes if you were to hand-craft the YAML
manifest. Example 2-5 shows the different approach.

Example 2-5. A YAML file containing command and args
attributes

apiVersion: v1

kind: Pod

metadata:

 name: mypod

spec:

 containers:

 - command: ["/bin/sh"]

 args: ["-c", "while true; do date; sleep 10;

 image: busybox

 name: mypod

 restartPolicy: Never

You can quickly verify if the declared command actually does its job.

First, we create the Pod instance, then we tail the logs:

$ kubectl create -f pod.yaml

pod/mypod created

$ kubectl logs mypod -f

Fri May 29 00:49:06 UTC 2020

Fri May 29 00:49:16 UTC 2020

Fri May 29 00:49:26 UTC 2020

Fri May 29 00:49:36 UTC 2020

...

Understanding Namespaces

Namespaces are an API construct to avoid naming collisions and
represent a scope for object names. A good use case for name-
spaces is to isolate the objects by team or responsibility. Most ques-
tions in the CKAD exam will ask you to execute the command in a
specific namespace which has been set up for you. The following
sections briefly touch on the basic operations needed to deal with a
namespace.

Listing Namespaces

A Kubernetes cluster starts out with a couple of initial namespaces.

You can list them with the following command:

$ kubectl get namespaces

NAME STATUS AGE

default Active 157d

kube-node-lease Active 157d

kube-public Active 157d

kube-system Active 157d

The default namespace hosts object that haven’t been assigned
to an explicit namespace. Namespaces starting with the prefix
kube- are not considered end user-namespaces. They have been
created by the Kubernetes system. You will not have to interact with
them as an application developer.

Creating and Using a Namespace

To create a new namespace, use the create namespace com-
mand. The following command uses the name code-red :

$ kubectl create namespace code-red

namespace/code-red created

$ kubectl get namespace code-red

NAME STATUS AGE

code-red Active 16s

The corresponding representation as a YAML manifest would look as
follows:

apiVersion: v1

kind: Namespace

metadata:

 name: code-red

Once the namespace is in place, you can create objects within it. You
can do so with the command line option --namespace or its short-
form -n . The following commands create a new Pod in the name-
space code-red and then lists the available Pods in the
namespace:

$ kubectl run pod --image=nginx --restart=Never -
pod/pod created

$ kubectl get pods -n code-red

NAME READY STATUS RESTARTS AGE

pod 1/1 Running 0 13s

Deleting a Namespace

Deleting a namespace has a cascading effect on the object existing
in it. Deleting a namespace will automatically delete its objects:

$ kubectl delete namespace code-red

namespace "code-red" deleted

$ kubectl get pods -n code-red

No resources found in code-red namespace.

Summary

Kubernetes represents its functionality for deploying and operating a
cloud-native application with the help of primitives. Each primitive fol-
lows a general structure: the API version, the kind, the metadata and
the desired state of the resources, also called the spec. Upon cre-
ation or modification of the object, the Kubernetes scheduler auto-
matically tries to ensure that the actual state of the object follows the
defined specification. Every live object can be inspected, edited, and
deleted.

The portion “Core Concepts” of the curriculum puts a strong empha-
sis on the concept of a Pod. The Pod is a Kubernetes primitive re-
sponsible for running an application in a container. Kubernetes uses
Docker as its default container runtime technology. A Pod can define

one or many containers that use a container image. Upon its creation,

the container image is resolved and used to bootstrap the application.

Every Pod can be further customized with the relevant YAML
configuration.

Kubectl acts as a CLI-based client to interact with the Kubernetes
cluster. You can use its commands and flags to manage Kubernetes
objects.

Exam Essentials

Understand how to manage Kubernetes objects

In Kubernetes, you can create objects with the imperative or
declarative approach. The imperative approach is the most
time-efficient way to create objects. For Pods, use the com-
mand kubectl run , for any other resource use the com-
mand kubectl create . Furthermore, practice editing live
objects with kubectl edit and know how to delete them via
kubectl delete .

Know how to interact with Pods

A Pod runs an application inside of a container. You can check
on the status and the configuration of the Pod by inspecting the
object with the kubectl get or kubectl describe com-

mands. Make yourself familiar with the life cycle phases of a
Pod to be able to quickly diagnose error conditions. The com-
mand kubectl logs can be used to download the container
log information without having to shell into the container. Use
the command kubectl exec to further explore the container
environment e.g. to check on processes or to examine files.

Advanced Pod configuration options

Sometimes you have to start with the YAML manifest of a Pod
and then create the Pod declaratively. This could be the case if
you wanted to provide environment variables to the container
or declare a custom command. Practice different configuration
options by copy-pasting relevant code snippets from the Kuber-
netes documentation.

Sample Exercises

Solutions to these exercises are available in the Appendix.

1. Create a new Pod named nginx running the image
nginx:1.17.10 . Expose the container port 80. The Pod
should live in the namespace named ckad .

2. Get the details of the Pod including its IP address.

3. Create a temporary Pod that uses the busybox image to exe-
cute a wget command inside of the container. The wget com-
mand should access the endpoint exposed by the nginx con-
tainer. You should see the HTML response body rendered in the
terminal.

4. Get the logs of the nginx container.
5. Add the environment variables

DB_URL=postgresql://mydb:5432 and
DB_USERNAME=admin to the container of the nginx Pod.

6. Open a shell for the nginx container and inspect the contents
of the current directory ls -l .

7. Create a YAML manifest for a Pod named loop that runs the
busybox image in a container. The container should run the
following command: for i in {1..10}; do echo

"Welcome $i times"; done . Create the Pod from the
YAML manifest. What’s the status of the Pod?

8. Edit the Pod named loop . Change the command to run in an
endless loop. Each iteration should echo the current date.

9. Inspect the events and the status of the Pod loop .

10. Delete the namespace ckad and its Pods.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness by
working through our playlist of interactive CKAD scenarios. Each step
of the scenario must be completed correctly before you can move to
the next step. If you get stuck, you can view the solution and learn
how to complete the step.

The following scenarios cover material from this chapter:

2-1. CKAD Pods: Creating and Interacting with a Pod
2-2. CKAD Pods: Creating a Pod that Uses a Custom Command
2-3. CKAD Pods: Modifying the Configuration of an Existing Pod

https://learning.oreilly.com/playlists/8aa87dce-f9a9-4206-83af-c8c730faa430
https://learning.oreilly.com/scenarios/2-1-ckad-pods/9781098104818
https://learning.oreilly.com/scenarios/2-2-ckad-pods/9781098104825
https://learning.oreilly.com/scenarios/2-3-ckad-pods/9781098104870

Chapter 3. Configuration

The domain “configuration” of the curriculum covers advanced con-
cepts used to configure a Pod. This chapter will discuss all relevant
Kubernetes primitives and their purpose with the help of a concrete
use case.

As demonstrated in the previous chapter, controlling runtime behav-
ior using environment variables is common practice. Having to deal
with a long list of environment variables by defining them for individ-
ual containers can quickly become tedious, especially if you want to
reuse some of those key-value pairs across a set of Pods. Config-
Maps and Secrets help with centralizing configuration data and can
be injected into containers.

Furthermore, this chapter discusses security and resource consump-
tion concerns. You can define a security context to define privilege
and access control settings. Every namespace can limit the amount
of resources like CPU and memory available to Pods. At the end of
the chapter, you will understand how to create and inspect a Re-
sourceQuota and how to set minimum and maximum resource
boundaries for a Pod. Finally, we’ll touch on the configuration needed
to assign a Service Account to a Pod.

NOTE

This chapter will use the concept of a Volume. Reference Chapter 8 for more infor-
mation if you’re not familiar with Kubernetes’ persistent storage options.

At a high level, this chapter covers the following concepts:

ConfigMap
Secret
Volume
Security Context
Resource Boundaries
ResourceQuota
Service Account

Defining and Consuming
Configuration Data

One of the fundamental principles of continuous delivery is to build a
binary artifact just once for a single SCM commit. A binary artifact
should then be stored in a binary repository—for example, in the
commercial product JFrog Artifactory. An automated process would
then download the artifact if needed for deployment to a target envi-
ronment. Typical target runtime environments include staging or pro-

https://oreil.ly/e9IXy

duction. The method of building an artifact just once prevents acci-
dental mistakes if you were to rebuild it per environment and increas-
es the overall confidence level when shipping the software to the cus-
tomer. Configuration data needed for each of those environments can
be injected into the runtime environment. Environment variables can
help with this task, but there are other options.

Let’s bridge the gap to container runtime environments like Docker.
The same concept of building an artifact just once should apply here.

In our case, the binary artifact is a container image. You will not want
to rebuild the image for different runtime environments.

Kubernetes dedicates two primitives to defining configuration data:

the ConfigMap and the Secret. Both primitives are completely decou-
pled from the lifecycle of a Pod, which enables you to change their
configuration data values without necessarily having to redeploy the
Pod. In essence, ConfigMaps and Secrets store a set of key-value
pairs. Those key-value pairs can be injected into a container as envi-
ronment variables, or they can be mounted as a Volume. Figure 3-1
shows an example Pod that decided to consume data from a Config-
Map as a volume mount and a Secret as environment variables.

What’s the difference between a ConfigMap and a Secret? They’re
almost identical in purpose and structure, although Secrets are better
suited for storing sensitive data like passwords, API keys, or SSL cer-

tificates because they store their values encoded in Base64. Let me
also mention the security aspect of Secrets. Base64 only encodes a
value, but it doesn’t encrypt it. Therefore, anyone with access to its
value can swiftly decode it. A Secret is distributed only to the nodes
running Pods that actually require access to it. Moreover, Secrets are
stored in memory and are never written to a physical storage.

Figure 3-1. Consuming configuration data

Creating a ConfigMap

You can create a ConfigMap imperatively with a single command:

kubectl create configmap . As part of the command, you have

to provide a mandatory command-line flag that points to the source of
the data. Kubernetes distinguishes four different options:

Literal values, which are key-value pairs as plain text.
A file that contains key-value pairs and expects them to be envi-
ronment variables.

A file with arbitrary contents.

A directory with one or many files.

The following commands show all options in action. You will find that
a file and directory use the same command-line option, --from-

file . Later, we’ll revisit how those key-value pairs are parsed and
stored in a ConfigMap.

Literal values

$ kubectl create configmap db-config --from-
configmap/db-config created

Single file with environment variables

$ kubectl create configmap db-config --from-
configmap/db-config created

Single file

$ kubectl create configmap db-config --from-
configmap/db-config created

Directory containing files

$ kubectl create configmap db-config --from-
configmap/db-config created

Alternatively, you can also create the ConfigMap declaratively. Say
you decided to define key-value pairs as literal values; the YAML rep-
resentation could look like what’s shown in Example 3-1.

Example 3-1. ConfigMap YAML manifest

apiVersion: v1

kind: ConfigMap

metadata:

 name: backend-config

data:

 database url: jdbc:postgresql://localhost/test

_ j p g q

 user: fred

Consuming a ConfigMap as Environment
Variables

Once the ConfigMap has been created, it can be consumed by one or
many Pods in the same namespace. Here, we’re exploring how to in-
ject the key-value pairs of a ConfigMap as environment variables.

The Pod definition shown in Example 3-2 references the ConfigMap
named backend-config and injects the key-value pairs as envi-
ronment variables with the help of envFrom.configMapRef .

Example 3-2. Injecting ConfigMap key-value pairs into the
container

apiVersion: v1

kind: Pod

metadata:

 name: configured-pod

spec:

 containers:

 - image: nginx:1.19.0

 name: app

 envFrom:

 - configMapRef:

 name: backend-config

It’s important to mention that the attribute envFrom does not auto-
matically format the key to conform to typical conventions used by
environment variables (all caps letters, words separated by the un-
derscore character). The attribute simply uses the keys as-is. After
creating the Pod, you can inspect the injected environment variables
by executing the remote Unix command env inside of the container:

$ kubectl exec configured-pod -- env

...

database_url=jdbc:postgresql://localhost/test

user=fred

...

Sometimes, key-value pairs do not conform to typical naming con-
ventions for environment variables or can’t be changed without im-
pacting running services. You can redefine the keys used to inject an
environment variable into a Pod with the valueFrom attribute.

Example 3-3 turns the key database_url into DATABASE_URL

and the key user into USERNAME .

Example 3-3. Reassigning environment variable keys for
ConfigMap entries

apiVersion: v1

kind: Pod

metadata:

 name: configured-pod

spec:

 containers:

 - image: nginx:1.19.0

 name: app

 env:

 - name: DATABASE_URL

 valueFrom:

 configMapKeyRef:

 name: backend-config

 key: database_url

 - name: USERNAME

 valueFrom:

 configMapKeyRef:

 name: backend-config

 key: user

The resulting environment variables available to the container now
follow the typical conventions for environment variables:

$ kubectl exec configured-pod -- env

...

DATABASE_URL=jdbc:postgresql://localhost/test

USERNAME=fred

...

Mounting a ConfigMap as Volume

Most programming languages can resolve and use environment vari-
ables to control the runtime behavior of an application. Especially
when dealing with a long list of configuration data, it might be prefer-
able to access the key-value pairs from the filesystem of the
container.

A ConfigMap can be mounted as Volume. The application would then
read those key-value pairs from the filesystem with an expected
mount path. Kubernetes represents every key in the ConfigMap as a
file. The value becomes the content of the file. Sound complicated?

Let’s have a look at Example 3-4.

Example 3-4. Mounting a ConfigMap as Volume

apiVersion: v1

kind: Pod

metadata:

 name: configured-pod

spec:

 containers:

 - image: nginx:1.19.0

 name: app

 volumeMounts:

 - name: config-volume

 mountPath: /etc/config

 volumes:

 - name: config-volume

 configMap:

 name: backend-config

In the YAML manifest shown in Example 3-4, I would like to point out
the most important building blocks. The volumes attribute specifies
the Volume to use. As you can see in the code snippet, it points to the
name of the ConfigMap. The name of the Volume is relevant for
adding the mount path using the volumeMounts attribute. Here,

we’re pointing to the mount path /etc/config .

To verify the expected behavior, open an interactive shell. As shown
in the following terminal output, the directory contains the files data-
base_url and user. Those filenames correspond to the keys of the
ConfigMap. The file contents represent their corresponding value in
the ConfigMap:

$ kubectl exec -it configured-pod -- /bin/sh

ls -1 /etc/config

database_url

user

cat /etc/config/database_url

jdbc:postgresql://localhost/test

cat /etc/config/user

fred

Creating a Secret

You can create a Secret imperatively with a single command:

kubectl create secret . Similar to the command for creating a
ConfigMap, you will have to provide an additional subcommand and a
configuration option. It’s mandatory to spell out the subcommand
right after the Kubernetes resource type secret . You can select
from one of the options shown in Table 3-1.

Table 3-1. Options for creating a Secret

Option Description

generic Creates a secret from a file, directory, or lit-
eral value.

docker-regis

try

Creates a secret for use with a Docker
registry.

tls Creates a TLS secret.

In most cases, you will likely deal with the type generic , which pro-
vides the same command-line options to point to the source of the
configuration data as kubectl create configmap :

Literal values, which are key-value pairs as plain text.
A file that contains key-value pairs and expects them to be envi-
ronment variables.

A file with arbitrary contents.

A directory with one or many files.

Let’s have a look at some command-line usage examples for creating
a Secret with the type generic . All values you feed into the com-

mand will be stored internally Base64 encoded. For example, the val-
ue s3cre! turns into czNjcmUh .

Literal values

$ kubectl create secret generic db-creds --from-l
secret/db-creds created

File containing environment variables

$ kubectl create secret generic db-creds --from-e
secret/db-creds created

SSH key file

$ kubectl create secret generic ssh-key --from-fi
secret/db-creds created

Of course, you can always take the declarative route, but there’s a lit-
tle catch. You have to Base64-encode the configuration data value
yourself when using the type Opaque . How can you do so? One way

to encode and decode a value is the Unix command-line tool
base64 . Alternatively, you can use websites like Base64 Encode.

The following example uses the command-line tool:

$ echo -n 's3cre!' | base64

czNjcmUh

You can now plug in the value under the data section with a corre-
sponding key, as shown in Example 3-5.

Example 3-5. A Secret with Base64-encoded values

apiVersion: v1

kind: Secret

metadata:

 name: db-creds

type: Opaque

data:

 pwd: czNjcmUh

Refer to the Kubernetes documentation for other types assignable to
a Secret that do not require explicit Base64-encoding. One example
is the type kubernetes.io/basic-auth , which represents cre-
dentials needed for basic authentication.

https://oreil.ly/xIgbr
https://oreil.ly/erPVn

Consuming a Secret as Environment Variables

Consuming the key-value pairs of a Secret as environment variables
from a container works almost exactly the same way as it does for a
ConfigMap. There’s only one difference: instead of using
envFrom.configMapRef , you’d use envFrom.secretRef , as
shown in Example 3-6.

Example 3-6. Injecting key-value pairs of a Secret into a
container

apiVersion: v1

kind: Pod

metadata:

 name: configured-pod

spec:

 containers:

 - image: nginx:1.19.0

 name: app

 envFrom:

 - secretRef:

 name: db-creds

It’s important to understand that the container will make the environ-
ment variable available in a Base64-decoded value. In turn, your ap-

plication running in the container will not have to implement Base64-
decoding logic:

$ kubectl exec configured-pod -- env

...

pwd=s3cre!

...

Mounting a Secret as Volume

In practice, you will see Secrets mounted as Volumes fairly often, es-
pecially in the context of making an SSH private key available to the
container. Example 3-7 assumes you’ve created a Secret named
ssh-key with the key id_rsa . First, create a Volume by pointing it
to the name of the Secret with secret.secretName . Note that the
attribute referencing the name is different than for a ConfigMap; for
Secrets, it’s called secretName . Next, mount the Volume by its
name and provide a mount path.

Example 3-7. Mounting a Secret as Volume

apiVersion: v1

kind: Pod

metadata:

 name: configured-pod

spec:

 containers:

 - image: nginx:1.19.0

 name: app

 volumeMounts:

 - name: secret-volume

 mountPath: /var/app

 readOnly: true

 volumes:

 - name: secret-volume

 secret:

 secretName: ssh-key

Secrets mounted as Volume will expose its values in Base64-decod-
ed form. You can easily verify the value by opening an interactive
shell and printing the contents of the file /var/app/id_rsa to standard
output:

$ kubectl exec -it configured-pod -- /bin/sh

ls -1 /var/app

id_rsa

cat /var/app/id_rsa

-----BEGIN RSA PRIVATE KEY-----

Proc-Type: 4,ENCRYPTED

DEK-Info: AES-128-CBC,8734C9153079F2E8497C8075289

...

-----END RSA PRIVATE KEY-----

Understanding Security Contexts

Docker images can define security-relevant instructions to reduce the
attack vector for the running container. By default, containers run with
root privileges, which provide supreme access to all processes and
the container’s filesystem. As a best practice, you should craft the
corresponding Dockerfile in a such a way that the container will be
run with a user ID other than 0 with the help of the USER instruction.

There are many other ways to secure a container on the container
level, but we won’t go into any more detail here.

Kubernetes, as the container orchestration engine, can apply addi-
tional configuration to increase container security. You’d do so by
defining a security context. A security context defines privilege and
access control settings for a Pod or a container. The following list pro-
vides some examples:

The user ID that should be used to run the Pod and/or container.
The group ID that should be used for filesystem access.

Granting a running process inside the container some privileges
of the root user but not all of them.

The security context is not a Kubernetes primitive. It is modeled as a
set of attributes under the directive securityContext within the
Pod specification. Security settings defined on the Pod level apply to
all containers running in the Pod; however, container-level settings
take precedence. For more information on Pod-level security attribut-
es, see the PodSecurityContext API. Container-level security attribut-
es can be found in the SecurityContext API.

To make the functionality more transparent, let’s have a look at a use
case. Some images, like the one for the open source reverse-proxy
server NGINX, must be run with the root user. Say you wanted to en-
force that containers cannot be run as a root user as a sensible secu-
rity strategy. The YAML manifest shown in Example 3-8 defines the
security configuration specifically to a container. If you were to run
other containers inside the Pod, then the runAsNonRoot setting
would not have any effect on them.

Example 3-8. Setting a security context on the container level

apiVersion: v1

kind: Pod

metadata:

 name: non-root

spec:

 containers:

 - image: nginx:1.18.0

https://oreil.ly/EUL2-
https://oreil.ly/EfUg5
https://oreil.ly/kYjux

 name: secured-container

 securityContext:

 runAsNonRoot: true

You will see that Kubernetes does its job; however, the image is not
compatible. Therefore,  the  container  fails  during  the  startup  

process  with  the  status  CreateContainerConfigError :

$ kubectl create -f container-root-user.yaml

pod/non-root created

$ kubectl get pods

NAME READY STATUS R

non-root 0/1 CreateContainerConfigError 0

$ kubectl describe pod/non-root

...

Events:

Type Reason Age From

---- ------ ---- ----

Normal Scheduled <unknown> default-sche

Normal Pulling 18s kubelet, min

Normal Pulled 14s kubelet, min

Warning Failed 0s (x3 over 14s) kubelet, min

There are alternative NGINX images available that are not required to
run with the root user. One example is bitnami/nginx. Upon a closer
look at the Dockerfile that produced the image, you will find that the
container runs with the user ID 1001. Starting the container with the
runAsNonRoot directive will work just fine.

There are many other security restrictions you can impose on a con-
tainer running in Kubernetes. For example, you may want to set the
access control for files and directories. Say that, whenever a file is
created on the filesystem, the owner of the file should be the arbitrary
group ID 3500. The YAML manifest shown in Example 3-9 assigns the
security context settings on the Pod level as a direct child of the
spec attribute.

Example 3-9. Setting a security context on the Pod level

apiVersion: v1

kind: Pod

metadata:

 name: fs-secured

spec:

 securityContext:

 fsGroup: 3500

 containers:

 - image: nginx:1.18.0

https://oreil.ly/bBhBf

 name: secured-container

 volumeMounts:

 - name: data-volume

 mountPath: /data/app

 volumes:

 - name: data-volume

 emptyDir: {}

You can easily verify the effect of setting the filesystem group ID.

Open an interactive shell to the container, navigate to the mounted
Volume, and create a new file. Inspecting the ownership of the file will
show the group ID 3500 automatically assigned to it:

$ kubectl create -f pod-file-system-group.yaml

pod/fs-secured created

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

fs-secured 1/1 Running 0 24s

$ kubectl exec -it fs-secured -- /bin/sh

cd /data/app

touch logs.txt

ls -l

-rw-r--r-- 1 root 3500 0 Jul 9 01:41 logs.txt

Understanding Resource Boundaries

Namespaces do not enforce any quotas for computing resources like
CPU, memory, or disk space, nor do they limit the number of Kuber-
netes objects that can be created. As a result, Kubernetes objects
can consume unlimited resources until the maximum available ca-
pacity is reached. In a cloud environment, resources are provisioned
on demand as long as you pay the bill. I think we can agree that that
approach doesn’t scale well.

NOTE

Kubernetes measures CPU resources in millicores and memory resources in bytes.

That’s why you might see resources defined as 600m or 100Mib. For a deep dive on
those resource units, it’s worth cross-referencing the section “Resource units in Ku-
bernetes” in the official documentation.

Creating a ResourceQuota

The Kubernetes primitive ResourceQuota establishes the usable,

maximum amount of resources per namespace. Once put in place,

the Kubernetes scheduler will take care of enforcing those rules. The
following list should give you an idea of the rules that can be defined:

https://oreil.ly/ZaTCX

Setting an upper limit for the number of objects that can be creat-
ed for a specific type (e.g., a maximum of 3 Pods).

Limiting the total sum of compute resources (e.g., 3 GiB of RAM).

Expecting a Quality of Service (QoS) class for a Pod (e.g.,

BestEffort to indicate that the Pod must not make any mem-
ory or CPU limits or requests).

Creating a ResourceQuota object is usually a task a Kubernetes ad-
ministrator would take on, but it’s relatively easy to define and create
such an object. First, create the namespace the quota should apply
to:

$ kubectl create namespace team-awesome

namespace/team-awesome created

$ kubectl get namespace

NAME STATUS AGE

team-awesome Active 23s

Next, define the ResourceQuota in YAML. To demonstrate the func-
tionality of a ResourceQuota, add constraints to the namespace, as
shown in Example 3-10:

Limit the number of Pods to 2.

Define the minimum resources requested by a Pod to 1 CPU and
1024m of RAM.

Define the maximum resources used by a Pod to 4 CPUs and
4096m of RAM.

Example 3-10. Defining hard resource limits with ResourceQuota

apiVersion: v1

kind: ResourceQuota

metadata:

 name: awesome-quota

spec:

 hard:

 pods: 2

 requests.cpu: "1"

 requests.memory: 1024m

 limits.cpu: "4"

 limits.memory: 4096m

You’re ready to create a ResourceQuota for the namespace. After it’s
created, the object provides a convenient table overview for compar-
ing used resources with the hard limits set by the ResourceQuota
spec via the describe command:

$ kubectl create -f awesome-quota.yaml --namespac

resourcequota/awesome-quota created

$ kubectl describe resourcequota awesome-quota --
Name: awesome-quota

Namespace: team-awesome

Resource Used Hard

-------- ---- ----

limits.cpu 0 4

limits.memory 0 4096m

pods 0 2

requests.cpu 0 1

requests.memory 0 1024m

Exploring ResourceQuota Enforcement

With the quota rules in place for the namespace team-awesome ,

we’ll want to see its enforcement in action. We’ll start by creating
more than the maximum number of Pods, which is two. To test this,

we can create Pods with any definition we like. Say, for example, we
use a bare-bones definition that runs the image nginx:1.18.0 in
the container, as shown in Example 3-11.

Example 3-11. A Pod without resource requirements

apiVersion: v1

kind: Pod

metadata:

 name: nginx

spec:

 containers:

 - image: nginx:1.18.0

 name: nginx

From that YAML definition, let’s create a Pod and see what happens.

In fact, Kubernetes will reject the creation of the object with the fol-
lowing error message:

$ kubectl create -f nginx-pod.yaml --namespace=te
Error from server (Forbidden): error when creatin

pods "nginx" is forbidden: failed quota: awesome-

limits.cpu,limits.memory,requests.cpu,requests.me

Because we defined minimum and maximum resource requirements
for objects in the namespace, we’ll have to ensure that the YAML
manifest actually defines them. Modify the initial definition by updat-
ing the instruction under resources , as shown in Example 3-12.

Example 3-12. A Pod with resource requirements

apiVersion: v1

kind: Pod

metadata:

 name: nginx

spec:

 containers:

 - image: nginx:1.18.0

 name: nginx

 resources:

 requests:

 cpu: "0.5"

 memory: "512m"

 limits:

 cpu: "1"

 memory: "1024m"

We should be able to create two uniquely named Pods with that man-
ifest, as the combined resource requirements still fit with the bound-
aries defined in the ResourceQuota:

$ kubectl create -f nginx-pod1.yaml --namespace=t
pod/nginx1 created

$ kubectl create -f nginx-pod2.yaml --namespace=t
pod/nginx2 created

$ kubectl describe resourcequota awesome-quota --
Name: awesome-quota

Namespace: team-awesome

Resource Used Hard

-------- ---- ----

limits.cpu 2 4

limits.memory 2048m 4096m

pods 2 2

requests.cpu 1 1

requests.memory 1024m 1024m

You  may  be  able  to  imagine  what  would  happen  if  we  tried  to  create 

another  Pod  with the definition of nginx1 and nginx2 . It will fail
for two reasons. For one, we’re not allowed to create a third Pod in
the namespace, as the maximum number is set to two. Moreover,
we’d exceed the alotted maximum for requests.cpu and
requests.memory . The following error message provides us with
this information:

$ kubectl create -f nginx-pod3.yaml --namespace=t
Error from server (Forbidden): error when creatin

pods "nginx3" is forbidden: exceeded quota: aweso

pods=1,requests.cpu=500m,requests.memory=512m, us

requests.memory=1024m, limited: pods=2,requests.c

Understanding Service Accounts

We’ve been using the kubectl executable to run operations
against a Kubernetes cluster. Under the hood, its implementation
calls the API server by making an HTTP call to the exposed end-
points. Some applications running inside of a Pod may have to com-
municate with the API server as well. For example, the application
may ask for specific cluster node information or available
namespaces.

Pods use a Service Account to authenticate with the API server
through an authentication token. A Kubernetes administrator assigns
rules to a Service Account via role-based access control (RBAC) to
authorize access to specific resources and actions. We won’t go
deeper into the concepts of RBAC, as the CKAD curriculum doesn’t
cover the topic. You can read more about it in the Kubernetes docu-
mentation. Figure 3-2 shows a high-level overview:

Figure 3-2. Using a Service Account to communicate with an API server

So far, we haven’t defined a Service Account for a Pod. If not as-
signed explicitly, a Pod uses the default Service Account. The
default Service Account has the same permissions as an unau-
thenticated user. This means that the Pod cannot view or modify the
cluster state nor list or modify any of its resources.

https://oreil.ly/MOZ_X

You can query for the available Service Accounts with the subcom-
mand serviceaccounts . You should only see the default Service
Account listed:

$ kubectl get serviceaccounts

NAME SECRETS AGE

default 1 25d

Kubernetes models the authentication token with the Secret primitive.

It’s easy to identify the corresponding Secret for a Service Account.
Retrieve the YAML representation of the Service Account and look at
the attribute secrets . In the Secret, you can find the Base64-en-
coded values of the current namespace, the cluster certificate, and
the authentication token:

$ kubectl get serviceaccount default -o yaml | g
secrets:

- name: default-token-bf8rh

$ kubectl get secret default-token-bf8rh -o yaml

apiVersion: v1

data:

 ca.crt: LS0tLS1CRUdJTiB...0FURS0tLS0tCg==

 namespace: ZGVmYXVsdA==

 token: ZXlKaGJHY2lPaUp...ThzU0poeFMxR013

ki d

kind: Secret

...

You will find that any live Pod object indicates its assigned Service
Account in the spec section. The following command renders the val-
ue in the terminal:

$ kubectl run nginx --image=nginx --restart=Neve
pod/nginx created

$ kubectl get pod nginx -o yaml

apiVersion: v1

kind: Pod

metadata:

 ...

spec:

 serviceAccountName: default

...

Creating and Assigning Custom Service
Accounts

It’s very possible that you’ll want to grant certain permissions to an
application running in a Pod. For that purpose, you’d create a custom
Service Account and bind the relevant permissions to it. For the most

part, this is the job of a Kubernetes administrator; however, it’s good
to have a basic understanding of the process from the perspective of
an application developer.

To create a new Service Account, you can simply use the create

command:

$ kubectl create serviceaccount custom

serviceaccount/custom created

Now, there are two ways to assign the Service Account to a Pod. You
can either edit the YAML manifest and add the
serviceAccountName attribute as shown above, or you can use
the --serviceaccount flag in conjunction with the run com-
mand when creating the Pod:

$ kubectl run nginx --image=nginx --restart=Neve
pod/nginx created

$ kubectl get pod nginx -o yaml

apiVersion: v1

kind: Pod

metadata:

 ...

spec:

i A tN t

 serviceAccountName: custom

...

Summary

Kubernetes provides advanced configuration options for Pods and
containers. Many of those options are represented as primitives, and
others simply blend in with the YAML configuration from the previous
chapter. This chapter covered the topics ConfigMaps, Secrets, Secu-
rity Contexts, resource requirements, and Service Accounts, all of
which are important concepts to application developers aiming to op-
erate secure, maintainable, and right-sized cloud native applications.

Coupling configuration to a container image can easily become a
maintainence nightmare. Instead of hardcoding environment vari-
ables or embedding configuration files as instructions when building
the image, it’s much easier to inject this information when starting the
container. In Kubernetes, this functionality is covered by the primi-
tives ConfigMaps and Secrets. Both concepts define decoupled con-
figuration data that can be injected into Pods as environment vari-
ables or mounted as Volume. ConfigMaps contain key-value pairs as
plain-text tuples. This primitive is a good fit for nonsensitive, unen-
crypted configuration information like connection URLs to other mi-
croservices or usernames. Secrets build on the foundation of Config-

Maps but are meant for storing sensitive data like passwords or API
keys. The manifest for a Secret looks pretty similar to the one for a
ConfigMap; however, all values in the data section are Base64 en-
coded. Remember that Base64 encoding is not an encyrption mecha-
nism—everyone who has access to the value can easily decode it.
Therefore, you will not want to check in a Secret as code into a ver-
sion control repository.

By default, containers run with the privileges of a root user. That
means full access to the filesystem and the ability to run any process,

opening up the possibility of security breaches by malicious attack-
ers. You can counteract that risk by defining a security context for a
Pod or container. For example, you could specify that the container
can only be run as a non-root user. It’s important to remember that
the container-level definition takes precedence over the Pod-level se-
curity context.

A ResourceQuota defines the computing resources (e.g., CPU, RAM,

and disk space) available to a namespace to prevent unbounded
consumption by Pods running it. You can also limit the number of re-
source types that are allowed to be created. Accordingly, Pods have
to work within those resource boundaries by declaring their minimum
and maximum resource expectations. The Kubernetes scheduler will
enforce those boundaries upon object creation.

Lastly, the Service Account defines the permissions for a Pod that
needs to communicate with the API server. Every Pod uses a Service
Account. If none is defined, Kubernetes will automatically assign the
default Service Account. The default Service Account uses
the privileges of an unauthenticated user. You can create a custom
Service Account to allow for more fine-grained control. Assigning a
custom Service Account to a Pod is as easy as defining it with
spec.serviceAccountName .

Exam Essentials

Know how to create and consume ConfigMaps and Secrets

It’s important to understand the intricate differences between
the two primitives and practice how to create those objects im-
peratively and declaratively. The fastest way to create the ob-
jects is by using the create configmap and create

secret commands. While assigning literal key-value pairs is
straightforward, pointing to files and directories as data sources
comes with subtle implications. Become familiar with the way
Kubernetes references the information in the manifest. As a
cross-check, inspect the configuration data for correctness by
shelling into the container for both scenarios: injected as envi-
ronment variables and mounted as Volume. Remember that
you only need to provide a Base64-encoded value when creat-

ing a Secret from a YAML manifest. The imperative creation
process performs the conversion automatically.

Experiment with options available to security contexts

The Kubernetes user documentation and API documentation is
a good starting point for exploring security context options. You
will find that there’s an overlap in the options available to a
PodSecurityContext and a SecurityContext. If defined on the
Pod level, those options can be overridden by specifying them
with a different value on the container level. While working
through the different use cases solved by a security context op-
tion, verify their outcome by running an operation that should
either be permitted or disallowed.

Understand resource boundaries

A ResourceQuota defines the resource boundaries for objects
living within a namespace. The most commonly used bound-
aries apply to computing resources. Practice defining them and
understand their effect on the creation of Pods. It’s important to
know the command for listing the hard requirements of a Re-
sourceQuota and the resources currently in use. You will find
that a ResourceQuota offers other options. Discover them in
more detail for a broader exposure to the topic.

Know how to create and assign a custom Service Account

Application developers don’t have to create custom Service Ac-
counts on a day-to-day basis—that’s the job of a Kubernetes
administrator. Nevertheless, it’s helpful to understand the back-
ground of Service Accounts and how this concept ties into
RBAC. For the exam, practice the creation of a Service Ac-
count and know how to assign it to a Pod. You will not need to
understand the RBAC aspect, as it is out of scope of the exam.

Sample Exercises

Solutions to these exercises are available in the Appendix.

1. Create a directory with the name config. Within the directory, cre-
ate two files. The first file should be named db.txt and contain the
key-value pair password=mypwd . The second file is named
ext-service.txt and should define the key-value pair
api_key=LmLHbYhsgWZwNifiqaRorH8T .

2. Create a Secret named ext-service-secret that uses the
directory as data source and inspect the YAML representation of
the object.

3. Create a Pod named consumer with the image nginx and
mount the Secret as a Volume with the mount path /var/app.

Open an interactive shell and inspect the values of the Secret.

4. Use the declarative approach to create a ConfigMap named
ext-service-configmap . Feed in the key-value pairs
api_endpoint=https://myapp.com/api and
username=bot as literals.

5. Inject the ConfigMap values into the existing Pod as environment
variables. Ensure that the keys conform to typical naming con-
ventions of environment variables.

6. Open an interactive shell and inspect the values of the
ConfigMap.

7. Define a security context on the container level of a new Pod
named security-context-demo that uses the image
alpine . The security context adds the Linux capability
CAP_SYS_TIME to the container. Explain if the value of this se-
curity context can be redefined in a Pod-level security context.

8. Define a ResourceQuota for the namespace project-

firebird . The rules should constrain the count of Secret ob-
jects within the namespace to 1.

9. Create as many Secret objects within the namespace until the
maximum number enforced by the ResourceQuota has been
reached.

10. Create a new Service Account named monitoring and assign
it to a new Pod with an image of your choosing. Open an interac-
tive shell and locate the authentication token of the assigned
Service Account.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness by
working through our playlist of interactive CKAD scenarios. Each step
of the scenario must be completed correctly before you can move to
the next step. If you get stuck, you can view the solution and learn
how to complete the step.

The following scenarios cover material from this chapter:

3-1. CKAD Configuration: Creating a Secret and Consuming It as
Environment Variables
3-2. CKAD Configuration: Creating a Secret and Consuming It as
Volume
3-3. CKAD Configuration: Creating a ConfigMap and Consuming
It as Environment Variables
3-4. CKAD Configuration: Creating a ConfigMap and Consuming
It as Volume
3-5. CKAD Security: Defining a Security Context
3-6. CKAD Security: Creating a Resource Quota for a Number of
Secrets
3-7. CKAD Security: Creating and Assigning a ServiceAccount

https://learning.oreilly.com/playlists/8aa87dce-f9a9-4206-83af-c8c730faa430
https://learning.oreilly.com/scenarios/3-1-ckad-configuration/9781098104894
https://learning.oreilly.com/scenarios/3-2-ckad-configuration/9781098104900
https://learning.oreilly.com/scenarios/3-3-ckad-configuration/9781098104917
https://learning.oreilly.com/scenarios/3-4-ckad-configuration/9781098104924
https://learning.oreilly.com/scenarios/3-5-ckad-security/9781098104948
https://learning.oreilly.com/scenarios/3-6-ckad-security/9781098104955
https://learning.oreilly.com/scenarios/3-7-ckad-security/9781098104962

Chapter 4. Multi-Container Pods

The previous chapters explained how to manage single-container
Pods. That’s the norm, as you’ll want to run a microservice inside of a
single Pod to reinforce separation of concerns and increased cohe-
sion. Technically, a Pod allows you to configure and run multiple con-
tainers. The section “Multi-Container Pods” of the CKAD curriculum
addresses this concern.

In this chapter, we’ll discuss the need for multi-container Pods, their
relevant use cases, and the design patterns that emerged in the Ku-
bernetes community. The exam outline specifically mentions three
design patterns: the sidecar, the adapter, and the ambassador. We’ll
make sure to get a good grasp of their application with the help of
representative examples.

We’ll also talk about init containers. Init containers help with transi-
tioning the runtime environment into an expected state so that the ap-
plication can work properly. While it’s not explicitly mentioned in the
CKAD curriculum, I think it’s important to cover the concept, as it falls
under the topic of multi-container Pods.

At a high level, this chapter covers the following concepts:

Pod

Container
Volume
Design patterns

NOTE

This chapter will use the concept of a Volume. Reference Chapter 8 for more infor-
mation if you’re not familiar with Kubernetes’ persistent storage options.

Defining Multiple Containers in a Pod

Especially to beginners of Kubernetes, how to appropriately design a
Pod isn’t necessarily apparent. Upon reading the Kubernetes user
documentation and tutorials on the internet, you’ll quickly find out that
you can create a Pod that runs multiple containers at the same time.

The question often arises, “Should I deploy my microservices stack to
a single Pod with multiple containers, or should I create multiple
Pods, each running a single microservice?” The short answer is to op-
erate a single microservice per Pod. This modus operandi promotes
a decentralized, decoupled, and distributed architecture. Further-
more, it helps with rolling out new versions of a microservice without
necessarily interrupting other parts of the system.

So what’s the point of running multiple containers in a Pod then?

There are two common use cases. Sometimes, you’ll want to initialize
your Pod by executing setup scripts, commands, or any other kind of
preconfiguration procedure before the application container should
start. This logic runs in a so-called init container. Other times, you’ll
want to provide helper functionality that runs alongside the applica-
tion container to avoid the need to bake the logic into application
code. For example, you may want to massage the log output pro-
duced by the application. Containers running helper logic are called
sidecars.

Init Containers

Init containers provide initialization logic concerns to be run before
the main application even starts. To draw an analogy, let’s look at a
similar concept in programming languages. Many programming lan-
guages, especially the ones that are object oriented like Java or C++,

come with a constructor or a static method block. Those language
constructs initialize fields, validate data, and set the stage before a
class can be created. Not all classes need a constructor, but they are
equipped with the capability.

In Kubernetes, this functionality can be achieved with the help of init
containers. Init containers are always started before the main applica-

tion containers, which means they have their own lifecycle. To split up
the initialization logic, you can even distribute the work into multiple
init containers that are run in the order of definition in the manifest. Of
course, initialization logic can fail. If an init container produces an er-
ror, the whole Pod is restarted, causing all init containers to run again
in sequential order. Thus, to prevent any side effects, making init con-
tainer logic idempotent is a good practice. Figure 4-1 shows a Pod
with two init containers and the main application.

Figure 4-1. Sequential and atomic lifecycle of init containers in a Pod

In the past couple of chapters, we’ve explored how to define a con-
tainer within a Pod. You simply specify its configuration under
spec.containers . For init containers, Kubernetes provides a
separate section: spec.initContainers . Init containers are al-
ways executed before the main application containers, regardless of
the definition order in the manifest. The manifest shown in
Example 4-1 defines an init container and a main application contain-
er. The init container sets up a configuration file in the directory

/usr/shared/app. This directory has been shared through a Volume so
that it can be referenced by a Node.js-based application running in
the main container.

Example 4-1. A Pod defining an init container

apiVersion: v1

kind: Pod

metadata:

 name: business-app

spec:

 initContainers:

 - name: configurer

 image: busybox:1.32.0

 command: ['sh', '-c', 'echo Configuring appli

 mkdir -p /usr/shared/app && echo -e

 {\"host\":\"localhost\",\"port\":54

 > /usr/shared/app/config.json']

 volumeMounts:

 - name: configdir

 mountPath: "/usr/shared/app"

 containers:

 - image: bmuschko/nodejs-read-config:1.0.0

 name: web

 ports:

 - containerPort: 8080

 volumeMounts:

 - name: configdir

g

 mountPath: "/usr/shared/app"

 volumes:

 - name: configdir

 emptyDir: {}

When starting the Pod, you’ll see that the status column of the get

command provides information on init containers as well. The prefix
Init: signifies that an init container is in the process of being exe-
cuted. The status portion after the colon character shows the number
of init containers completed versus the overall number of init contain-
ers configured:

$ kubectl create -f init.yaml

pod/business-app created

$ kubectl get pod business-app

NAME READY STATUS RESTARTS AGE

business-app 0/1 Init:0/1 0 2s

$ kubectl get pod business-app

NAME READY STATUS RESTARTS AGE

business-app 1/1 Running 0 8s

Errors can occur during the execution of init containers. You can al-
ways retrieve the logs of an init container by using the --

container command-line option (or -c in its short form), as
shown in Figure 4-2.

Figure 4-2. Targeting a specific container

The following command renders the logs of the configurer init
container, which equates to the echo command we configured in
the YAML manifest:

$ kubectl logs business-app -c configurer

Configuring application...

The Sidecar Pattern

The lifecycle of an init container looks as follows: it starts up, runs its
logic, then terminates once the work has been done. Init containers
are not meant to keep running over a longer period of time. There are
scenarios that call for a different usage pattern. For example, you

may want to create a Pod that runs multiple containers continuously
alongside one another.

Typically, there are two different categories of containers: the contain-
er that runs the application and another container that provides
helper functionality to the primary application. In the Kubernetes
space, the container providing helper functionality is called a sidecar.
Among the most commonly used capabilities of a sidecar container
are file synchronization, logging, and watcher capabilities. The side-
cars are not part of the main traffic or API of the primary application.

They usually operate asynchronously and are not involved in the pub-
lic API.

To illustrate the behavior of a sidecar, we’ll consider the following use
case. The main application container runs a web server—in this case,

NGINX. Once started, the web server produces two standard logfiles.

The file /var/log/nginx/access.log captures requests to the web
server’s endpoint. The other file, /var/log/nginx/error.log, records fail-
ures while processing incoming requests.

As part of the Pod’s functionality, we’ll want to implement a monitor-
ing service. The sidecar container polls the file’s error.log periodically
and checks if any failures have been discovered. More specifically,

the service tries to find failures assigned to the error log level, indicat-
ed by [error] in the log file. If an error is found, the monitoring ser-

vice will react to it. For example, it could send a notification to the ad-
ministrators of the system. We’ll keep the functionality as simple as
possible. The monitoring service will simply render an error message
to standard output. The file exchange between the main application
container and the sidecar container happens through a Volume, as
shown in Figure 4-3.

Figure 4-3. The sidecar pattern in action

The YAML manifest shown in Example 4-2 sets up the described sce-
nario. The most tricky portion of the code is the lengthy bash com-
mand. The command runs an infinite loop. As part of each iteration,

we inspect the contents of the file error.log, grep for an error and po-
tentially act on it. The loop executes every 10 seconds.

Example 4-2. An exemplary sidecar pattern implementation

apiVersion: v1

ki d d

kind: Pod

metadata:

 name: webserver

spec:

 containers:

 - name: nginx

 image: nginx

 volumeMounts:

 - name: logs-vol

 mountPath: /var/log/nginx

 - name: sidecar

 image: busybox

 command: ["sh","-c","while true; do if [\"$(

 | grep 'error')\" != \"\"]; then e

 sleep 10; done"]

 volumeMounts:

 - name: logs-vol

 mountPath: /var/log/nginx

 volumes:

 - name: logs-vol

 emptyDir: {}

When starting up the Pod, you’ll notice that the overall number of
containers will show 2. After all containers can be started, the Pod
signals a Running status:

$ kubectl create -f sidecar yaml

$ kubectl create -f sidecar.yaml

pod/webserver created

$ kubectl get pods webserver

NAME READY STATUS RESTARTS

webserver 0/2 ContainerCreating 0

$ kubectl get pods webserver

NAME READY STATUS RESTARTS AGE

webserver 2/2 Running 0 5s

You will find that error.log does not contain any failure to begin with. It
starts out as an empty file. With the following commands, you’ll pro-
voke an error on purpose. After waiting for at least 10 seconds, you’ll
find the expected message on the terminal, which you can query for
with the logs command:

$ kubectl logs webserver -c sidecar

$ kubectl exec webserver -it -c sidecar -- /bin/s
/ # wget -O- localhost?unknown

Connecting to localhost (127.0.0.1:80)

wget: server returned error: HTTP/1.1 404 Not Fou

/ # cat /var/log/nginx/error.log

2020/07/18 17:26:46 [error] 29#29: *2 open() "/us

failed (2: No such file or directory), client: 12

request: "GET /unknown HTTP/1.1", host: "localhos

/ # exit

$ kubectl logs webserver -c sidecar

Error discovered!

The Adapter Pattern

As application developers, we want to focus on implementing busi-
ness logic. For example, as part of a two-week sprint, say we’re
tasked with adding a shopping cart feature. In addition to the function-
al requirements, we also have to think about operational aspects like
exposing administrative endpoints or crafting meaningful and proper-
ly formatted log output. It’s easy to fall into the habit of simply rolling
all aspects into the application code, making it more complex and
harder to maintain. Cross-cutting concerns in particular need to be
replicated across multiple applications and are often copied and past-
ed from one code base to another.

In Kubernetes, we can avoid bundling cross-cutting concerns into the
application code by running them in another container apart from the
main application container. The adapter pattern transforms the output
produced by the application to make it consumable in the format
needed by another part of the system. Figure 4-4 illustrates a con-
crete example of the adapter pattern.

Figure 4-4. The adapter pattern in action

The business application running the main container produces time-
stamped information—in this case, the available disk space—and
writes it to the file diskspace.txt. As part of the architecture, we want
to consume the file from a third-party monitoring application. The
problem is that the external application requires the information to ex-
clude the timestamp. Now, we could change the logging format to
avoid writing the timestamp, but what do we do if we actually want to
know when the log entry has been written? This is where the adapter
pattern can help. A sidecar container executes transformation logic
that turns the log entries into the format needed by the external sys-
tem without having to change application logic.

The YAML manifest shown in Example 4-3 illustrates what this imple-
mentation of the adapter pattern could look like. The app container
produces a new log entry every five seconds. The transformer

container consumes the contents of the file, removes the timestamp,

and writes it to a new file. Both containers have access to the same
mount path through a Volume.

Example 4-3. An exemplary adapter pattern implementation

apiVersion: v1

kind: Pod

metadata:

 name: adapter

spec:

 containers:

 - args:

 - /bin/sh

 - -c

 - 'while true; do echo "$(date) | $(du -sh ~)

 sleep 5; done;'

 image: busybox

 name: app

 volumeMounts:

 - name: config-volume

 mountPath: /var/logs

 - image: busybox

 name: transformer

 args:

 - /bin/sh

 - -c

 - 'sleep 20; while true; do while read LINE;

 >> $(date +%Y-%m-%d-%H-%M-%S)-transformed.

()

 /var/logs/diskspace.txt; sleep 20; done;'

 volumeMounts:

 - name: config-volume

 mountPath: /var/logs

 volumes:

 - name: config-volume

 emptyDir: {}

After creating the Pod, we’ll find two running containers. We should
be able to locate the original file, /var/logs/diskspace.txt, after shelling
into the transformer container. The transformed data exists in a
separate file in the user home directory:

$ kubectl create -f adapter.yaml

pod/adapter created

$ kubectl get pods adapter

NAME READY STATUS RESTARTS AGE

adapter 2/2 Running 0 10s

$ kubectl exec adapter --container=transformer -i
/ # cat /var/logs/diskspace.txt

Sun Jul 19 20:28:07 UTC 2020 | 4.0K	 /root

Sun Jul 19 20:28:12 UTC 2020 | 4.0K	 /root

/ # ls -l

total 40

-rw-r--r-- 1 root root 60 Jul 19 20:28 2020-0

...

/ # cat 2020-07-19-20-28-28-transformed.txt

 4.0K	 /root

 4.0K	 /root

The Ambassador Pattern

Another important design pattern covered by the CKAD is the ambas-
sador pattern. The ambassador pattern provides a proxy for commu-
nicating with external services.

There are many use cases that can justify the introduction of the am-
bassador pattern. The overarching goal is to hide and/or abstract the
complexity of interacting with other parts of the system. Typical re-
sponsibilities include retry logic upon a request failure, security con-
cerns like providing authentication or authorization, or monitoring la-
tency or resource usage. Figure 4-5 shows the higher-level picture.

Figure 4-5. The ambassador pattern in action

In this example, we’ll want to implement rate-limiting functionality for
HTTP(S) calls to an external service. For example, the requirements
for the rate limiter could say that an application can only make a max-
imum of 5 calls every 15 minutes. Instead of strongly coupling the
rate-limiting logic to the application code, it will be provided by an am-
bassador container. Any calls made from the business application
need to be funneled through the ambassador container. Example 4-4
shows a Node.js-based rate limiter implementation that makes calls
to the external service Postman.

Example 4-4. Node.js HTTP rate limiter implementation

const express = require('express');

const app = express();

const rateLimit = require('express-rate-limit');

const https = require('https');

const rateLimiter = rateLimit({

 windowMs: 15 * 60 * 1000,

 max: 5,

 message:

 'Too many requests have been made from this I

});

app.get('/test', rateLimiter, function (req, res)

 console.log('Received request...');

 var id = req.query.id;

https://www.postman.com/

q q y ;

 var url = 'https://postman-echo.com/get?test='

 console.log("Calling URL %s", url);

 https.get(url, (resp) => {

 let data = '';

 resp.on('data', (chunk) => {

 data += chunk;

 });

 resp.on('end', () => {

 res.send(data);

 });

 }).on("error", (err) => {

 res.send(err.message);

 });

})

var server = app.listen(8081, function () {

 var port = server.address().port

 console.log("Ambassador listening on port %s...

})

The corresponding Pod shown in Example 4-5 runs the main applica-
tion container on a different port than the ambassador container.
Every call to the HTTP endpoint of the container named business-

app would delegate to the HTTP endpoint of the container named
ambassador . It’s important to mention that containers running in-
side of the same Pod can communicate via localhost . No addi-
tional networking configuration is required.

Example 4-5. An exemplary ambassador pattern implementation

apiVersion: v1

kind: Pod

metadata:

 name: rate-limiter

spec:

 containers:

 - name: business-app

 image: bmuschko/nodejs-business-app:1.0.0

 ports:

 - containerPort: 8080

 - name: ambassador

 image: bmuschko/nodejs-ambassador:1.0.0

 ports:

 - containerPort: 8081

Let’s test the functionality. First, we’ll create the Pod, shell into the
container that runs the business application, and execute a series of
curl commands. The first five calls will be allowed to the external

service. On the sixth call, we’ll receive an error message, as the rate
limit has been reached within the given time frame:

$ kubectl create -f ambassador.yaml

pod/rate-limiter created

$ kubectl get pods rate-limiter

NAME READY STATUS RESTARTS AGE

rate-limiter 2/2 Running 0 5s

$ kubectl exec rate-limiter -it -c business-app -
curl localhost:8080/test

{"args":{"test":"123"},"headers":{"x-forwarded-pr

"x-forwarded-port":"443","host":"postman-echo.com

"x-amzn-trace-id":"Root=1-5f177dba-e736991e882d12

"url":"https://postman-echo.com/get?test=123"}

...

curl localhost:8080/test

Too many requests have been made from this IP, pl

Summary

Real-world scenarios call for running multiple containers inside of a
Pod. An init container helps with setting the stage for the main appli-
cation container by executing initializing logic. Once the initialized
logic has been processed, the container will be terminated. The main

application container only starts if the init container ran through its
functionality successfully.

Kubernetes enables implementing software engineering best prac-
tices like separation of concerns and the single-responsibility princi-
ple. Cross-cutting concerns or helper functionality can be run in a so-
called sidecar container. A sidecar container lives alongside the main
application container within the same Pod and fulfills this exact role.

We talked about other design patterns that involve multiple contain-
ers per Pod: the adapter pattern and the ambassador pattern. The
adapter pattern helps with “translating” data produced by the applica-
tion so that it becomes consumable by third-party services. The am-
bassador pattern acts as a proxy for the application container when
communicating with external services by abstracting the “how.”

Exam Essentials

Understand the need for running multiple containers in a Pod

Pods can run multiple containers. You will need to understand
the difference between init containers and sidecar containers
and their respective lifecycles. Practice accessing a specific
container in a multi-container Pod with the help of the com-
mand-line option --container .

Know how to create an init container

Init containers see a lot of use in enterprise Kubernetes cluster
environments. Understand the need for using them in their re-
spective scenarios. Practice defining a Pod with one or even
more init containers and observe their linear execution when
creating the Pod. It’s important to experience the behavior of a
Pod in failure situations that occur in an init container.

Understand sidecar patterns and how to implement them

Sidecar containers are best understood by implementing a sce-
nario for one of the established patterns. Based on what you’ve
learned, come up with your own applicable use case and cre-
ate a multi-container Pod to solve it. It’s helpful to be able to
identify sidecar patterns and understand why they are impor-
tant in practice and how to stand them up yourself. While imple-
menting your own sidecars, you may notice that you have to
brush up on your knowledge of bash.

Sample Exercises

Solutions to these exercises are available in the Appendix.

1. Create a YAML manifest for a Pod named complex-pod . The
main application container named app should use the image

nginx and expose the container port 80. Modify the YAML
manifest so that the Pod defines an init container named setup

that uses the image busybox . The init container runs the com-
mand wget -O- google.com .

2. Create the Pod from the YAML manifest.
3. Download the logs of the init container. You should see the out-
put of the wget command.

4. Open an interactive shell to the main application container and
run the ls command. Exit out of the container.

5. Force-delete the Pod.

6. Create a YAML manifest for a Pod named data-exchange .

The main application container named main-app should use
the image busybox . The container runs a command that writes
a new file every 30 seconds in an infinite loop in the directory
/var/app/data. The filename follows the pattern {counter++}-da-
ta.txt. The variable counter is incremented every interval and
starts with the value 1.

7. Modify the YAML manifest by adding a sidecar container named
sidecar . The sidecar container uses the image busybox

and runs a command that counts the number of files produced by
the main-app container every 60 seconds in an infinite loop.

The command writes the number of files to standard output.
8. Define a Volume of type emptyDir . Mount the path

/var/app/data for both containers.

9. Create the Pod. Tail the logs of the sidecar container.
10. Delete the Pod.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness by
working through our playlist of interactive CKAD scenarios. Each step
of the scenario must be completed correctly before you can move to
the next step. If you get stuck, you can view the solution and learn
how to complete the step.

The following scenarios cover material from this chapter:

4-1. CKAD Multi-Container: Creating an init Container
4-2. CKAD Multi-Container: Creating a Sidecar Container
4-3. CKAD Multi-Container: Implementing the Ambassador
Pattern

https://learning.oreilly.com/playlists/8aa87dce-f9a9-4206-83af-c8c730faa430
https://learning.oreilly.com/scenarios/4-1-ckad-multi-container/9781098104986
https://learning.oreilly.com/scenarios/4-2-ckad-multi-container/9781098104993
https://learning.oreilly.com/scenarios/4-3-ckad-multi-container/9781098105006

Chapter 5. Observability

Applications running in containers do not operate under the premise
of “fire and forget.” Once the container has been started, you’ll want
to know if the application is ready for consumption and is still working
as expected in an hour, a week, or a month. The Observability sec-
tion of the exam addresses the concern.

In this chapter, we’ll discuss container health probes—more specifi-
cally, startup, readiness, and liveness probes. You’ll learn about the
different health verification methods and how to define them for the
proper use cases. Moreover, the exam expects you to be familiar with
strategies for debugging a misconfigured or misbehaving Kubernetes
object. We’ll round out the chapter by ttalking about monitoring clus-
ter nodes and Pods.

At a high level, this chapter covers the following concepts:

Readiness probe
Liveness probe
Startup probe
Troubleshooting Kubernetes objects
Monitoring

Understanding Health Probing

Even with the best automated test coverage, it’s nearly impossible to
find all bugs before deploying software to a production environment.
That’s especially true for failure situations that only occur after oper-
ating the software for an extended period of time. It’s not uncommon
to see memory leaks, deadlocks, infinite loops, and similar conditions
crop up once the application has been put under load by end users.

Proper monitoring can help with identifying those issues; however,
you still need to take an action to mitigate the situation. First of all,
you’ll likely want to restart the application to prevent further outages.

Second, the development team needs to identify the underlying root
cause and fix the application’s code.

Kubernetes provides a concept called health probing to automate the
detection and correction of such issues. You can configure a contain-
er to execute a periodic mini-process that checks for certain condi-
tions. These processes are defined as follows:

Readiness probe

Even after an application has been started up, it may still need
to execute configuration procedures—for example, connecting
to a database and preparing data. This probe checks if the ap-

plication is ready to serve incoming requests. Figure 5-1 shows
the readiness probe.

Figure 5-1. A readiness probe checks if the application is ready to accept traffic

Liveness probe

Once the application is running, we’ll want to make sure that it
still works as expected without issues. This probe periodically
checks for the application’s responsiveness. Kubernetes
restarts the Pod automatically if the probe considers the appli-
cation be in an unhealthy state, as shown in Figure 5-2.

Figure 5-2. A liveness probe checks if the application is still considered healthy

Startup probe

Legacy applications in particular can take a long time to start
up—we’re talking minutes sometimes. This probe can be in-
stantiated to wait for a predefined amount of time before a live-
ness probe is allowed to start probing. By setting up a startup
probe, you can prevent overwhelming the application process
with probing requests. Startup probes kill the container if the
application couldn’t start within the set time frame. Figure 5-3
illustrates the behavior of a startup probe.

Figure 5-3. A startup probe checks if the application is started

Each probe offers three distinct methods to verify the health of a con-
tainer. You can define one or many of the health verification methods
for a container. Table 5-1 describes the available health verification
methods, their corresponding YAML attribute, and their runtime
behavior.

Table 5-1. Available health verification methods

Method Option Description

Custom
command

exec.comm

and

Executes a command inside
of the container (e.g., a cat

command) and checks its exit
code. Kubernetes considers a
zero exit code to be success-
ful. A non-zero exit code indi-
cates an error.

HTTP GET
request

httpGet Sends an HTTP GET request
to an endpoint exposed by
the application. An HTTP re-
sponse code in the range of
200 and 399 indicates suc-
cess. Any other response
code is regarded as an error.

Method Option Description

TCP socket
connection

tcpSocket Tries to open a TCP socket
connection to a port. If the
connection could be estab-
lished, the probing attempt
was successful. The inability
to connect is accounted for as
an error.

Every probe offers a set of attributes that can further configure the
runtime behavior, as shown in Table 5-2. For more information, see
the API of the Probe object.

https://oreil.ly/pk2b8

Table 5-2. Attributes for fine-tuning the health check runtime behavior

Attribute
Default
value

Description

initialDe

laySecond

s

0 Delay in seconds until first
check is executed.

periodSec

onds

10 Interval for executing a check
(e.g., every 20 seconds).

timeoutSe

conds

1 Maximum number of seconds
until check operation times
out.

successTh

reshold

1 Number of successful check
attempts until probe is consid-
ered successful after a failure.

failureTh

reshold

3 Number of failures for check
attempts before probe is
marked failed and takes
action.

The following sections will demonstrate the usage of those verifica-
tion methods for different probe types. Remember that you can com-
bine any probe with any health check method. From an operational
perspective, the most important probe to implement is the readiness
probe. Without defining liveness and startup probes, the Kubernetes
control plane components will handle the majority of the default be-
havior.

Readiness Probe

In this scenario, we’ll want to define a readiness probe for a Node.js
application. The Node.js application exposes an HTTP endpoint on
the root context path and runs on port 3000. Dealing with a web-
based application makes an HTTP GET request a perfect fit for prob-
ing its readiness. You can find the source code of the application in
the book’s GitHub repository.

In the YAML manifest shown in Example 5-1, the readiness probe ex-
ecutes its first check after two seconds and repeats checking every
eight seconds thereafter. All other attributes use the default values. A
readiness probe will continue to periodically check, even after the ap-
plication has been successfully started.

Example 5-1. A readiness probe that uses an HTTP GET request

https://oreil.ly/ZTj_Y

apiVersion: v1

kind: Pod

metadata:

 name: readiness-pod

spec:

 containers:

 - image: bmuschko/nodejs-hello-world:1.0.0

 name: hello-world

 ports:

 - name: nodejs-port

 containerPort: 3000

 readinessProbe:

 httpGet:

 path: /

 port: nodejs-port

 initialDelaySeconds: 2

 periodSeconds: 8

Create a Pod by pointing the create command to the YAML mani-
fest. During the Pod’s startup process, it’s very possible that the sta-
tus shows Running but the container isn’t ready to accept incoming
requests yet, as indicated by 0/1 under the READY column:

$ kubectl create -f readiness-probe.yaml

pod/readiness-pod created

$ kubectl get pod readiness-pod

NAME READY STATUS RESTARTS

pod/readiness-pod 0/1 Running 0

$ kubectl get pod readiness-pod

NAME READY STATUS RESTARTS

pod/readiness-pod 1/1 Running 0

$ kubectl describe pod readiness-pod

...

Containers:

 hello-world:

 ...

 Readiness: http-get http://:nodejs-port/

 period=8s #success=1 #failure

...

Liveness Probe

A liveness probe checks if the application is still working as expected
down the road. For the purpose of demonstrating a liveness probe,

we’ll use a custom command. A custom command is probably the
most flexible way to verify the health of a container, as it allows for
calling any command available to the container. That can either be a
command-line tool that comes with the base image or a tool that you
install as part of the containization process.

In Example 5-2, we’ll have the application create and update a file,

/tmp/heartbeat.txt, to show that it’s still alive. We’ll do this by it run the
Unix touch command every five seconds. The probe will periodical-
ly check if the modification timestamp of the file is older than one
minute. If it is, then Kubernetes can assume that the application isn’t
functioning as expected and will restart the container.

Example 5-2. A liveness probe that uses a custom command

apiVersion: v1

kind: Pod

metadata:

 name: liveness-pod

spec:

 containers:

 - image: busybox

 name: app

 args:

 - /bin/sh

 - -c

 - 'while true; do touch /tmp/heartbeat.txt; s

 livenessProbe:

 exec:

 command:

 - test `find /tmp/heartbeat.txt -mmin -1`

 initialDelaySeconds: 5

 periodSeconds: 30

p

The following command uses the YAML manifest shown in
Example 5-2 stored in the file liveness-probe.yaml to create the Pod.

Describing the Pod renders information on the liveness probe. Not
only can we inspect the custom command and its configuration, we
can also see how many times the container has been restarted upon
a probing failure:

$ kubectl create -f liveness-probe.yaml

pod/liveness-pod created

$ kubectl get pod liveness-pod

NAME READY STATUS RESTARTS A

pod/liveness-pod 1/1 Running 0 2

$ kubectl describe pod liveness-pod

...

Containers:

 app:

 ...

 Restart Count: 0

 Liveness: exec [test `find /tmp/heartbe

 timeout=1s period=30s #succes

...

Startup Probe

The purpose of a startup probe is to figure out when an application is
fully started. Defining the probe is especially useful for an application
that takes a long time to start up. The kubelet puts the readiness and
liveness probes on hold while the startup probe is running. A startup
probe finishes its operation under one of the following conditions:

1. If it could verify that the application has been started.

2. If the application doesn’t respond within the timeout period.

To demonstrate the functionality of the startup probe, Example 5-3
defines a Pod that runs the Apache HTTP server in a container. By
default, the image exposes the container port 80, and that’s what
we’re probing for using a TCP socket connection.

Example 5-3. A startup probe that uses a TCP socket connection

apiVersion: v1

kind: Pod

metadata:

 name: startup-pod

spec:

 containers:

 - image: httpd:2.4.46

 name: http-server

https://oreil.ly/Hzfxq

 startupProbe:

 tcpSocket:

 port: 80

 initialDelaySeconds: 3

 periodSeconds: 15

As you can see in the following terminal output, the describe com-
mand can retrieve the configuration of a startup probe as well:

$ kubectl create -f startup-probe.yaml

pod/startup-pod created

$ kubectl get pod startup-pod

NAME READY STATUS RESTARTS AG

pod/startup-pod 1/1 Running 0 31

$ kubectl describe pod startup-pod

...

Containers:

 http-server:

 ...

 Startup: tcp-socket :80 delay=3s time

 #success=1 #failure=3

...

Debugging in Kubernetes

When operating an application in a production Kubernetes cluster, it’s
almost inevitable that you’ll come across failure situations. You can’t
completely leave this job up to the Kubernetes adminstrator—it’s your
responsibility as an application developer to be able to troubleshoot
issues for the Kubernetes objects you designed and deployed.

In this section, we’re going to have a look at debugging strategies
that can help with identifying the root cause of an issue so that you
can take action and correct the failure appropriately. The strategies
discussed here start with the high-level perspective of a Kubernetes
object and then drill into more detail as needed.

Troubleshooting Pods

In most cases, creating a Pod is no issue. You simply emit the run ,

create , or apply commands to instantiate the Pod. If the YAML
manifest is formed properly, Kubernetes accepts your request, so the
assumption is that everything works as expected. To verify the correct
behavior, the first thing you’ll want to do is to check the high-level run-
time information of the Pod. The operation could involve other Kuber-
netes objects like a Deployment responsible for rolling out multiple
replicas of a Pod.

Debugging YAML manifests

If you’re somewhat new to Kubernetes, you may run into trouble
when crafting properly formed YAML manifests. Any incorrect inden-
tation, spelling issue, attribute name, or enumeration will cause a
problem during object creation. During the CKAD exam, you won’t
have any tools available to verify the correctness of a YAML manifest.
While practicing, you might find the browser-based application Kube
YAML helpful. You can simply copy and paste the YAML manifest as
text and receive feedback about its correctness. Figure 5-4 illustrates
the behavior of the application for a YAML manifest that uses an in-
correct attribute name.

https://kubeyaml.com/

Figure 5-4. YAML manifest validation with Kube YAML

Retrieving high-level information

To retrieve the information, run either the kubectl get pods

command for just the Pods running in the namespace or the
kubectl get all command to retrieve the most prominent object
types in the namespace (which includes Deployments). You will want
to have a look at the columns READY , STATUS , and RESTARTS . In

the optimal case, the number of ready containers matches the num-
ber of containers expected to be created by the Pod. For a single-
container Pod, the READY column would say 1/1. The status should
say Running to indicate that the Pod entered the proper lifecycle
state. Be aware that it’s totally possible that a Pod renders a
Running state, but the application isn’t actually working properly. If
the number of restarts is greater than 0, then you might want to check
the logic of the liveness probe (if defined) and identify the reason why
a restart was necessary.

The following Pod observes the status ErrImagePull and makes
0/1 containers available to incoming traffic. In short, this Pod has a
problem:

$ kubectl get pods

NAME READY STATUS REST

pod/misbehaving-pod 0/1 ErrImagePull 0

After working with Kubernetes for a while, you’ll automatically recog-
nize common error conditions. Table 5-3 lists some of those error sta-
tuses and explains how to fix them.

Table 5-3. Common Pod error statuses

Status Root cause Potential fix

ImagePull

BackOff or
ErrImageP

ull

Image could
not be pulled
from registry.

Check correct image name,

check that image name exists
in registry, verify network ac-
cess from node to registry,

ensure proper authentication.

CrashLoop

BackOff

Application
or command
run in con-
tainer
crashes.

Check command executed in
container, ensure that image
can properly execute (e.g., by
creating a container with
Docker).

CreateCon

tainerCon

figError

ConfigMap or
Secret refer-
enced by
container
cannot be
found.

Check correct name of the
configuration object, verify the
existence of the configuration
object in the namespace.

Inspecting events

It’s totally possible that you’ll not encounter any of those error status-
es. But there’s still a chance of the Pod having a configuration issue.

You can retrieve detailed information about the Pod and its events us-
ing the kubectl describe pod command to inspect its events.

The following output belongs to a Pod that tries to mount a Secret
that doesn’t exist. Instead of rendering a specific error message, the
Pod gets stuck with the status ContainerCreating :

$ kubectl get pods

NAME READY STATUS RESTARTS

secret-pod 0/1 ContainerCreating 0

$ kubectl describe pod secret-pod
...

Events:

Type Reason Age From

---- ------ ---- ----

Normal Scheduled <unknown> default-

Warning FailedMount 3m15s kubelet,

Warning FailedMount 68s (x10 over 5m18s) kubelet,

Warning FailedMount 61s kubelet,

Another helpful command is kubectl get events . The output of
the command lists the events across all Pods for a given namespace.

You can use additional command-line options to further filter and sort
events:

$ kubectl get events

LAST SEEN TYPE REASON OBJECT

3m14s Warning BackOff pod/custo

2s Warning FailedNeedsStart cronjob/g

Inspecting logs

When debugging a Pod, the next level of details can be retrieved by
downloading and inspecting its logs. You may or may not find addi-
tional information that points to the root cause of a misbehaving Pod.

It’s definitely worth a look. The YAML manifest shown in Example 5-4
defines a Pod running a shell command.

Example 5-4. A Pod running a failing shell command

apiVersion: v1

kind: Pod

metadata:

 name: incorrect-cmd-pod

spec:

 containers:

 - name: test-container

 image: busybox

 command: ["/bin/sh", "-c", "unknown"]

After creating the object, the Pod fails with the status
CrashLoopBackOff . Running the logs command reveals that
the command run in the container has an issue:

$ kubectl create -f crash-loop-backoff.yaml

pod/incorrect-cmd-pod created

$ kubectl get pods incorrect-cmd-pod

NAME READY STATUS R

incorrect-cmd-pod 0/1 CrashLoopBackOff 5

$ kubectl logs incorrect-cmd-pod

/bin/sh: unknown: not found

The logs command provides two helpful options I’d like to mention
here. The option -f streams the logs, meaning you’ll see new log
entries as they’re being produced in real time. The option --

previous gets the logs from the previous instantiation of a contain-
er, which is helpful if the container has been restarted.

Opening an Interactive Shell

If any of the previous commands don’t point you to the root cause of
the failing Pod, it’s time to open an interactive shell to a container. As
an application developer, you’ll probably know best what behavior to
expect from the application at runtime. Ensure that the correct config-
uration has been created and inspect the running processes by using
the Unix or Windows utility tools, depending on the image run in the
container.

Say you encounter a situation where a Pod seems to work properly
on the surface, as shown in Example 5-5.

Example 5-5. A Pod periodically writing the current date to a file

apiVersion: v1

kind: Pod

metadata:

 name: failing-pod

spec:

 containers:

 - args:

 - /bin/sh

 - -c

 - while true; do echo $(date) >> ~/tmp/curr-d

 5; done;

 image: busybox

 name: failing-pod

g p

After creating the Pod, you check the status. It says Running ; how-
ever, when making a request to the application, the endpoint reports
an error. Next, you check the logs. The log output renders an error
message that points to a nonexistent directory. Apparently, the direc-
tory hasn’t been set up correctly but is needed by the application:

$ kubectl create -f failing-pod.yaml

pod/failing-pod created

$ kubectl get pods failing-pod

NAME READY STATUS RESTARTS AGE

failing-pod 1/1 Running 0 5s

$ kubectl logs failing-pod

/bin/sh: can't create /root/tmp/curr-date.txt: no

The exec command opens an interactive shell to further investigate
the issue. Below, we’re using the Unix tools mkdir , cd , and ls

inside of the running container to fix the problem. Obviously, the bet-
ter mitigation strategy is to create the directory from the application or
provide an instruction in the Dockerfile:

$ k b tl f ili d it /bi / h

$ kubectl exec failing-pod -it -- /bin/sh

mkdir -p ~/tmp

cd ~/tmp

ls -l

total 4

-rw-r--r-- 1 root root 112 May 9 23:52 curr-date.

Using an Ephemeral Container

Some images run in a container are designed to be very minimalistic.

For example, the Google distroless images don’t have any Unix utility
tools preinstalled. You can’t even open a shell to a container, as it
doesn’t even come with a shell. That’s the case for the image
k8s.gcr.io/pause:3.1 , a minimal, distroless image that keeps
the container running, used in Example 5-6.

Example 5-6. Running a distroless image

apiVersion: v1

kind: Pod

metadata:

 name: minimal-pod

spec:

 containers:

 - image: k8s.gcr.io/pause:3.1

 name: pause

https://oreil.ly/EHfQZ

As you can see in the following exec command, the image doesn’t
provide a shell:

$ kubectl create -f minimal-pod.yaml

pod/minimal-pod created

$ kubectl get pods minimal-pod

NAME READY STATUS RESTARTS AGE

minimal-pod 1/1 Running 0 8s

$ kubectl exec minimal-pod -it -- /bin/sh

OCI runtime exec failed: exec failed: container_l

container process caused "exec: \"/bin/sh\": stat

or directory": unknown

command terminated with exit code 126

Kubernetes offers the concept of ephemeral containers. Those con-
tainers are meant to be disposable and can be deployed for trou-
bleshooting minimal containers that would usually not allow the us-
age of the exec command.

https://oreil.ly/4OfB1

NOTE

Ephemeral  containers  are  still  considered  an  experimental feature.  You  will  
have  to  explicitly  enable  the  feature  with  the  feature  flag --feature-gates  

when  starting  up  the  Kubernetes  cluster.  For  example,  starting  Minikube  with  

this  feature  can  be  achieved by using the command minikube start --

feature-gates=EphemeralContainers=true .

Kubernetes 1.18 introduced a new debug command that can add an
ephemeral container to a running Pod for debugging purposes. The
following command adds the ephemeral container running the image
busybox to the Pod named minimal-pod and opens an interac-
tive shell for it:

$ kubectl alpha debug -it minimal-pod --image=bus
Defaulting debug container name to debugger-jf98g

If you don't see a command prompt, try pressing e

/ # pwd

/

/ # exit

Session ended, resume using 'kubectl alpha attach

debugger-jf98g -i -t' command when the pod is run

Troubleshooting Services

A Service provides a unified network interface for Pods. For full cov-
erage on networking aspects in Kubernetes, see Chapter 7, “Services
& Networking”. Here, I want to point out troubleshooting techniques
for this primitive.

In case you can’t reach the Pods that should map to the Service, start
by ensuring that the label selector matches with the assigned labels
of the Pods. You can query the information by describing the Service
and then render the labels of the available Pods with the option --

show-labels . The following example does not have matching la-
bels and therefore wouldn’t apply to any of the Pods running in the
namespace:

$ kubectl describe service myservice

...

Selector: app=myapp

...

$ kubectl get pods --show-labels

NAME READY STATUS RESTAR

myapp-68bf896d89-qfhlv 1/1 Running 0

myapp-68bf896d89-tzt55 1/1 Running 0

Alternatively, you can also query the endpoints of the Service in-
stance. Say you expected three Pods to be selected by a matching

label but only two have been exposed by the Service. You’ll want to
look at the label selection criteria:

$ kubectl get endpoints myservice
NAME ENDPOINTS AGE

myservice 172.17.0.5:80,172.17.0.6:80 9m31s

A common source of confusion is the type of a Service. By default,
the Service type is ClusterIP , which means that a Pod can only
be reached through the Service if queried from the same node inside
of the cluster. First, check the Service type. If you think that
ClusterIP is the proper type you wanted to assign, open an inter-
active shell from a temporary Pod inside the cluster and run a curl

or wget command:

$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL

myservice ClusterIP 10.99.155.165 <none>

$ kubectl run tmp --image=busybox -it --rm -- wge
....

Finally, check if the port mapping from the target port of the Service to
the container port of the Pod is configured correctly. Both ports need
to match:

$ kubectl get service myapp -o yaml | grep target
 targetPort: 80

$ kubectl get pods myapp-68bf896d89-qfhlv -o yaml
 - containerPort: 80

Monitoring

Deploying software to a Kubernetes cluster is only the start of operat-
ing an application long-term. Developers need to understand re-
source consumption patterns and behaviors of their applications with
the goal of providing a scalable and reliable service.

In the Kubernetes world, monitoring tools like Prometheus and Data-
dog help with collecting, processing, and visualizing the information
over time. The CKAD exam does not expect you to be familiar with
commercial monitoring, logging, tracing, and aggregation tools; how-
ever, it is helpful to gain a rough understanding of the underlying Ku-
bernetes infrastructure responsible for collecting usage metrics, such
as a container’s CPU and memory usage.

This responsibility falls into the hands of the metrics server, a cluster-
wide aggregator of resource usage data. Refer to the documentation
for more information on its installation process. If you’re using
Minikube as your practice environment, enabling the metrics-server
add-on is straightforward using the following command:

$ minikube addons enable metrics-server

The 'metrics-server' addon is enabled

You can now query for metrics of cluster nodes and Pods with the
top command:

$ kubectl top nodes

NAME CPU(cores) CPU% MEMORY(bytes) ME

minikube 283m 14% 1262Mi 32

$ kubectl top pod frontend

NAME CPU(cores) MEMORY(bytes)

frontend 0m 2Mi

Summary

https://oreil.ly/lLTTh
https://oreil.ly/qRVcR

Diagnosing the root cause of runtime issues for an application operat-
ed in a Kubernetes cluster can be difficult and tedious. Observability
covers health probing, logging, monitoring, and debugging of cloud
native services.

One of the important takeaways is the fact that Kubernetes can take
action upon certain failure conditions automatically without the need
for manual intervention from a system administrator or application de-
veloper. In this chapter, we looked at all available health probe types
you can define for a Pod. A health probe is a periodically running
mini-process that asks the application running in a container for its
status. You can think of it as feeling the pulse of your system.

The readiness probe ensures that incoming traffic is only accepted by
the container if the application runs properly. The liveness probe
makes sure that the application is functioning as expected and will
restart the container if necessary. The startup probe pauses readi-
ness and liveness probes until application startup has been complet-
ed. In practice, you’ll often find that a container defines all three
probes.

We also discussed strategies for approaching failed or misbehaving
Pods. The main goal is to diagnose the root cause of a failure and
then fix it by taking the right action. Troubleshooting Pods doesn’t

have to be hard. With the right kubectl commands in your tool belt,
you can rule out root causes one by one to get a clearer picture.

The Kubernetes ecosystem provides a lot of options for collecting
and processing metrics of your cluster over time. Among those op-
tions are commercial monitoring tools like Prometheus and Datadog.

Many of those tools use the metrics server as the source of truth for
those metrics. We briefly touched on the installation process and the
kubectl top command for retrieving metrics from the command
line.

Exam Essentials

Understand all health probes

In preparation for the exam, put the majority of effort in this sec-
tion into understanding and using health probes. You should
understand the purpose of startup, readiness, and liveness
probes and practice how to configure them. In your Kubernetes
cluster, try to emulate success and failure conditions to see the
effects of a probe and the actions they take.

Know how to debug Kubernetes objects

In this chapter, we mainly focused on troubleshooting problem-
atic Pods and Services. Practice all relevant kubectl com-

mands that can help with diagnosing issues. Refer to the
Kubernetes documentation to learn more about debugging oth-
er Kubernetes resource types.

Have a basic understanding of monitoring

Monitoring a Kubernetes cluster is an important aspect of suc-
cessfully operating in a real-world environment. This topic
mostly consists of reading up on commercial monitoring prod-
ucts and the metrics that can be gathered.

Sample Exercises

Solutions to these exercises are available in the Appendix.

1. Define a new Pod named web-server with the image nginx

in a YAML manifest. Expose the container port 80. Do not create
the Pod yet.

2. For the container, declare a startup probe of type httpGet .

Verify that the root context endpoint can be called. Use the de-
fault configuration for the probe.

3. For the container, declare a readiness probe of type httpGet .

Verify that the root context endpoint can be called. Wait five sec-
onds before checking for the first time.

https://oreil.ly/mBFDX

4. For the container, declare a liveness probe of type httpGet .

Verify that the root context endpoint can be called. Wait 10 sec-
onds before checking for the first time. The probe should run the
check every 30 seconds.

5. Create the Pod and follow the lifecycle phases of the Pod during
the process.

6. Inspect the runtime details of the probes of the Pod.

7. Retrieve the metrics of the Pod (e.g., CPU and memory) from the
metrics server.

8. Create a Pod named custom-cmd with the image busybox .

The container should run the command top-analyzer with
the command-line flag --all .

9. Inspect the status. How would you further troubleshoot the Pod
to identify the root cause of the failure?

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness by
working through our playlist of interactive CKAD scenarios. Each step
of the scenario must be completed correctly before you can move to
the next step. If you get stuck, you can view the solution and learn
how to complete the step.

The following scenarios cover material from this chapter:

5-1. CKAD Probing: Creating a Pod with a Readiness Probe of
type HTTP GET request
5-2. CKAD Probing: Creating a Pod with a Liveness Probe of
type custom command
5-3. CKAD Probing: Creating a Pod with a Startup Probe of type
TCP socket
5-4. CKAD Troubleshooting: Troubleshooting a Pod
5-5. CKAD Troubleshooting: Troubleshooting a Service

https://learning.oreilly.com/playlists/8aa87dce-f9a9-4206-83af-c8c730faa430
https://learning.oreilly.com/scenarios/5-1-ckad-probing/9781098105105
https://learning.oreilly.com/scenarios/5-2-ckad-probing/9781098105112
https://learning.oreilly.com/scenarios/5-3-ckad-probing/9781098105129
https://learning.oreilly.com/scenarios/5-4-ckad-troubleshooting/9781098105150
https://learning.oreilly.com/scenarios/5-5-ckad-troubleshooting/9781098105167

Chapter 6. Pod Design

Of all the sections included in the CKAD curriculum, “Pod Design”
has the most weight. This chapter is packed with a lot of concepts
and intricacies you’ll have to understand to increase your chances of
passing the exam.

We’ll start by reviewing labels, label selection, and annotations. As
part of the discussion, we’ll compare the commonalities and differ-
ences between labels and annotations. Labels are an essential tool
for querying, filtering, and sorting Kubernetes objects. Annotations
only represent descriptive metadata for Kubernetes objects but have
no ability to be used for queries. You will learn how to assign and use
both concepts.

A big selling point of Kubernetes is rooted in its scalability and repli-
cation features. To support those features, Kubernetes offers the De-
ployment primitive. We’ll look at the creation of a Deployment scaled
to multiple replicas, how to roll out a revision of your application, how
to roll back to a previous revision, and how to use autoscalers to han-
dle scaling concerns automatically based on the current workload.

Lastly, we’ll touch on the Kubernetes primitives Job and CronJob. A
Job models a one-time process—for example, a batch operation. The
Pod and its encompassed containers stop running after the work has

been completed. CronJobs run periodically according to their defined
schedules. A good application for a CronJob is a task that needs to
occur continuously (for example, a process that exports data). You
will learn how to configure, run, and inspect a Job and a CronJob.

At a high level, this chapter covers the following concepts:

Label
Annotation
Deployment
ReplicaSet
Horizontal Pod Autoscaler
Job
CronJob

Understanding Labels

Kubernetes lets you assign key-value pairs to objects so that you can
use them later within a search query. Those key-value pairs are
called labels. To draw an analogy, you can think of labels as tags for a
blog post. A label describes a Kubernetes object in distinct terms
(e.g., a category like “frontend” or “backend”) but is not meant for
elaborate, multi-word descriptions of its functionality. As part of the
specification, Kubernetes limits the length of a label to a maximum of

63 characters and a range of allowed alphanumeric and separator
characters.

Figure 6-1 shows the Pods named frontend , backend , and
database . Each of the Pods declares a unique set of labels.

Figure 6-1. Pod with labels

It’s common practice to assign one or many labels to an object at cre-
ation time; however, you can modify them as needed for a live object.
When confronted with labels for the first time, they might seem like an
insignificant feature—but their importance cannot be overstated.

They’re essential for understanding the runtime behavior of more ad-
vanced Kubernetes objects like a Deployment and a Service. Later in
this chapter, we’ll see the significance of labels in practice when talk-
ing about Deployments in more detail.

Declaring Labels

Labels can be declared imperatively with the run command or de-
claratively in the metadata.labels section in the YAML manifest.
The command-line option --labels (or -l in its short form) de-
fines a comma-separated list of labels when creating a Pod. The fol-
lowing command creates a new Pod with two labels from the com-
mand line:

$ kubectl run labeled-pod --image=nginx \

 --restart=Never --labels=tier=backend,env=dev

pod/labeled-pod created

Assigning labels to Kubernetes objects by editing the manifest re-
quires a change to the metadata section. Example 6-1 shows the
same Pod definition from the previous command if we were to start
with the YAML manifest.

Example 6-1. A Pod defining two labels

apiVersion: v1

kind: Pod

metadata:

 name: labeled-pod

 labels:

 env: dev

 tier: backend

spec:

 containers:

 - image: nginx

 name: nginx

Inspecting Labels

You can inspect the labels assigned to a Kubernetes object from dif-
ferent angles. Here, we’ll want to look at the most common ways to
identify the labels of a Pod. As with any other runtime information,

you can use the describe or get commands to retrieve the
labels:

$ kubectl describe pod labeled-pod | grep -C 2 La

...

Labels: env=dev

 tier=backend

...

$ kubectl get pod labeled-pod -o yaml | grep -C 1
metadata:

 labels:

 env: dev

 tier: backend

...

If you want to list the labels for all object types or a specific object
type, use the --show-labels command-line option. This option is
convenient if you need to sift through a longer list of objects. The out-
put automatically adds a new column named LABELS :

$ kubectl get pods --show-labels

NAME READY STATUS RESTARTS AGE

labeled-pod 1/1 Running 0 38m

Modifying Labels for a Live Object

At any given point in time, you can add or remove a label from an ex-
isting Kubernetes object, or simply modify an existing label. One way
to achieve this is by editing the live object and changing the label de-
finition in the metadata.labels section. The other option that of-
fers a slightly faster turnaround is the label command. The follow-
ing commands add a new label, change the value of the label, and
then remove the label with the minus character:

$ kubectl label pod labeled-pod region=eu

pod/labeled-pod labeled

$ kubectl get pod labeled-pod --show-labels

NAME READY STATUS RESTARTS AGE

labeled-pod 1/1 Running 0 22h

$ kubectl label pod labeled-pod region=us --overw
pod/labeled-pod labeled

$ kubectl get pod labeled-pod --show-labels

NAME READY STATUS RESTARTS AGE

labeled-pod 1/1 Running 0 22h

$ kubectl label pod labeled-pod region-

pod/labeled-pod labeled

$ kubectl get pod labeled-pod --show-labels

NAME READY STATUS RESTARTS AGE

labeled-pod 1/1 Running 0 22h

Using Label Selectors

Labels only really become meaningful when combined with the selec-
tion feature. A label selector uses a set of criteria to query for Kuber-
netes objects. For example, you could use a label selector to express
“select all Pods with the label assignment env=dev ,

tier=frontend , and have a label with the key version inde-
pendent of the assigned value,” as shown in Figure 6-2.

Figure 6-2. Selecting Pods by label criteria

Kubernetes offers two ways to select objects by labels: from the com-
mand line and within a manifest. Let’s talk about both options.

Label Selection from the Command Line

On the command line, you can select objects by label using the --

selector option, or -l in its short-form notation. Objects can be
filtered by an equality-based requirement or a set-based requirement.
Both requirement types can be combined in a single query.

An equality-based requirement can use the operators = , == , or
!= . You can separate multiple filter terms with a comma and then
combine them with a boolean AND . At this time, equality-based label
selection cannot express a boolean OR operation. A typical expres-
sion could say, “select all Pods with the label assignment
env=prod .”

A set-based requirement can filter objects based on a set of values
using the operators in , notin , and exists . The in and
notin operators work based on a boolean OR . A typical expres-
sion could say, “select all Pods with the label key env and the value
prod or dev .”

To demonstrate the functionality, we’ll start by setting up three differ-
ent Pods with labels. All kubectl commands use the command-
line option --show-labels to compare the results with our expec-
tations. The --show-labels option is not needed for label selec-
tion, though:

$ kubectl run frontend --image=nginx --restart=Ne
 --labels=env=prod,team=shiny

pod/frontend created

$ kubectl run backend --image=nginx --restart=Nev
 --labels=env=prod,team=legacy,app=v1.2.4

pod/backend created

$ kubectl run database --image=nginx --restart=Ne
 --labels=env=prod,team=storage

pod/database created

$ kubectl get pods --show-labels

NAME READY STATUS RESTARTS AGE LAB

backend 1/1 Running 0 37s app

database 1/1 Running 0 32s env

frontend 1/1 Running 0 42s env

We’ll start by filtering the Pods with an equality-based requirement.
Here, we are looking for all Pods with the label assignment
env=prod . The result returns all three Pods:

$ kubectl get pods -l env=prod --show-labels

NAME READY STATUS RESTARTS AGE LAB

backend 1/1 Running 0 37s app

database 1/1 Running 0 32s env

frontend 1/1 Running 0 42s env

The next filter operation uses a set-based requirement. We are ask-
ing for all Pods that have the label key team with the values
storage or shiny . The result only returns the Pods named
backend and frontend :

$ kubectl get pods -l 'team in (shiny, legacy)' -
NAME READY STATUS RESTARTS AGE LAB

backend 1/1 Running 0 19m app

frontend 1/1 Running 0 20m env

Finally, we’ll combine an equality-based requirement with a set-
based requirement. The result returns only the backend Pod:

$ kubectl get pods -l 'team in (shiny, legacy)',a
NAME READY STATUS RESTARTS AGE LABE

backend 1/1 Running 0 29m app=

Label Selection in a Manifest

Some advanced Kubernetes objects such as Deployments, Services,

or network policies act as configuration proxies for Pods. They usual-
ly select a set of Pods by labels and then provide added value. For
example, a network policy controls network traffic from and to a set of
Pods. Only the Pods with matching labels will apply the network
rules. The following YAML manifest applies the network policy to
Pods with the equality-based requirement tier=frontend (for
more details on network policies, see Chapter 7, “Services & Net-
working”):

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: frontend-network-policy

spec:

 podSelector:

 matchLabels:

 tier: frontend

...

The way you define label selection in a manifest is based on the API
version of the Kubernetes resources and may differ between different
types. The content that follows in this and later chapters will make
heavy use of label selection.

Understanding Annotations

Annotations are declared similarly to labels, but they serve a different
purpose. They represent key-value pairs for providing descriptive
metadata. The most important differentiator is that annotations can-
not be used for querying or selecting objects. Typical examples of an-
notations may include SCM commit hash IDs, release information, or
contact details for teams operating the object. Make sure to put the
value of an annotation into single- or double-quotes if it contains spe-
cial characters or spaces. Figure 6-3 illustrates a Pod with three
annotations.

Figure 6-3. Pod with annotations

Declaring Annotations

The kubectl run command does not provide a command-line op-
tion for defining annotations that’s similar to the one for labels. You
will have to start by writing a YAML manifest and adding the desired
annotations under metadata.annotation , as shown in
Example 6-2.

Example 6-2. A Pod defining three annotations

apiVersion: v1

kind: Pod

metadata:

 name: annotated-pod

 annotations:

 commit: 866a8dc

 author: 'Benjamin Muschko'

 branch: 'bm/bugfix'

spec:

 containers:

 - image: nginx

 name: nginx

Inspecting Annotations

Similar to labels, you can use the describe or get commands to
retrieve the assigned annotations:

$ kubectl describe pod annotated-pod | grep -C 2
...

Annotations: author: Benjamin Muschko

 branch: bm/bugfix

 commit: 866a8dc

...

$ kubectl get pod annotated-pod -o yaml | grep -C

metadata:

 annotations:

 author: Benjamin Muschko

 branch: bm/bugfix

 commit: 866a8dc

...

Modifying Annotations for a Live
Object

The annotate command is the counterpart of the labels com-
mand but for annotations. As you can see in the following examples,

the usage pattern is the same:

$ kubectl annotate pod annotated-pod oncall='800-
pod/annotated-pod annotated

$ kubectl annotate pod annotated-pod oncall='800-
pod/annotated-pod annotated

$ kubectl annotate pod annotated-pod oncall-

pod/annotated-pod annotated

Understanding Deployments

At the beginning of this chapter, we discussed labels and label selec-
tion from all angles. We did so for a good reason. A Deployment is
one of the Kubernetes primitives that uses labels as a foundational
concept. If you didn’t have a chance to fully brush up on labels, I’d
urge you to review the content.

Running an application inside of a Pod is powerful, but scalability and
reliability can become a problem. Say the load on your application in-
creases during peak times or because of a growing user base, and
you still have only one Pod instance that can serve up the applica-
tion’s functionality. With increased traffic comes higher resource con-
sumption. Depending on the resource requirements of the container,
the application may come to a grinding halt.

That’s where a Deployment comes in. Within a Deployment, you can
specify the number of Pods running your application with the exact
same setup. Need to scale up? Simply bump up the number of repli-
cas, and Kubernetes will take care of creating the Pods. Furthermore,

the Deployment ensures that failing Pods are restarted so that the ac-
tual state matches with the desired state. Under the hood, a Deploy-
ment uses the Kubernetes primitive ReplicaSet, as shown in
Figure 6-4.

The ReplicaSet’s sole purpose is to replicate a guaranteed number of
Pods with the same configuration. While the CKAD curriculum

doesn’t require explicit knowledge of a ReplicaSet, it’s interesting to
understand that the Deployment is the higher-level concept that man-
ages the ReplicaSet internally with no involvement required by the
end user.

Figure 6-4. Replication of Pods with a Deployment

Creating Deployments

Deployments can be created imperatively with the create

deployment command. The options you can provide to configure
the Deployment are somewhat limited and do not resemble the ones

you know from the run command. The following command creates
a new Deployment that uses the image nginx:1.14.2 for a single
replica:

$ kubectl create deployment my-deploy --image=ngi
deployment.apps/my-deploy created

Often, you will find yourself generating and further modifying the
YAML manifest. The following manifest creates a Deployment with a
single replica. If you look closely, you will see label selection in action.

The selector spec.selector.matchLabels matches on the key-
value pair app=my-deploy with the label defined under the
template section, as shown in Example 6-3.

Example 6-3. A YAML manifest defining a Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-deploy

 labels:

 app: my-deploy

spec:

 replicas: 1

 selector:

 matchLabels:

 app: my-deploy

 template:

 metadata:

 labels:

 app: my-deploy

 spec:

 containers:

 - name: nginx

 image: nginx:1.14.2

Listing Deployments

Once created, a Deployment and all of its corresponding objects can
be listed. The following get command lists all Deployments,

Pods, and ReplicaSets. If a Pod or ReplicaSet is managed by a De-
ployment, the name of the object will reflect that connection. For the
Deployment named my-deploy , you will find at least one Pod and
one ReplicaSet with the prefix my-deploy- plus a random hash:

$ kubectl get deployments,pods,replicasets

NAME READY UP-TO-DATE

deployment.apps/my-deploy 1/1 1

NAME READY STATUS

pod/my-deploy-8448c488b5-mzx5g 1/1 Running

NAME DESIRED

replicaset.apps/my-deploy-8448c488b5 1

Rendering Deployment Details

You can inspect the details of a Deployment using the describe

command. Not only does the output provide information on the num-
ber and availability of replicas, it also presents you with the reference
to the ReplicaSet. Inspecting the ReplicaSet or the replicated Pods
renders references to the parent object managing it:

$ kubectl describe deployment.apps/my-deploy

...

Replicas: 1 desired | 1 updated | 1

 0 unavailable

...

NewReplicaSet: my-deploy-8448c488b5 (1/1 replic

...

$ kubectl describe replicaset.apps/my-deploy-8448
....

Controlled By: Deployment/my-deploy

....

$ kubectl describe pod/my-deploy-8448c488b5-mzx5g

$ kubectl describe pod/my-deploy-8448c488b5-mzx5g
....

Controlled By: ReplicaSet/my-deploy-8448c488b5

....

Rolling Out a New Revision

Application development is usually not stagnant. As part of the soft-
ware development lifecycle, you build a new feature or create a bug
fix and deploy the changes to the Kubernetes cluster as part of the
release process. In practice, you’d push a new Docker image to the
registry bundling the changes so that they can be run in a container.
By default, a Deployment rolls out a new container image using a
zero-downtime strategy by updating Pods one by one. Figure 6-5
shows the rolling update process for a Deployment controlling two
replicas from version 1.2.3 to 2.0.0.

Figure 6-5. Rolling update of Pods managed by a Deployment

Every Deployment keeps a record of the rollout history. Within the
history, a new version of a rollout is called a revision. Before experi-
encing the rollout of a new revision in practice, let’s inspect the initial
state of the Deployment named my-deploy . The rollout com-
mand shows revision 1, which represents the creation of the Deploy-
ment with all its settings:

$ kubectl rollout history deployment my-deploy

deployment.apps/my-deploy

REVISION CHANGE-CAUSE

1 <none>

In the next step, we will update the container image used on the De-
ployment from nginx:1.14.2 to nginx:1.19.2 . To do so, either
edit the live object or run the set image command:

$ kubectl set image deployment my-deploy nginx=ng
deployment.apps/my-deploy image updated

Looking at the rollout history again now shows revision 1 and 2. When
changing the Pod template of a Deployment—for example, by updat-
ing the image—a new ReplicaSet is created. The Deployment will
gradually migrate the Pods from the old ReplicaSet to the new one.

Inspecting the Deployment details reveals a different name—in this
case, my-deploy-775ccfcbc8 :

$ kubectl rollout history deployment my-deploy

deployment.apps/my-deploy

REVISION CHANGE-CAUSE

1 <none>

2 <none>

$ kubectl describe deployment.apps/my-deploy

...

NewReplicaSet: my-deploy-775ccfcbc8 (1/1 replic

...

$ kubectl rollout status deployment my-deploy

deployment "my-deploy" successfully rolled out

NOTE

By default, a Deployment persists a maximum of 10 revisions in its history. You can
change the limit by assigning a different value to
spec.revisionHistoryLimit .

You can also retrieve detailed information about a revision with the
rollout history command by providing the revision number us-
ing the --revision command-line option. The details of a revision
can give you an indication of what exactly changed between
revisions:

$ kubectl rollout history deployments my-deploy -
deployment.apps/my-deploy with revision #2

Pod Template:

 Labels:	 app=my-deploy

	 pod-template-hash=9df7d9c6

 Containers:

 nginx:

 Image:	 nginx:1.19.2

 Port:	 <none>

 Host Port:	 <none>

 Environment:	 <none>

 Mounts:	 <none>

 Volumes:	 <none>

The rolling update strategy ensures that the application is always
available to end users. This approach implies that two versions of the
same application are available during the update process. As an ap-
plication developer, you have to be aware that convenience doesn’t
come without potential side effects. If you happen to introduce a
breaking change to the public API of your application, you might tem-
porarily break consumers, as they could hit revision 1 or 2 of the ap-
plication. You can change the default update strategy of a Deploy-
ment by providing a different value to the attribute
strategy.type ; however, consider the trade-offs. For example,

the value Recreate kills all Pods first, then creates new Pods with
the latest revision, causing a potential downtime for consumers. Oth-
er strategies like blue-green or canary deployments can be set up,

though their coverage goes beyond the scope of the book.

Rolling Back to a Previous Revision

Despite the best efforts to avoid them by writing extensive test suites,

bugs happen. Not only can the rollout command deploy a new
version of an application, you can also roll back to an earlier revision.

In the previous section, we rolled out revisions 1 and 2. Assume revi-
sion 2 contains a bug and we need to quickly revert to revision 1. The
following command demonstrates the process:

$ kubectl rollout undo deployment my-deploy --to-
deployment.apps/my-deploy rolled back

If you look at the rollout history, you’ll find revisions 2 and 3. Kuber-
netes recognizes that revisions 1 and 3 are exactly the same. For that
reason, the rollout history deduplicates revision 1 effectively; revision
1 became revision 3:

$ kubectl rollout history deployment my-deploy

deployment.apps/my-deploy

REVISION CHANGE-CAUSE

2 <none>

3 <none>

The rollback process works pretty much the same way as rolling out a
new revision. Kubernetes switches back to the “old” ReplicaSet,
drains the Pods with the image nginx:1.19.2 , and starts new
Pods with the image nginx:1.14.2 .

Manually Scaling a Deployment

The scaling process is completely abstracted from the end user. You
just have to tell the Deployment that you want to scale to a specified
number of replicas. Kubernetes will take care of the rest.

Say we wanted to scale from one replica to five replicas, as shown in
Figure 6-6.

Figure 6-6. Scaling a Deployment

We have two options: using the scale command or changing the
value of the replicas attribute for the live object. The following set
of commands show the effect of scaling up a Deployment:

$ kubectl scale deployment my-deploy --replicas=5
deployment.apps/my-deploy scaled

$ kubectl get pods

NAME READY STATUS

my-deploy-8448c488b5-5f5tg 0/1 ContainerCre

my-deploy-8448c488b5-9xplx 0/1 ContainerCre

my-deploy-8448c488b5-d8q4t 0/1 ContainerCre

y p y q /

my-deploy-8448c488b5-f5kkm 0/1 ContainerCre

my-deploy-8448c488b5-mzx5g 1/1 Running

$ kubectl get pods

NAME READY STATUS RE

my-deploy-8448c488b5-5f5tg 1/1 Running 0

my-deploy-8448c488b5-9xplx 1/1 Running 0

my-deploy-8448c488b5-d8q4t 1/1 Running 0

my-deploy-8448c488b5-f5kkm 1/1 Running 0

my-deploy-8448c488b5-mzx5g 1/1 Running 0

$ kubectl get replicasets

NAME DESIRED CURRENT READY

my-deploy-8448c488b5 5 5 5

A Deployment records scaling activities in its events, which we can
view using the describe deployment command:

$ kubectl describe deployment.apps/my-deploy

...

Events:

 Type Reason Age From

 ---- ------ ---- ----

 Normal ScalingReplicaSet 4m42s deployment-co

Autoscaling a Deployment

Scaling a Deployment based on the expected load requires manual
supervision via monitoring or manual intervention by changing the
number of replicas. Kubernetes offers primitives for taking on this job
in an automated fashion: so-called autoscalers. On the level of a De-
ployment, we can differentiate two types of autoscalers:

Horizontal Pod Autoscaler (HPA)

Scales the number of Pod replicas based on CPU and memory
thresholds.

Vertical Pod Autoscaler (VPA)

Scales the CPU and memory allocation for existing Pods based
on historic metrics.

Both autoscalers use the metrics server we discussed in Chapter 5,

“Observability”. Refer to the instructions on installing and enabling
metrics support. Here, we will discuss how to create an autoscaler,
but we won’t go into details that demonstrate the practical behavior of
those autoscalers under load. The Kubernetes documentation pro-
vides some practical scenarios to emulate real-world behavior under
increased load.

The HPA is a standard feature of Kubernetes, whereas the VPA has
to the supported by your cloud provider as an add-on or needs to be
installed manually. Therefore, only the HPA will be relevant to the
CKAD exam. To learn more, check your provider’s documentation or
the GitHub repository kubernetes/autoscaler.

Horizontal Pod Autoscaler

Figure 6-7 shows the use of an HPA that will scale up the number of
replicas if an average of 70% CPU utilization is reached across all
available Pods controlled by the Deployment.

Figure 6-7. Autoscaling a Deployment horizontally

A Deployment can be autoscaled using the autoscale

deployment command. Provide the name and the thresholds you’d
like the autoscaler to act upon. In the following example, we’re speci-

https://oreil.ly/GRmyo

fying a minimum of 2 replicas at any given time, a maximum number
of 8 replicas the HPA can scale up to, and the CPU utilization thresh-
old of 70%. Listing the HPAs in the namespace reflects those num-
bers. You can use the primitive name
horizontalpodautoscalers for the command; however, I pre-
fer the short-form notation hpa :

$ kubectl autoscale deployment my-deploy --cpu-pe
horizontalpodautoscaler.autoscaling/my-deploy aut

$ kubectl get hpa

NAME REFERENCE TARGETS

my-deploy Deployment/my-deploy <unknown>/70%

The current status of the HPA shows the upper CPU threshold limit
but renders <unknown> for the current CPU consumption. That’s
usually the case if the metrics server is not running, is misconfigured,

or if the Pod template of the Deployment doesn’t define any resource
requirements. Check the events of the HPA using the command
kubectl describe hpa my-deploy .

What you should usually see is a percentage number to indicate the
current CPU utilization, as shown in the following terminal output.
None of the Pods consumes CPU resources at the time of querying
the information:

$ kubectl describe hpa my-deploy

Name:

...

Reference:

Metrics:

 resource cpu on pods (as a percentage of reque

Min replicas:

Max replicas:

Deployment pods:

...

The API spec autoscaling/v1 only supports autoscaling capabil-
ities based on CPU utilization. The new API spec version
autoscaling/v2beta2 provides a more generic approach to
defining metric thresholds. For example, you can specify a scaling
threshold for memory consumption. Given that the specification is still
in its beta state, we won’t cover it in more detail here; refer to the
Kubernetes documentation for more information.

Understanding Jobs

A Pod is meant for the continuous operation of an application. You
will want to deploy the application with a specific version and then

https://oreil.ly/Ce_xE

keep it running without interrupts if possible.

A Job is a Kubernetes primitive with a different goal. It runs function-
ality until a specified number of completions has been reached, mak-
ing it a good fit for one-time operations like import/export data pro-
cesses or I/O-intensive processes with a finite end. The actual work
managed by a Job is still running inside of a Pod. Therefore, you can
think of a Job as a higher-level coordination instance for Pods exe-
cuting the workload.

Upon completion of a Job and its Pods, Kubernetes does not auto-
matically delete the objects—they will stay until they’re explicity delet-
ed. Keeping those objects helps with debugging the command run
inside of the Pod and gives you a chance to inspect the logs.

Kubernetes supports an auto-cleanup mechanism for Jobs and their
controlled Pods by specifying the attribute
spec.ttlSecondsAfterFinished . Be aware that the feature is
still in an alpha state and needs to be enabled explicitly for a cluster
by setting a feature flag.

Creating and Inspecting Jobs

Let’s first create a Job and see its behavior in practice before delving
into any details. To create a Job imperatively, simply use the create

job command. If the provided image doesn’t run any commands,

you may want to append a command to be executed in the corre-
sponding Pod. The following command creates a Job that runs an it-
eration process. For each iteration of the loop, a variable named
counter is incremented. The command execution finishes after
reaching the counter value 3:

$ kubectl create job counter --image=nginx -- /bi
 while [$counter -lt 3]; do counter=$((counte
 sleep 3; done;'

job.batch/counter created

The output of listing the Job shows the current number of comple-
tions and the expected number of completions. The default number of
completions is 1. This means if the Pod executing the command was
successful, a Job is considered completed. As you can see in the fol-
lowing terminal output, a Job uses a single Pod by default to perform
the work. The corresponding Pod can be identified by name—it uses
the Job name as a prefix in its own name:

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

counter 0/1 13s 13s

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

counter 1/1 15s 19s

$ kubectl get pods

NAME READY STATUS RESTARTS AG

counter-z6kdj 0/1 Completed 0 51

To verify the correct behavior of the Job, you can download the logs
of the Pod. As expected, the output renders the counter for each
iteration:

$ kubectl logs counter-z6kdj

1

2

3

If you’d rather go the declarative route by creating a YAML manifest,
the following code snippet shown in Example 6-4.

Example 6-4. A Job executing a loop command

apiVersion: batch/v1

kind: Job

metadata:

 name: counter

spec:

 template:

 spec:

 containers:

 - name: counter

 image: nginx

 command:

 - /bin/sh

 - -c

 - counter=0; while [$counter -lt 3]; do

 echo "$counter"; sleep 3; done;

 restartPolicy: Never

Job Operation Types

The default behavior of a Job is to run the workload in a single Pod
and expect one successful completion. That’s what Kubernetes calls
a non-parallel Job. Internally, those parameters are tracked by the at-
tributes spec.template.spec.completions and
spec.template.spec.parallelism , each with the assigned
value 1. The following command renders the parameters of the Job
we created earlier:

$ kubectl get jobs counter -o yaml | grep -C 1 "c

...

 completions: 1

 parallelism: 1

...

You can tweak any of those parameters to fit the needs of your use
case. Say you’d expect the workload to complete successfully multi-
ple times; then you’d increase the value of
spec.template.spec.completions to at least 2. Sometimes,

you’ll want to execute the workload by multiple pods in parallel. In
those cases, you’d bump up the value assigned to
spec.template.spec.parallelism . This is referred to as a
parallel job. Remember that you can use any combination of as-
signed values for both attributes. Table 6-1 summarizes the different
use cases.

Table 6-1. Configuration for different Job operation types

Type spec.completions spec.parallelism Desc

Non-parallel
with one
completion
count

1 1 Com
as so
its Po
nates
succe

Parallel with
a fixed com-
pletion count

>= 1 >= 1 Com
when
fied n
of tas
ish
succe

Type spec.completions spec.parallelism Desc

Parallel with
worker
queue

unset >= 1 Com
when
one P
termi
succe
and a
are
termi

Restart Behavior

The spec.backoffLimit attribute determines the number of re-
tries a Job attempts to successfully complete the workload until the
executed command finishes with an exit code 0. The default is 6,

which means it will execute the workload 6 times before the Job is
considered unsuccessful.

The Job manifest needs to explicitly declare the restart policy by us-
ing spec.template.spec.restartPolicy . The default restart
policy of a Pod is Always , which tells the Kubernetes scheduler to
always restart the Pod even if the container exits with a zero exit

code. The restart policy of a Job can only be OnFailure or
Never .

Restarting the Container on Failure

Figure 6-8 shows the behavior of a Job that uses the restart policy
OnFailure . Upon a container failure, this policy will simply rerun
the container.

Figure 6-8. Restart policy onFailure

Starting a New Pod on Failure

Figure 6-9 shows the behavior of a Job that uses the restart policy
Never . This policy does not restart the container upon a failure. It
starts a new Pod instead.

Figure 6-9. Restart policy Never

Understanding CronJobs

A Job represents a finite operation. Once the operation could be exe-
cuted successfully, the work is done and the Job will create no more
Pods. A CronJob is essentially a Job, but it’s run periodically based a
schedule; however, it will continue to create a new Pod when it’s time
to run the task. The schedule can be defined with a cron-expression
you may already know from Unix cron jobs. Figure 6-10 shows a
CronJob that executes every hour. For every execution, the CronJob
creates a new Pod that runs the task and finishes with a zero or non-
zero exit code.

Figure 6-10. Executing a Job based on a schedule

Creating and Inspecting Jobs

You can use the imperative create cronjob command to create
a new CronJob. The following command schedules the CronJob to

run every minute. The Pod created for every execution renders the
current date to standard output using the Unix echo command:

$ kubectl create cronjob current-date --schedule=
 -- /bin/sh -c 'echo "Current date: $(date)"'

cronjob.batch/current-date created

If you list the existing CronJob with the get cronjobs command,

you will see the schedule, the last scheduled execution, and whether
the CronJob is currently active. It’s easy to match Pods managed by
a CronJob. You can simply identify them by the name prefix. In this
case, the prefix is current-date- :

$ kubectl get cronjobs

NAME SCHEDULE SUSPEND ACTIVE LAS

current-date * * * * * False 0 <no

$ kubectl get cronjobs

NAME SCHEDULE SUSPEND ACTIVE LAS

current-date * * * * * False 1 14s

$ kubectl get cronjobs

NAME SCHEDULE SUSPEND ACTIVE LAS

current-date * * * * * False 0 19s

$ kubectl get pods

NAME READY STATUS

current-date-1598651700-2xgn9 0/1 Completed

current-date-1598651760-rt6c6 0/1 Container

To create a CronJob from the YAML manifest, start with the definition
in Example 6-5 and tweak as needed.

Example 6-5. A CronJob printing the current date

apiVersion: batch/v1beta1

kind: CronJob

metadata:

 name: current-date

spec:

 schedule: "* * * * *"

 jobTemplate:

 spec:

 template:

 spec:

 containers:

 - name: current-date

 image: nginx

 args:

 - /bin/sh

 - -c

 - 'echo "Current date: $(date)"'

 restartPolicy: OnFailure

Configuring Retained Job History

Even after completing a task in a Pod controlled by a CronJob, it will
not be deleted automatically. Keeping a historical record of Pods can
be tremendously helpful for troubleshooting failed workloads or in-
specting the logs. By default, a CronJob retains the last three suc-
cessful Pods and the last failed Pod:

$ kubectl get cronjobs current-date -o yaml | gre
 successfulJobsHistoryLimit: 3

$ kubectl get cronjobs current-date -o yaml | gre
 failedJobsHistoryLimit: 1

In order to reconfigure the job retention history limits, set new values
for the attributes spec.successfulJobsHistoryLimit and
spec.failedJobsHistoryLimit . Example 6-6 keeps the last
five successful executions and the last three failed executions.

Example 6-6. A CronJob configuring retention history limits

apiVersion: batch/v1beta1

kind: CronJob

metadata:

 name: current-date

spec:

 successfulJobsHistoryLimit: 5

 failedJobsHistoryLimit: 3

 schedule: "* * * * *"

 jobTemplate:

 spec:

 template:

 spec:

 containers:

 - name: current-date

 image: nginx

 args:

 - /bin/sh

 - -c

 - 'echo "Current date: $(date)"'

 restartPolicy: OnFailure

Summary

Labels are one of the central concepts that control the runtime behav-
ior of more advanced Kubernetes objects. For example, in the context
of a Deployment, label selection is used to select the Pods the De-
ployment manages. You can use labels to select objects based on a
query from the command line or within a manifest if supported by the
primitive’s API. Annotations serve a different purpose—they are only

meant for providing human-readable, informative metadata and can
be used for querying objects.

The Deployment is an essential primitive for scaling an application by
running it in multiple replicas. The heavy lifting of managing those
replicas is performed by a ReplicaSet. Application developers do not
have to interact directly with the ReplicaSet; a Deployment handles it
under the hood. Deployments come with the capability to easily roll
out and roll back revisions of the application represented by an image
running in the container. You learned about the commands for con-
trolling the revision history and its operations. Scaling a Deployment
manually requires deep insight into the requirements and the load of
an application. A Horizontal Pod Autoscaler can automatically scale
the number of replicas based on CPU and memory thresholds ob-
served at runtime.

Jobs are well suited for implementing batch processes run in one or
many Pods as a finite operation. Both objects, the Job and the Pod,

will not be deleted after the work is completed in order to support in-
spection and troubleshooting activities. A CronJob is very similar to a
Job, but executes on a schedule, defined as a Unix cron expression.

Exam Essentials

Understand the difference between labels and annotations

Labels are an extremely important concept in Kubernetes, as
many other primitives work with label selection. Practice how to
declare labels for different objects, and use the -l command-
line option to query for them based on equality-based and set-
based requirements. Label selection in a YAML manifest may
look slightly different depending on the API version of the spec.

Confront yourself with the use of label selection for primitives
that make heavy use of them. All you need to know about an-
notations is their declaration from the command line and in a
YAML manifest.

Know the ins and outs of a Deployment

Given that a Deployment is such a central primitive in Kuber-
netes, you can almost be certain that the exam will test you on
it. Know how to create a Deployment and learn how to scale to
multiple replicas. One of the superior features of a Deployment
is its rollout functionality of new revisions. Practice how to roll
out a new revision, inspect the rollout history, and roll back to a
previous revision. It won’t hurt to also get more familiar with
auto-scaling a Deployment using the Horizontal Pod
Autoscaler.

Understand practical use cases of Jobs and CronJobs

Jobs and CronJobs manage Pods that should finish the work at
least once or periodically. You will need to understand the cre-
ation of those objects and how to inspect them at runtime.

Make sure to play around with the different configuration op-
tions and how they effect the runtime behavior.

Sample Exercises

Solutions to these exercises are available in the Appendix.

1. Create three Pods that use the image nginx . The names of the
Pods should be pod-1 , pod-2 , and pod-3 . Assign the label
tier=frontend to pod-1 and the label tier=backend to
pod-2 and pod-3 . All pods should also assign the label
team=artemidis .

2. Assign the annotation with the key deployer to pod-1 and
pod-3 . Use your own name as the value.

3. From the command line, use label selection to find all Pods with
the team artemidis or aircontrol and that are considered
a backend service.

4. Create a new Deployment named server-deployment . The
Deployment should control two replicas using the image
grand-server:1.4.6 .

5. Inspect the Deployment and find out the root cause for its failure.

6. Fix the issue by assigning the image nginx instead. Inspect the
rollout history. How many revisions would you expect to see?

7. Create a new CronJob named google-ping . When executed,

the Job should run a curl command for google.com . Pick
an appropriate image. The excution should occur every two
minutes.

8. Tail the logs of the CronJob at runtime. Check the command-line
options of the relevant command or consult the Kubernetes
documentation.

9. Reconfigure the CronJob to retain a history of seven executions.

10. Reconfigure the CronJob to disallow a new execution if the cur-
rent execution is still running. Consult the Kubernetes documen-
tation for more information.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness by
working through our playlist of interactive CKAD scenarios. Each step
of the scenario must be completed correctly before you can move to
the next step. If you get stuck, you can view the solution and learn
how to complete the step.

The following scenarios cover material from this chapter:

6-1. CKAD Labels: Assigning Labels to Pods Imperatively
6-2. CKAD Labels: Assigning Labels to Pods Declaratively
6-3. CKAD Annotations: Assigning Annotations to Pods
Imperatively
6-4. CKAD Annotations: Assigning Annotations to Pods
Declaratively
6-5. CKAD Deployments: Creating and Manually Scaling a
Deployment
6-6. CKAD Deployments: Rolling Out a New Revision for a
Deployment
6-7. CKAD Deployments: Creating a Horizontal Pod Autoscaler
6-8. CKAD Jobs: Creating a Non-Parallel Job
6-9. CKAD Jobs: Creating a Parallel Job
6-10. CKAD Jobs: Creating a CronJob

https://learning.oreilly.com/playlists/8aa87dce-f9a9-4206-83af-c8c730faa430
https://learning.oreilly.com/scenarios/6-1-ckad-labels/9781098105181
https://learning.oreilly.com/scenarios/6-2-ckad-labels/9781098105198
https://learning.oreilly.com/scenarios/6-3-ckad-annotations/9781098105204
https://learning.oreilly.com/scenarios/6-4-ckad-annotations/9781098105211
https://learning.oreilly.com/scenarios/ckad-deployments-creating/9781098105235
https://learning.oreilly.com/scenarios/6-6-ckad-deployments/9781098105242
https://learning.oreilly.com/scenarios/6-7-ckad-deployments/9781098105259
https://learning.oreilly.com/scenarios/6-8-ckad-jobs/9781098105273
https://learning.oreilly.com/scenarios/6-9-ckad-jobs/9781098105280
https://learning.oreilly.com/scenarios/6-10-ckad-jobs/9781098105297

Chapter 7. Services & Networking

In Chapter 2, “Core Concepts”, we learned that you can communicate
with a Pod by targeting its IP address. It’s important to recognize that
Pods’ IP addresses are virtual and will therefore change to random
values over time. A restart of a Pod will automatically assign a new
virtual cluster IP address. Therefore, other parts of your system can-
not rely on the Pod’s IP address if they need to talk to one another.

The Kubernetes primitive Service implements an abstraction layer on
top of Pods, assigning a fixed virtual IP fronting all the Pods with
matching labels, and that virtual IP is called Cluster IP. This chapter
will focus on the ins and outs of Services, and most importantly the
exposure of Pods inside or outside of the cluster depending on their
declared type.

By default, Kubernetes does not restrict inter-Pod communication in
any shape or form. You can define a network policy to mitigate poten-
tial security risks. Network policies describe the access rules for in-
coming and outgoing network traffic to and from Pods. By the end of
this chapter, you will have a basic understanding of its functionality
based on common use cases.

At a high level, this chapter covers the following concepts:

Service
Deployment
Network Policy

Understanding Services

Services are one of the central concepts in Kubernetes. Without a
Service, you won’t be able to expose your application to consumers
in a stable and predictable fashion. In a nutshell, Services provide
discoverable names and load balancing to Pod replicas. The services
and Pods remain agnostic from IPs with the help of the Kubernetes
DNS control plane component. Similar to a Deployment, the Service
determines the Pods it works on with the help of label selection.

Figure 7-1 illustrates the functionality. Pod 1 and Pod 2 receive
traffic, as their assigned labels match with the label selection defined
in the Service. Pod 3 does not receive traffic, as it defines non-
matching labels. Note that it is possible to create a Service without a
label selector for less-common scenarios. Refer to the relevant Ku-
bernetes documentation for more information.

https://oreil.ly/30PzS

Figure 7-1. Service routing traffic to Pods with matching labels

Service Types

Every Service needs to define a type. The type determines how the
Service exposes the matching Pods, as listed in Table 7-1.

Table 7-1. Service types

Type Description

ClusterIP Exposes the Service on a cluster-internal IP.

Only reachable from within the cluster.

NodePort Exposes the Service on each node’s IP ad-
dress at a static port. Accessible from outside of
the cluster.

LoadBalan

cer

Exposes the Service externally using a cloud
provider’s load balancer.

ExternalN

ame

Maps a Service to a DNS name.

The most important types you will need to understand for the CKAD
exam are ClusterIP and NodePort . Those types make Pods
reachable from within the cluster and from outside of the cluster. Lat-
er in this chapter, we’ll explore both types by example.

Creating Services

As usual, we’ll look at creating a Service from both the imperative and
declarative approach angles. In fact, there are two ways to create a
Service imperatively.

The command create service instantiates a new Service. You
have to provide the type of the Service as the third, mandatory com-
mand-line option. That’s also the case for the default type,

ClusterIP . In addition, you can optionally provide the port map-
ping, which we’ll discuss a little later in this chapter:

$ kubectl create service clusterip nginx-service

service/nginx-service created

Instead of creating a Service as a standalone object, you can also
expose a Pod or Deployment with a single command. The run com-
mand provides an optional --expose command-line option, which
creates a new Pod and a corresponding Service with the correct label
selection in place:

$ kubectl run nginx --image=nginx --restart=Neve
service/nginx created

pod/nginx created

For an existing Deployment, you can expose the underlying Pods
with a Service using the expose deployment command:

$ kubectl expose deployment my-deploy --port=80 -
service/my-deploy exposed

The expose command and the --expose command-line option
are welcome shortcuts as a means to creating a new Service during
the CKAD exam with a fast turnaround time.

Using the declarative approach, you would define a Service manifest
in YAML form as shown in Example 7-1. As you can see, the key of
the label selector uses the value app . After creating the Service, you
will likely have to change the label selection criteria to meet your
needs, as the create service command does not offer a dedi-
cated command-line option for it.

Example 7-1. A Service defined by a YAML manifest

apiVersion: v1

kind: Service

metadata:

 name: nginx-service

spec:

 type: ClusterIP

 selector:

 app: nginx-service

 ports:

 - port: 80

 targetPort: 80

Listing Services

You can observe the most important attributes of a Service when ren-
dering the full list for a namespace. The following command shows
the type, the cluster IP, an optional external IP, and the mapped
ports:

$ kubectl get services

NAME TYPE CLUSTER-IP EXTE

nginx-service ClusterIP 10.109.125.232 <non

Rendering Service Details

The describe command helps with retrieving even more details
about a Service. The label selector will be included in the description
of the Service, represented by the attribute Selector . That’s im-
portant information when troubleshooting a Service object:

$ kubectl describe service nginx-service

Name: nginx-service

Namespace: default

Labels: app=nginx-service

Annotations: <none>

Selector: app=nginx-service

Type: ClusterIP

IP: 10.109.125.232

Port: 80-80 80/TCP

TargetPort: 80/TCP

Endpoints: <none>

Session Affinity: None

Events: <none>

Port Mapping

In “Creating Services”, we only briefly touched on the topic of port
mapping. The correct port mapping determines if the incoming traffic
actually reaches the application running inside of the Pods that match

the label selection criteria of the Service. A Service always defines
two different ports: the incoming port accepting traffic and the outgo-
ing port, also called the target port. Their functionality is best illustrat-
ed by example.

Figure 7-2 shows a Service that accepts incoming traffic on port 3000.

That’s the port defined by the attribute ports.port in the manifest.
Any incoming traffic is then routed toward the target port, represented
by ports.targetPort . The target port is the same port as defined
by the container running inside of the label-selected Pod. In this case,

that’s port 80.

Figure 7-2. Port mapping of a Service to a Pod

Accessing a Service with Type
ClusterIP

ClusterIP is the default type of Service. It exposes the Service on
a cluster-internal IP address. Figure 7-3 shows how to reach a Pod
exposed by the ClusterIP type from another Pod from within the
cluster. You can also create a proxy from outside of the cluster using
the kubectl proxy command. Using a proxy is not only meant for
production environments but can also be helpful for troubleshooting a
Service.

Figure 7-3. Accessibility of a Service with the type ClusterIP

To demonstrate the use case, we’ll opt for a quick way to create the
Pod and the corresponding Service with the same command. The
command automatically takes care of properly mapping labels and
ports:

$ kubectl run nginx --image=nginx --restart=Neve
service/nginx created

pod/nginx created

$ kubectl get pod,service

NAME READY STATUS RESTARTS AGE

pod/nginx 1/1 Running 0 26s

NAME TYPE CLUSTER-IP EXTER

service/nginx ClusterIP 10.96.225.204 <none

Remember that the Service of type ClusterIP can only be
reached from within the cluster. To demonstrate the behavior, we’ll
create a new Pod running in the same cluster and execute a wget

command to access the application. Have a look at the cluster IP ex-
posed by the Service—that’s 10.96.225.204 . The port is 80.

Combined as a single command, you can resolve the application via
wget -O- 10.96.225.204:80 from the temporary Pod:

$ kubectl run busybox --image=busybox --restart=N
If you don't see a command prompt, try pressing e

/ # wget -O- 10.96.225.204:80

Connecting to 10.96.225.204:80 (10.96.225.204:80)

writing to stdout

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

 body {

 width: 35em;

 margin: 0 auto;

 font-family: Tahoma, Verdana, Arial, sans

 }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is

working. Further configuration is required.</p>

<p>For online documentation and support please re

nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

</html>

- 100% |**********************

**********************| 612 0:00:00 ETA

written to stdout

/ # exit

The proxy command can establish a direct connection to the Ku-
bernetes API server from your localhost. With the following com-
mand, we are opening port 9999 on which to run the proxy:

$ kubectl proxy --port=9999

Starting to serve on 127.0.0.1:9999

After running the command, you will notice that the shell is going to
wait until you break out of the operation. To try talking to the proxy,

you will have to open another terminal window. Say you have the
curl command-line tool installed on your machine to make a call to
an endpoint of the API server. The following example uses
localhost:9999—that’s the proxy entry point. As part of the URL,

you’re providing the endpoint to the Service named nginx running
in the default namespace according to the API reference:

https://oreil.ly/7pFBX

$ curl -L localhost:9999/api/v1/namespaces/defaul
<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

 body {

 width: 35em;

 margin: 0 auto;

 font-family: Tahoma, Verdana, Arial, sans

 }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is

working. Further configuration is required.</p>

<p>For online documentation and support please re

nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

</html>

Accessing a Service with Type
NodePort

Declaring a Service with type NodePort exposes access through
the node’s IP address and can be resolved from outside of the Kuber-
netes cluster. The node’s IP address can be reached in combination
with a port number in the range of 30000 and 32767, assigned auto-
matically upon the creation of the Service. Figure 7-4 illustrates the
routing of traffic to Pods via a NodePort-typed Service.

Figure 7-4. Accessibility of a Service with the type NodePort

Let’s enhance the example from the previous section. We’ll change
the existing Service named nginx to use the type NodePort in-
stead of ClusterIP . There are various ways to implement the
change. For this example, we’ll use the patch command. When list-

ing the Service, you will find the changed type and the port you can
use to reach the Service. The port that has been assigned in this ex-
ample is 32300:

$ kubectl patch service nginx -p '{ "spec": {"typ
service/nginx patched

$ kubectl get service nginx

NAME TYPE CLUSTER-IP EXTERNAL-IP

nginx NodePort 10.96.225.204 <none>

You should now be able to access the Service using the node IP ad-
dress and the node port. One way to discover the IP address of the
node is by first listing all available nodes and then inspecting the rele-
vant ones for details. In the following commands, we are only running
on a single-node Kubernetes cluster, which makes things easy:

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

minikube Ready master 91d v1.18.3

$ kubectl describe node minikube | grep InternalI
 InternalIP: 192.168.64.2

$ curl 192.168.64.2:32300

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

 body {

 width: 35em;

 margin: 0 auto;

 font-family: Tahoma, Verdana, Arial, sans

 }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is

working. Further configuration is required.</p>

<p>For online documentation and support please re

nginx.org.

Commercial support is available at

nginx.co.</p>

<p>Thank you for using nginx.</p>

</body>

</html>

Deployments and Services

In this chapter, we discussed the primitive Service in detail. Many tu-
torials and examples on the internet explain the concept of a Service
in conjunction with a Deployment. I’m sure it became abundantly
clear that a Service does not need a Deployment to work but they can
work in tandem, as shown in Figure 7-5. A Deployment manages
Pods and their replication. A Service routes network requests to a set
of Pods. Both primitives use label selection to connect with an associ-
ated set of Pods.

Figure 7-5. Relationship between a Deployment and Service

Understanding Network Policies

Within a Kubernetes cluster, any Pod can talk to any other Pod with-
out restrictions using its IP address or DNS name, even across
namespaces. Not only does unrestricted inter-Pod communication
pose a potential security risk, it also makes it harder to understand
the mental communication model of your architecture. For example,

there’s no good reason to allow a backend application running in a
Pod to directly talk to the frontend application running in another Pod.

The communication should be directed from the frontend Pod to the
backend Pod. A network policy defines the rules that control traffic
from and to a Pod, as illustrated in Figure 7-6.

Figure 7-6. Network policies define traffic from and to a Pod

Label selection plays a crucial role in defining which Pods a network
policy applies to. We already saw the concept in action in other con-
texts (e.g., the Deployment and the Service). Furthermore, a network
policy defines the direction of the traffic, to allow or disallow. Incoming
traffic is called ingress, and outgoing traffic is called egress. For

https://oreil.ly/tllLY

ingress and egress, you can whitelist the sources of traffic like Pods,

IP addresses, or ports.

A network policy defines a couple of important attributes, which to-
gether forms its set of rules. I want to discuss them first in Table 7-2,

before looking at an exemplary scenario, so you have a rough idea
what they mean in essence.

Table 7-2. Configuration elements of a network policy

Attribute Description

podSelect

or

Selects the Pods in the namespace to apply the
network policy to.

policyTyp

es

Defines the type of traffic (i.e., ingress and/or
egress) the network policy applies to.

ingress Lists the rules for incoming traffic. Each rule
can define from and ports sections.

egress Lists the rules for outgoing traffic. Each rule can
define to and ports sections.

Creating Network Policies

The creation of network policies is best explained by example. Let’s
say you’re dealing with the following scenario: you’re running a Pod
that exposes an API to other consumers. For example, it’s a Pod that
handles the processing of payments for other applications. The com-
pany you’re working for is in the process of migrating applications
from a legacy payment processor to a new one. Therefore, you’ll only
want to allow access from the applications that are capable of proper-
ly communicating with it. Right now, you have two consumers—a gro-
cery store and a coffee shop—each running their application in a sep-
arate Pod. The coffee shop is ready to consume the API of payment
processor, but the grocery store isn’t. Figure 7-7 shows the Pods and
their assigned labels.

Figure 7-7. Limiting traffic to and from a Pod

You cannot create a new network policy with the imperative create

command. Instead, you will have to use the declarative approach.

The YAML manifest in Example 7-2, stored in the file networkpolicy-
api-allow.yaml, shows a network policy for the scenario described
previously.

Example 7-2. Declaring a NetworkPolicy with YAML

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: api-allow

spec:

 podSelector:

 matchLabels:

 app: payment-processor

 role: api

 ingress:

 - from:

 - podSelector:

 matchLabels:

 app: coffeeshop

Before creating the network policy, you’ll stand up the Pod that runs
the payment processor:

$ kubectl run payment-processor --image=nginx --
 -l app=payment-processor,role=api --port 80

pod/payment-processor created

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP

 READINESS GATES

payment-processor 1/1 Running 0 6m43s 10

 <none>

$ k b tl t f t k li i ll l

$ kubectl create -f networkpolicy-api-allow.yaml

networkpolicy.networking.k8s.io/api-allow created

NOTE

Without a network policy controller, network policies won’t have any effect. You
need to configure a network overlay solution that provides this controller. If you’re
testing network policies on minikube, you’ll have to go through some extra steps to
install and enable the network provider Cilium. Without adhering to the proper pre-

requisites, network policies won’t have any effect. You can find guidance on a dedi-
cated page in the Kubernetes documentation.

To verify the correct behavior of the network policy, you’ll emulate the
grocery store Pod and the coffeshop Pod. As you can see in the fol-
lowing console output, traffic from the grocery store Pod is blocked:

$ kubectl run grocery-store --rm -it --image=busy
 --restart=Never -l app=grocery-store,role=backe
/ # wget --spider --timeout=1 10.0.0.51

Connecting to 10.0.0.51 (10.0.0.51:80)

wget: download timed out

/ # exit

pod "grocery-store" deleted

https://oreil.ly/ac47S

Accessing the payment processor from the coffeeshop Pod works
perfectly, as the Pod selector matches the label app=coffeeshop :

$ kubectl run coffeeshop --rm -it --image=busybox
 --restart=Never -l app=coffeeshop,role=backend
/ # wget --spider --timeout=1 10.0.0.51

Connecting to 10.0.0.51 (10.0.0.51:80)

remote file exists

/ # exit

pod "coffeshop" deleted

Listing Network Policies

Listing network policies works the same as any other Kubernetes
primitive. Use the get command in combination with the resource
type networkpolicy , or its short-form, netpol . For the previous
network policy, you see a table that renders the name and Pod
selector:

$ kubectl get networkpolicy

NAME POD-SELECTOR AGE

api-allow app=payment-processor,role=api 83m

It’s unfortunate that the output of the command doesn’t give away a
lot of information about the rules. To retrieve more information, you
have to dig into the details.

Rendering Network Policy Details

You can inspect the details of a network policy using the describe

command. The output renders all the important information: Pod se-
lector, and ingress and egress rules:

$ kubectl describe networkpolicy api-allow

Name: api-allow

Namespace: default

Created on: 2020-09-26 18:02:57 -0600 MDT

Labels: <none>

Annotations: <none>

Spec:

 PodSelector: app=payment-processor,role=api

 Allowing ingress traffic:

 To Port: <any> (traffic allowed to all ports)

 From:

 PodSelector: app=coffeeshop

 Not affecting egress traffic

 Policy Types: Ingress

The network policy details don’t draw a clear picture of the Pods that
have been selected based on its rules. It would be extremely useful to
be presented with a visual representation. The product Weave Cloud
can provide such a visualization to make troubleshooting network
policies easier. Remember that you do not have access to this prod-
uct during the CKAD exam.

Isolating All Pods in a Namespace

The safest approach to writing a new network policy is to define it in a
way that disallows all ingress and egress traffic. With those con-
straints in place, you can define more detailed rules and loosen re-
strictions gradually. The Kubernetes documentation describes such a
default policy as shown in Example 7-3.

Example 7-3. Disallowing all traffic with the default policy

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: default-deny-all

spec:

 podSelector: {}

 policyTypes:

https://oreil.ly/5QTSn

 - Ingress

 - Egress

The curly braces for spec.podSelector mean “apply to all Pods
in the namespace.” The attribute spec.policyTypes defines the
types of traffic the rule should apply to.

We can easily verify the correct behavior. Say, we’re dealing with a
Pod serving up frontend logic and another Pod that provides the
backend functionality. The backend functionality is a basic NGINX
web server exposing its endpoint on port 80. First, we’ll create the
backend Pod and connect to it from the frontend Pod running the
busybox image. We should have no problem connecting to the
backend Pod:

$ kubectl run backend --image=nginx --restart=Nev
pod/backend created

$ kubectl get pods backend -o wide

NAME READY STATUS RESTARTS AGE IP

 NOMINATED NODE READINESS GATES

backend 1/1 Running 0 16s 10.0

 <none> <none>

$ kubectl run frontend --rm -it --image=busybox -
/ # wget --spider --timeout=1 10.0.0.61

Connecting to 10.0.0.61 (10.0.0.61:80)

remote file exists

/ # exit

pod "frontend" deleted

Now, we’ll go through the same procedure but with the “deny all” net-
work policy put in place. Ingress access to the backend Pod will be
blocked:

$ kubectl create -f networkpolicy-deny-all.yaml

networkpolicy.networking.k8s.io/default-deny-all

$ kubectl run frontend --rm -it --image=busybox -
If you don't see a command prompt, try pressing e

/ # wget --spider --timeout=1 10.0.0.61

Connecting to 10.0.0.61 (10.0.0.61:80)

wget: download timed out

/ # exit

pod "frontend" deleted

Restricting Access to Ports

If not specified by a network policy, all ports are accessible. There are
good reasons why you may want to restrict access on the port level
as well. Say you’re running an application in a Pod that only exposes

port 8080 to the outside. While convenient during development, it
widens the attack vector on any other port that’s not relevant to the
application. Port rules can be specified for ingress and egress as part
of a network policy. The definition of a network policy in Example 7-4
allows access on port 8080.

Example 7-4. Definition of a network policy allowing ingress
access on port 8080

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: port-allow

spec:

 podSelector:

 matchLabels:

 app: backend

 ingress:

 - from:

 - podSelector:

 matchLabels:

 app: frontend

 ports:

 - protocol: TCP

 port: 8080

Summary

Pod-to-Pod communication should be through a Service. Services
provide networking rules for a select set of Pods. Any traffic routed
through the Service will be forwarded to Pods. You can assign one of
the following types to a Service: ClusterIP , the default type;

NodePort ; LoadBalancer ; or ExternalName . The selected
type determines how the Pods are made available—for example, only
from within the cluster or accessible from outside of the cluster. In
practice, you’ll commonly see a Deployment and a Service working
together, though they serve different purposes and can operate
independently.

Intra-Pod communication or communication between two containers
of the same Pod is completely unrestricted in Kubernetes. Network
policies instate rules to control the network traffic either from or to a
Pod. You can think of network policies as firewall rules for Pods. It’s
best practice to start with a “deny all traffic” rule to minimize the at-
tack vector. From there, you can open access as needed. Learning
about the intricacies of network policies requires a bit of hands-on
practice, as it is not directly apparent if the rules work as expected.

Exam Essentials

Understand the purpose of a Service

The key takeaway for wanting to create a Service is that Pods
expose an IP address but virtual and dyanmic IP address can’t
be relied upon. The IP address automatically changes whenev-
er the Pod needs to be restarted—for example, as a result of a
liveness probe identifying that the application doesn’t work
properly or a node drain/failure event. A Service creates a uni-
fied network interface and can expose a set of Pods associated
with a label selector.

Practice the implications of different Service types

Reading about the theoretical effect of assigning specific Ser-
vice types won’t be sufficient to prepare for the CKAD exam.

You will need to practically experience their impact by making
Pods accessible from within or outside of the cluster. Spend ex-
tra time on the differences between ClusterIP and
NodePort .

Know the basics about network policies

The CKAD curriculum doesn’t clearly state the depth of knowl-
edge you need to have about network policies. I’d recommend
going deeper than you would expect for the exam. Network
policies come with a couple of basic rules. Once you under-
stand those, it should be relatively easy to grasp their influence

on accessibility. To explore common scenarios, have a look at
the GitHub repository named “Kubernetes Network Policy
Recipes”. The repository comes with a visual representation for
each scenario and walks you through the steps to set up the
network policy and the involed Pods. This is a great practicing
resource.

Sample Exercises

Solutions to these exercises are available in the Appendix.

1. Create a new Pod named frontend that uses the image
nginx . Assign the labels tier=frontend and app=nginx .

Expose the container port 80.

2. Create a new Pod named backend that uses the image
nginx . Assign the labels tier=backend and app=nginx .

Expose the container port 80.

3. Create a new Service named nginx-service of type
ClusterIP . Assign the port 9000 and the target port 80. The
label selector should use the criteria tier=backend and
deployment=app .

4. Try to access the set of Pods through the Service from within the
cluster. Which Pods does the Service select?

https://oreil.ly/1ARKk

5. Fix the Service assignment to properly select the backend Pod
and assign the correct target port.

6. Expose the Service to be accessible from outside of the cluster.
Make a call to the Service.

7. Assume an application stack that defines three different layers: a
frontend, a backend, and a database. Each of the layers runs in a
Pod. You can find the definition in the YAML file app-stack.yaml:

kind: Pod

apiVersion: v1

metadata:

 name: frontend

 namespace: app-stack

 labels:

 app: todo

 tier: frontend

spec:

 containers:

 - name: frontend

 image: nginx

kind: Pod

apiVersion: v1

metadata:

 name: backend

 namespace: app-stack

 labels:

 app: todo

 tier: backend

spec:

 containers:

 - name: backend

 image: nginx

kind: Pod

apiVersion: v1

metadata:

 name: database

 namespace: app-stack

 labels:

 app: todo

 tier: database

spec:

 containers:

 - name: database

 image: mysql

 env:

 - name: MYSQL_ROOT_PASSWORD

 value: example

Create the namespace and the Pods using the file app-stack-
.yaml.

8. Create a network policy in the file app-stack-network-policy.yaml.
The network policy should allow incoming traffic from the back-
end to the database but disallow incoming traffic from the
frontend.

9. Reconfigure the network policy to only allow incoming traffic to
the database on TCP port 3306 and no other port.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness by
working through our playlist of interactive CKAD scenarios. Each step
of the scenario must be completed correctly before you can move to
the next step. If you get stuck, you can view the solution and learn
how to complete the step.

The following scenarios cover material from this chapter:

7-1. CKAD Services: Creating a Service of type ClusterIP
7-2. CKAD Services: Creating a Service of type NodePort
7-3. CKAD Services: Creating a Network Policy

https://learning.oreilly.com/playlists/8aa87dce-f9a9-4206-83af-c8c730faa430
https://learning.oreilly.com/scenarios/7-1-ckad-services/9781098105310
https://learning.oreilly.com/scenarios/7-2-ckad-services/9781098105327
https://learning.oreilly.com/scenarios/7-3-ckad-services/9781098105334

Chapter 8. State Persistence

Each container running in a Pod provides a temporary filesystem. Ap-
plications running in the container can read from it and write to it. A
container’s temporary filesystem is isolated from any other container
or Pod and is not persisted beyond a Pod restart. The “State Persis-
tence” section of the CKAD curriculum addresses the technical ab-
straction in Kubernetes responsible for persisting data beyond a con-
tainer or Pod restart.

A Volume is a Kubernetes capability that persists data beyond a Pod
restart. Essentially, a Volume is a directory that’s shareable between
multiple containers of a Pod. You will learn about the different Volume
types and the process for defining and mounting a Volume in a
container.

Persistent Volumes are a specific category of the wider concept of
Volumes. The mechanics for Persistent Volumes are slightly more
complex. The Persistent Volume is the resource that actually persists
the data to an underlying physical storage. The Persistent Volume
Claim represents the connecting resource between a Pod and a Per-
sistent Volume responsible for requesting the storage. Finally, the
Pod needs to claim the Persistent Volume and mount it to a directory
path available to the containers running inside of the Pod.

At a high level, this chapter covers the following concepts:

Volume
Persistent Volume
Persistent Volume Claim

Understanding Volumes

Applications running in a container can use the temporary filesystem
to read and write files. In case of a container crash or a cluster/node
restart, the kubelet will restart the container. Any data that had been
written to the temporary filesystem is lost and cannot be retrieved
anymore. The container effectively starts with a clean slate again.

There are many uses cases for wanting to mount a Volume in a con-
tainer. We already saw one of the most prominent use cases in
Chapter 4 that uses a Volume to exchange data between a main ap-
plication container and a sidecar. Figure 8-1 illustrates the differences
between the temporary filesystem of a container and the use of a
Volume.

Figure 8-1. A container using the temporary filesystem versus a Volume

Volume Types

Every Volume needs to define a type. The type determines the medi-
um that backs the Volume and its runtime behavior. The Kubernetes
documentation offers a long list of Volume types. Some of the types—
for example, azureDisk , awsElasticBlockStore , or
gcePersistentDisk—are only available when running the Ku-
bernetes cluster in a specific cloud provider. Table 8-1 shows a re-
duced list of Volume types that I deem to be most relevant to the
CKAD exam.

Table 8-1. Volume types relevant to CKAD exam

Type Description

emptyDir Empty directory in Pod with read/write access.

Only persisted for the lifespan of a Pod. A good
choice for cache implementations or data ex-
change between containers of a Pod.

hostPath File or directory from the host node’s filesystem.

configMap

, secret

Provides a way to inject configuration data. For
practical examples, see Chapter 3.

nfs An existing NFS (Network File System) share.

Preserves data after Pod restart.

persisten

tVolumeCl

aim

Claims a Persistent Volume. Fore more infor-
mation, see “Creating
PersistentVolumeClaims”.

Creating and Accessing Volumes

Defining a Volume for a Pod requires two steps. First, you need to de-
clare the Volume itself using the attribute spec.volumes . As part of
the definition, you provide the name and the type. Just declaring the
Volume won’t be sufficient, though. Second, the Volume needs to be
mounted to a path of the consuming container via
spec.containers.volumeMounts . The mapping between the
Volume and the Volume mount occurs by the matching name.

In Example 8-1, stored in the file pod-with-volume.yaml here, you can
see the definition of a Volume with type emptyDir . The Volume has
been mounted to the path /var/logs inside of the container named
nginx :

Example 8-1. A Pod defining and mounting a Volume

apiVersion: v1

kind: Pod

metadata:

 name: business-app

spec:

 volumes:

 - name: logs-volume

 emptyDir: {}

 containers:

 - image: nginx

 name: nginx

 volumeMounts:

 - mountPath: /var/logs

 name: logs-volume

Let’s create the Pod and see if we can interact with the mounted Vol-
ume. The following commands open an interactive shell after the
Pod’s creation, then navigate to the mount path. You can see that the
Volume type emptyDir initializes the mount path as an empty di-
rectory. New files and directories can be created as needed without
limitations:

$ kubectl create -f pod-with-volume.yaml

pod/business-app created

$ kubectl get pod business-app

NAME READY STATUS RESTARTS AGE

business-app 1/1 Running 0 43s

$ kubectl exec business-app -it -- /bin/sh

cd /var/logs

pwd

/var/logs

ls

touch app-logs.txt

ls

app-logs.txt

For an illustrative use case of the emptyDir Volume type mounted
by more than one container, see Chapter 4.

Understanding Persistent Volumes

Data stored on Volumes outlive a container restart. In many ap-
plications, the data lives far beyond the lifecycles of the applications,

container, Pod, nodes, and even the clusters themselves. Data per-
sistence ensures the lifecycles of the data are decoupled from the
lifecycles of the cluster resources. A typical example would be data
persisted by a database. That’s the responsibility of a Persistent Vol-
ume. Kubernetes models persist data with the help of two primitives:

the PersistentVolume and the PersistentVolumeClaim.

The PersistentVolume is the storage device in a Kubernetes cluster.
The PersistentVolume is completely decoupled from the Pod and
therefore has its own lifecycle. The object captures the source of the
storage (e.g., storage made available by a cloud provider). A Persis-
tentVolume is either provided by a Kubernetes administrator or as-
signed dynamically by mapping to a storage class.

The PersistentVolumeClaim requests the resources of a Persistent-
Volume—for example, the size of the storage and the access type. In
the Pod, you will use the type persistentVolumeClaim to mount

the abstracted PersistentVolume by using the
PersistentVolumeClaim.

Figure 8-2 shows the relationship between the Pod, the PersistentVol-
umeClaim, and the PersistentVolume.

Figure 8-2. Claiming a PersistentVolume from a Pod

Static Versus Dynamic Provisioning

A PersistentVolume can be created statically or dynamically. If you go
with the static approach, then you need to create storage device first
and reference it by explicitly creating an object of kind PersistentVol-
ume. The dynamic approach doesn’t require you to create a Persis-
tentVolume object. It will be automatically created from the
PersistentVolumeClaim by setting a storage class name using the at-
tribute spec.storageClassName .

A storage class is an abstraction concept that defines a class of stor-
age device (e.g., storage with slow or fast performance) used for dif-
ferent application types. It’s usually the job of a Kubernetes adminis-

trator to set up storage classes. Minikube already creates a default
storage class named standard , which you can query with the fol-
lowing command:

$ kubectl get storageclass

NAME PROVISIONER REC

 ALLOWVOLUMEEXPANSION AGE

standard (default) k8s.io/minikube-hostpath Del

 false 108d

A deeper discussion on storage classes is out of scope for this book.

For the CKAD exam, you will only need to understand the purpose of
a storage class, how to set it, and its dynamic creation behavior of a
PersistentVolume.

Creating PersistentVolumes

A PersistentVolume can only be created using the mainfest-first ap-
proach. At this time, kubectl does not allow the creation of a Per-
sistentVolume using the create command. Every PersistentVol-
ume needs to define the storage capacity using spec.capacity

https://oreil.ly/SdFJB

and an access mode set via spec.accessModes . Table 8-2 pro-
vides a high-level overview of the available access modes.

Table 8-2. PersistentVolume access modes

Type Description

ReadWriteOnce Read/write access by a single node.

ReadOnlyMany Read-only access by many nodes.

ReadWriteMany Read/write access by many nodes.

Example 8-2 creates a PersistentVolume named db-pv with a stor-
age capacity of 1Gi and read/write access by a single node. The at-
tribute hostPath mounts the directory /data/db from the host
node’s filesystem. We’ll store the YAML mainfest in the file db-
pv.yaml.

Example 8-2. YAML manifest defining a PersistentVolume

apiVersion: v1

kind: PersistentVolume

metadata:

 name: db-pv

spec:

 capacity:

 storage: 1Gi

 accessModes:

 - ReadWriteOnce

 hostPath:

 path: /data/db

Upon inspection of the created PersistentVolume, you’ll find most of
the information you provided in the manifest. The status Available

indicates that the object is ready to be claimed. The reclaim policy de-
termines what should happen with the PersistentVolume after it has
been released from its claim. By default, the object will be retained.

The following example uses the short-form command pv to avoid
having to type persistentvolume :

$ kubectl create -f db-pv.yaml

persistentvolume/db-pv created

$ kubectl get pv db-pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY

 REASON AGE

db-pv 1Gi RWO Retain

 10s

Creating PersistentVolumeClaims

The next object we’ll need to create is the PersistentVolumeClaim. Its
purpose is to bind the PersistentVolume to the Pod. Let’s have a look
at the YAML manifest stored in the file db-pvc.yaml, as shown in
Example 8-3.

Example 8-3. Definition of a PersistentVolumeClaim

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: db-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 512m

What we’re saying here is, “Give me a PersistentVolume that can ful-
fill the resource request of 512m and provides the access mode
ReadWriteOnce .” The binding to an appropriate PersistentVolume
happens automatically based on those criteria.

After creating the PersistentVolumeClaim, the status is set as
Bound , which means that the binding to the PersistentVolume was

successful. The following get command uses the short-form pvc

instead of persistentvolumeclaims :

$ kubectl create -f db-pvc.yaml

persistentvolumeclaim/db-pvc created

$ kubectl get pvc db-pvc

NAME STATUS VOLUME

 STORAGECLASS AGE

db-pvc Bound pvc-c9e9aa9e-890d-4fd1-96e6-64072

 standard 7s

The PersistentVolume has not been mounted by a Pod yet. There-
fore, inspecting the details of the object shows <none> . Using the
describe command is a good way to verify if the PersistentVol-
umeClaim was mounted properly:

$ kubectl describe pvc db-pvc

...

Mounted By: <none>

...

Mounting PersistentVolumeClaims in
a Pod

All that’s left is mounting the PersistentVolumeClaim in the Pod that
wants to consume it. You already learned how to mount a Volume in a
Pod. The big difference here, shown in Example 8-4, is using
spec.volumes.persistentVolumeClaim and providing the
name of the PersistentVolumeClaim.

Example 8-4. A Pod referencing a PersistentVolumeClaim

apiVersion: v1

kind: Pod

metadata:

 name: app-consuming-pvc

spec:

 volumes:

 - name: app-storage

 persistentVolumeClaim:

 claimName: db-pvc

 containers:

 - image: alpine

 name: app

 command: ["/bin/sh"]

 args: ["-c", "while true; do sleep 60; done;"

 volumeMounts:

 - mountPath: "/mnt/data"

 name: app-storage

Let’s assume we stored the configuration in the file app-consuming-
pvc.yaml. After creating the Pod from the manifest, you should see
the Pod transitioning into the Ready state. The describe com-
mand will provide additional information on the Volume:

$ kubectl create -f app-consuming-pvc.yaml

pod/app-consuming-pvc created

$ kubectl get pods

NAME READY STATUS RESTARTS

app-consuming-pvc 1/1 Running 0

$ kubectl describe pod app-consuming-pvc

...

Volumes:

 app-storage:

 Type: PersistentVolumeClaim (a referenc

 in the same namespace)

 ClaimName: db-pvc

 ReadOnly: false

...

The PersistentVolumeClaim now also shows the Pod that mounted it:

$ kubectl describe pvc db-pvc

...

Mounted By: app-consuming-pvc

...

You can now go ahead and open an interactive shell to the Pod. Navi-
gating to the mount path at /mnt/data gives you access to the under-
lying PersistentVolume:

$ kubectl exec app-consuming-pvc -it -- /bin/sh

/ # cd /mnt/data

/mnt/data # ls -l

total 0

/mnt/data # touch test.db

/mnt/data # ls -l

total 0

-rw-r--r-- 1 root root 0 Sep 2

Summary

Containers store data in a temporary filesystem, which is empty each
time a new Pod is started. Application developers need to persist

data beyond the lifecycles of the containers, Pods, node, and cluster.
Typical examples include persistent log files or data in a database.

Kubernetes offers the concept of a Volume to implement the use
case. A Pod mounts a Volume to a path in the container. Any data
written to the mounted storage will be persisted beyond a container
restart. Kubernetes offers a wide range of Volume types to fulfill dif-
ferent requirements.

PersistentVolumes even store data beyond a Pod or cluster/node
restart. Those objects are decoupled from the Pod’s lifecycle and are
therefore represented by a Kubernetes primitive. The PersistentVol-
umeClaim abstracts the underlying implementation details of a Per-
sistentVolume and acts as an intermediary between Pod and
PersistentVolume.

Exam Essentials

Understand the need and use cases for a Volume

Many production-ready application stacks running in a cloud
native environment need to persist data. Read up on common
use cases and explore recipes that describe typical scenarios.

You can find some examples in the O’Reilly books Kubernetes

https://oreil.ly/mQKRj

Patterns, Kubernetes Best Practices, and Cloud Native Dev-
Ops with Kubernetes.

Practice defining and consuming Volumes

Volumes are a cross-cutting concept applied in different areas
of the CKAD exam. Know where to find the relevant documen-
tation for defining a Volume and the multitude of ways to con-
sume a Volume from a container. Definitely revisit Chapter 3 for
a deep dive on how to mount ConfigMaps and Secrets as a
Volume, and Chapter 4 for coverage on sharing a Volume be-
tween two containers.

Internalize the mechanics of defining and consuming a
PersistentVolume

Creating a PersistentVolume involves a couple of moving parts.

Understand the configuration options for PeristentVolumes and
PersistentVolumeClaims and how they play together. Try to
emulate situations that prevent a successful binding of a Per-
sistentVolumeClaim. Then fix the situation by taking counterac-
tions. Internalize the short-form commands pv and pvc to
save precious time during the exam.

Sample Exercises

https://oreil.ly/mQKRj
https://oreil.ly/hcFNA
https://oreil.ly/G7V3W

Solutions to these exercises are available in the Appendix.

1. Create a Pod YAML file with two containers that use the image
alpine:3.12.0 . Provide a command for both containers that
keep them running forever.

2. Define a Volume of type emptyDir for the Pod. Container 1
should mount the Volume to path /etc/a, and container 2 should
mount the Volume to path /etc/b.

3. Open an interactive shell for container 1 and create the directory
data in the mount path. Navigate to the directory and create the
file hello.txt with the contents “Hello World.” Exit out of the
container.

4. Open an interactive shell for container 2 and navigate to the di-
rectory /etc/b/data. Inspect the contents of file hello.txt. Exit out of
the container.

5. Create a PersistentVolume named logs-pv that maps to the
hostPath /var/logs. The access mode should be
ReadWriteOnce and ReadOnlyMany . Provision a storage
capacity of 5Gi. Ensure that the status of the PersistentVolume
shows Available .

6. Create a PersistentVolumeClaim named logs-pvc . The ac-
cess it uses is ReadWriteOnce . Request a capacity of 2Gi. En-
sure that the status of the PersistentVolume shows Bound .

7. Mount the PersistentVolumeClaim in a Pod running the image
nginx at the mount path /var/log/nginx.

8. Open an interactive shell to the container and create a new file
named my-nginx.log in /var/log/nginx. Exit out of the Pod.

9. Delete the Pod and re-create it with the same YAML manifest.
Open an interactive shell to the Pod, navigate to the directory
/var/log/nginx, and find the file you created before.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness by
working through our playlist of interactive CKAD scenarios. Each step
of the scenario must be completed correctly before you can move to
the next step. If you get stuck, you can view the solution and learn
how to complete the step.

The following scenarios cover material from this chapter:

8-1. CKAD Volumes: Creating a Pod with Volume of type
emptydir
8-2. CKAD Volumes: Creating a Pod with Volume of type Persis-
tentVolume with Static Binding

https://learning.oreilly.com/playlists/8aa87dce-f9a9-4206-83af-c8c730faa430
https://learning.oreilly.com/scenarios/8-1-ckad-volumes/9781098105358
https://learning.oreilly.com/scenarios/8-2-ckad-volumes/9781098105365

Answers to Review Questions

Chapter 2, Core Concepts

1. You can either use the imperative approach or the declarative
approach. First, we’ll look at creating the namespace with the im-
perative approach:

$ kubectl create namespace ckad

Create the Pod:

$ kubectl run nginx --image=nginx:1.17.10 --p

Alternatively, you can use the declarative approach. Create a
new YAML file called ckad-namespace.yaml with the following
contents:

apiVersion: v1

kind: Namespace

metadata:

 name: ckad

Create the namespace from the YAML file:

$ kubectl create -f ckad-namespace.yaml

Create a new YAML file called nginx-pod.yaml with the following
contents:

apiVersion: v1

kind: Pod

metadata:

 name: nginx

spec:

 containers:

 - name: nginx

 image: nginx:1.17.10

 ports:

 - containerPort: 80

Create the Pod from the YAML file:

$ kubectl create -f nginx-pod.yaml --namespac

2. You can use the command-line option -o wide to retrieve the
IP address of the Pod:

$ kubectl get pod nginx --namespace=ckad -o w

The same information is available if you query for the Pod
details:

$ kubectl describe pod nginx --namespace=ckad

3. You can use the command-line options --rm and -it to start
a temporary Pod. The following command assumes that the IP
address of the Pod named nginx is 10.1.0.66:

$ kubectl run busybox --image=busybox --resta
 -- wget -O- 10.1.0.66:80

4. To download the logs, use a simple logs command:

$ kubectl logs nginx --namespace=ckad

5. Editing the live object is forbidden. You will receive an error mes-
sage if you try to add the environment variables:

$ kubectl edit pod nginx --namespace=ckad

You will have to re-create the object with a modified YAML file,

but first you’ll have to delete the existing object:

$ kubectl delete pod nginx --namespace=ckad

Edit the existing YAML file nginx-pod.yaml:

apiVersion: v1

kind: Pod

metadata:

 name: nginx

spec:

 containers:

 - name: nginx

 image: nginx:1.17.10

 ports:

 - containerPort: 80

 env:

 - name: DB_URL

 value: postgresql://mydb:5432

 - name: DB_USERNAME

 value: admin

Apply the changes:

$ kubectl create -f nginx-pod.yaml --namespac

6. Use the exec command to open an interactive shell to the
container:

$ kubectl exec -it nginx --namespace=ckad --
ls -l

7. Combine the command-line options -o yaml and --dry-

run=client to write the generated YAML to a file. Make sure
to escape the double-quote characters of the string rendered by
the echo command:

$ kubectl run loop --image=busybox -o yaml --
 --restart=Never -- /bin/sh -c 'for i in 1 2

 restart Never /bin/sh c for i in 1 2
 do echo "Welcome $i times"; done' \

 > pod.yaml

Create the Pod from the YAML file:

$ kubectl create -f pod.yaml --namespace=ckad

The status of the Pod will say Completed , as the executed
command in the container does not run in an infinite loop:

$ kubectl get pod loop --namespace=ckad

8. The container command cannot be changed for existing Pods.

Delete the Pod so you can modify the manifest file and re-create
the object:

$ kubectl delete pod loop --namespace=ckad

Change the YAML file content:

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 run: loop

 name: loop

spec:

 containers:

 - args:

 - /bin/sh

 - -c

 - while true; do date; sleep 10; done

 image: busybox

 name: loop

 resources: {}

 dnsPolicy: ClusterFirst

 restartPolicy: Never

status: {}

Create the Pod from the YAML file:

$ kubectl create -f pod.yaml --namespace=ckad

9. You can describe the Pod events by grepping for the term:

$ kubectl describe pod loop --namespace=ckad

10. You can simply delete the namespace, which will delete all ob-
jects within the namespace:

$ kubectl delete namespace ckad

Chapter 3, Configuration

1. The easiest way to create a Secret is with the help of the impera-
tive approach, as you do not have to Base64-encode the values
manually. Start by creating the directory and relevant files. The
following commands achieve this for Unix, Linux, and macOS
platforms. Of course, you can also create the files and content by
hand with the help of an editor:

$ mkdir config

$ echo -e "password=mypwd" > config/db.txt

$ echo -e "api_key=LmLHbYhsgWZwNifiqaRorH8T"
$ ls config

db.txt ext-service.txt

2. Use the imperative approach to create a new Secret by pointing
it to the config directory. Upon inspection of the live object, you
will find each key uses the name of the configuration file. The val-
ues have been Base64-encoded:

$ kubectl create secret generic ext-service-s
secret/ext-service-secret created

$ kubectl get secret ext-service-secret -o ya

$ kubectl get secret ext service secret o ya
apiVersion: v1

data:

 db.txt: cGFzc3dvcmQ9bXlwd2QK

 ext-service.txt: YXBpX2tleT1MbUxIYlloc2dXWnd

kind: Secret

metadata:

 creationTimestamp: "2020-07-12T23:56:33Z"

 managedFields:

 - apiVersion: v1

 fieldsType: FieldsV1

 fieldsV1:

 f:data:

 .: {}

 f:db.txt: {}

 f:ext-service.txt: {}

 f:type: {}

 manager: kubectl

 operation: Update

 time: "2020-07-12T23:56:33Z"

 name: ext-service-secret

 namespace: default

 resourceVersion: "1462456"

 selfLink: /api/v1/namespaces/default/secret

 uid: b7f4faae-e624-4027-8bcf-af385019a8d8

type: Opaque

3. As a starting point, generate the YAML manifest of the Pod.

$ kubectl run consumer --image=nginx --dry-ru
 -o yaml > pod.yaml

Next, modify the manifest by mounting the Secret as a Volume.

The end result could look like the following YAML definition:

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 run: consumer

 name: consumer

spec:

 containers:

 - image: nginx

 name: consumer

 volumeMounts:

 - name: secret-volume

 mountPath: /var/app

 readOnly: true

 resources: {}

 volumes:

 - name: secret-volume

 secret:

 secretName: ext-service-secret

 dnsPolicy: ClusterFirst

 restartPolicy: Never

status: {}

Now, create the Pod. Shell into the Pod as soon as the status in-
dicates Running . Navigate to the directory /var/app. Each key-
value pair of the Secret exists as a file and observes its plain-text
value as content:

$ kubectl create -f pod.yaml

pod/consumer created

$ kubectl get pod consumer

NAME READY STATUS RESTARTS AGE

consumer 1/1 Running 0 17s

$ kubectl exec consumer -it -- /bin/sh

cd /var/app

ls

db.txt	 ext-service.txt

cat db.txt

password=mypwd

cat ext-service.txt

api_key=LmLHbYhsgWZwNifiqaRorH8T

exit

4. It’s usually easier and faster to create a ConfigMap by running an
imperative command. Here, we’ll want to practice the declarative
approach. A YAML manifest for a ConfigMap with the expected
key-value pairs could look as follows:

apiVersion: v1

kind: ConfigMap

metadata:

 name: ext-service-configmap

data:

 api_endpoint: https://myapp.com/api

 username: bot

With this definition, create the object:

$ kubectl create -f configmap.yaml

configmap/ext-service-configmap created

$ kubectl get configmap ext-service-configmap
NAME DATA AGE

ext-service-configmap 2 36s

$ kubectl get configmap ext-service-configmap
apiVersion: v1

data:

 api_endpoint: https://myapp.com/api

username: bot

 username: bot

kind: ConfigMap

metadata:

 creationTimestamp: "2020-07-13T00:17:43Z"

 managedFields:

 - apiVersion: v1

 fieldsType: FieldsV1

 fieldsV1:

 f:data:

 .: {}

 f:api_endpoint: {}

 f:username: {}

 manager: kubectl

 operation: Update

 time: "2020-07-13T00:17:43Z"

 name: ext-service-configmap

 namespace: default

 resourceVersion: "1465228"

 selfLink: /api/v1/namespaces/default/configm

 uid: b1b51b17-2dad-4320-b7c2-6758feca3800

5. The keys of the ConfigMap configuration data do not follow typi-
cal naming conventions of environment variables. Without modi-
fying the keys in the ConfigMap, you can still map them to a more
reasonable naming convention when injecting them into the Pod.

You will have to re-create the Pod to make the necessary
changes as Kubernetes doesn’t allow adding new environment

variables to a running container. The resulting YAML manifest
could look like the following code snippet:

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 run: consumer

 name: consumer

spec:

 containers:

 - image: nginx

 name: consumer

 volumeMounts:

 - name: secret-volume

 mountPath: /var/app

 readOnly: true

 env:

 - name: API_ENDPOINT

 valueFrom:

 configMapKeyRef:

 name: ext-service-configmap

 key: api_endpoint

 - name: USERNAME

 valueFrom:

 configMapKeyRef:

 name: ext-service-configmap

 key: username

 volumes:

 - name: secret-volume

 secret:

 secretName: ext-service-secret

 dnsPolicy: ClusterFirst

 restartPolicy: Always

status: {}

6. You should be able to find the environment variable with the
proper name by running the env command from within the
container:

$ kubectl exec -it consumer -- /bin/sh

env

...

API_ENDPOINT=https://myapp.com/api

USERNAME=bot

...

exit

7. You can get started by creating the Pod manifest using the run

command:

$ kubectl run security-context-demo --image=a

$ kubectl run security context demo image a
 --restart=Never -o yaml > pod.yaml

Edit the file pod.yaml and add the security context. The Linux ca-
pability cannot be overridden at the Pod level for two reasons.

On the one hand, Linux capabilities can only be defined at the
container level. On the other hand, a Pod-level definition does
not redefine the container-level security context—it’s the other
way around:

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 run: security-context-demo

 name: security-context-demo

spec:

 containers:

 - image: alpine

 name: security-context-demo

 resources: {}

 securityContext:

 capabilities:

 add: ["SYS_TIME"]

 dnsPolicy: ClusterFirst

 restartPolicy: Never

status: {}

8. Start by creating the new namespace:

$ kubectl create namespace project-firebird

namespace/project-firebird created

$ kubectl get namespace project-firebird

NAME STATUS AGE

project-firebird Active 23s

Create a YAML manifest for the ResourceQuota. You can define
the maximum count of Secrets in the namespace with the at-
tribute spec.hard.secrets :

apiVersion: v1

kind: ResourceQuota

metadata:

 name: firebird-quota

spec:

 hard:

 secrets: 1

Say you stored the manifest in the file resource-quota.yaml; you
can create it with the following command. Make sure to provide
the namespace:

$ kubectl create -f resource-quota.yaml --nam
resourcequota/firebird-quota created

9. You will notice that the namespace already contains a Secret
that belongs to the default Service Account. Effectively, your
maximum count of Secrets has already been reached:

$ kubectl get resourcequota firebird-quota --
NAME AGE REQUEST LIMIT

firebird-quota 39s secrets: 1/1

$ kubectl get secrets --namespace=project-fir
NAME TYPE

default-token-mdcd8 kubernetes.io/service-ac

Now, go ahead and create a Secret. The ResourceQuota will
render an error message and disallow the creation of the Secret:

$ kubectl create secret generic my-secret --f

g y
 --namespace=project-firebird

Error from server (Forbidden): secrets "my-sec

exceeded quota: firebird-quota, requested: sec

limited: secrets=1

10. You  can  go  through  the  whole  process  by  running  imperative 

commands.  Start  by  creating  the  custom  Service  Account,  then 

create  a  new  Pod  and  use  the  command-line  option  --

serviceaccount   to  assign  the  Service  Account.  You  can  find
 the  authentication  token  in  the  container’s  directory /var/run/se-
crets/kubernetes.io/serviceaccount/token:

$ kubectl create serviceaccount monitoring

serviceaccount/monitoring created

$ kubectl get serviceaccount monitoring

NAME SECRETS AGE

monitoring 1 12s

$ kubectl run nginx --image=nginx --restart=N
 --serviceaccount=monitoring

pod/nginx created

$ kubectl exec -it nginx -- /bin/sh

cat /var/run/secrets/kubernetes.io/serviceac

eyJhbGciO...rH4fkeYsw

Chapter 4, Multi-Container Pods

1. You can start by generating the YAML manifest in dry-run mode.

The resulting manifest will set up the main application container:

$ kubectl run complex-pod --image=nginx --por
 -o yaml --dry-run=client > complex-pod.yaml

Edit the manifest file by adding the init container and changing
some of the default settings that have been generated. The final-
ized manifest could look as follows:

apiVersion: v1

kind: Pod

metadata:

 name: complex-pod

spec:

 initContainers:

 - image: busybox

 name: setup

 command: ['sh', '-c', 'wget -O- google.com

 containers:

 - image: nginx

 name: app

 ports:

 - containerPort: 80

 resources: {}

 dnsPolicy: ClusterFirst

 restartPolicy: Never

status: {}

2. Run the create command to instantiate the Pod. Verify that
the Pod is running without issues:

$ kubectl create -f complex-pod.yaml

pod/complex-pod created

$ kubectl get pod complex-pod

NAME READY STATUS RESTARTS AGE

complex-pod 1/1 Running 0 27

3. Use the logs command and point it to the init container to
download the log output:

$ kubectl logs complex-pod -c setup

Connecting to google.com (172.217.1.206:80)

Connecting to www.google.com (172.217.2.4:80)

writing to stdout

...

4. You can target the main application as well. Here you’ll open an
interactive shell and run the ls command:

$ kubectl exec complex-pod -it -c app -- /bin
ls

bin dev docker-entrypoint.sh home lib64 m

srv tmp var boot docker-entrypoint.d etc

root sbin sys usr

exit

5. Avoid graceful deletion of the Pod by adding the options --

grace-period=0 and --force :

$ kubectl delete pod complex-pod --grace-peri
warning: Immediate deletion does not wait for

running resource has been terminated. The reso

on the cluster indefinitely.

pod "complex-pod" force deleted

6. You can start by generating the YAML manifest in dry-run mode.

The resulting manifest will set up the main application container:

$ kubectl run data-exchange --image=busybox -
 --dry-run=client > data-exchange.yaml

Edit the manifest file by adding the sidecar container and chang-
ing some of the default settings that have been generated. The
finalized manifest could look as follows:

apiVersion: v1

kind: Pod

metadata:

 name: data-exchange

spec:

 containers:

 - image: busybox

 name: main-app

 command: ['sh', '-c', 'counter=1; while tr

 "/var/app/data/$counter-data.txt

 sleep 30; done']

 resources: {}

 dnsPolicy: ClusterFirst

 restartPolicy: Never

status: {}

7. Simply add the sidecar container alongside the main application
container with the proper command. Add on to the existing YAML
manifest:

apiVersion: v1

kind: Pod

metadata:

 name: data-exchange

spec:

 containers:

 - image: busybox

 name: main-app

 command: ['sh', '-c', 'counter=1; while tr

 "/var/app/data/$counter-data.txt

 sleep 30; done']

 resources: {}

 - image: busybox

 name: sidecar

 command: ['sh', '-c', 'while true; do ls

 | wc -l; sleep 30; done']

 dnsPolicy: ClusterFirst

 restartPolicy: Never

status: {}

8. Modify the manifest so that a Volume is used to exchange the
files between the main application container and sidecar
container:

apiVersion: v1

kind: Pod

metadata:

 name: data-exchange

spec:

 containers:

 - image: busybox

 name: main-app

 command: ['sh', '-c', 'counter=1; while tr

 "/var/app/data/$counter-data.txt

 sleep 30; done']

 volumeMounts:

 - name: data-dir

 mountPath: "/var/app/data"

 resources: {}

 - image: busybox

 name: sidecar

 command: ['sh', '-c', 'while true; do ls

 | wc -l; sleep 30; done']

 volumeMounts:

 - name: data-dir

 mountPath: "/var/app/data"

l

 volumes:

 - name: data-dir

 emptyDir: {}

 dnsPolicy: ClusterFirst

 restartPolicy: Never

status: {}

9. Create the Pod, check for its existence, and tail the logs of the
sidecar container. The number of files will increment over time:

$ kubectl create -f data-exchange.yaml

pod/data-exchange created

$ kubectl get pod data-exchange

NAME READY STATUS RESTARTS A

data-exchange 2/2 Running 0

$ kubectl logs data-exchange -c sidecar -f

1

2

...

10. Delete the Pod:

$ kubectl delete pod data-exchange

pod "data-exchange" deleted

Chapter 5, Observability

1. You can start by generating the YAML manifest in dry-run mode.

The resulting manifest will create the container with the proper
image:

$ kubectl run web-server --image=nginx --port
 -o yaml --dry-run=client > probed-pod.yaml

2. Edit the manifest by defining a startup probe. The finalized mani-
fest could look as follows:

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 run: web-server

 name: web-server

spec:

 containers:

 - image: nginx

 name: web-server

 ports:

 - containerPort: 80

 name: nginx-port

 startupProbe:

 httpGet:

 path: /

 port: nginx-port

 resources: {}

 dnsPolicy: ClusterFirst

 restartPolicy: Never

status: {}

3. Further edit the manifest by defining a readiness probe. The fi-
nalized manifest could look as follows:

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 run: web-server

 name: web-server

spec:

 containers:

 - image: nginx

 name: web-server

 ports:

 - containerPort: 80

 name: nginx-port

 startupProbe:

 httpGet:

 path: /

 port: nginx-port

 readinessProbe:

 httpGet:

 path: /

 port: nginx-port

 initialDelaySeconds: 5

 resources: {}

 dnsPolicy: ClusterFirst

 restartPolicy: Never

status: {}

4. Further edit the manifest by defining a liveness probe. The final-
ized manifest could look as follows:

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 run: web-server

 name: web-server

spec:

 containers:

 - image: nginx

 name: web-server

 ports:

 - containerPort: 80

 name: nginx-port

 startupProbe:

 httpGet:

 path: /

 port: nginx-port

 readinessProbe:

 httpGet:

 path: /

 port: nginx-port

 initialDelaySeconds: 5

 livenessProbe:

 httpGet:

 path: /

 port: nginx-port

 initialDelaySeconds: 10

 periodSeconds: 30

 resources: {}

 dnsPolicy: ClusterFirst

 restartPolicy: Never

status: {}

5. Create the Pod, then check its READY and STATUS columns.

The container will transition from ContainerCreating to
Running . At some point, 1/1 container will be available:

$ kubectl create -f probed-pod.yaml

pod/probed-pod created

$ kubectl get pod web-server

NAME READY STATUS RESTA

web-server 0/1 ContainerCreating 0

$ kubectl get pod web-server

NAME READY STATUS RESTARTS AGE

web-server 0/1 Running 0 8s

$ kubectl get pod web-server

NAME READY STATUS RESTARTS AGE

web-server 1/1 Running 0 38s

6. You should find the configuration of the probes when executing
the describe command:

$ kubectl describe pod web-server
...

Containers:

 web-server:

 ...

 Ready: True

 Restart Count: 0

 Liveness: http-get http://:nginx-por

 period=30s #success=1 #fa

 Readiness: http-get http://:nginx-por

 period=10s #success=1 #fa

 Startup: http-get http://:nginx-por

 period=10s #success=1 #fa

 ...

7. Run the top command to retrieve monitoring metrics from the
metrics server:

$ kubectl top pod web-server

NAME CPU(cores) MEMORY(bytes)

web-server 0m 2Mi

8. You can use the run command and provide the command to
run as an argument. The status of the Pod will turn out to be
Error :

$ kubectl run custom-cmd --image=busybox --re
 -- /bin/sh -c "top-analyzer --all"

pod/custom-cmd created

$ kubectl get pod custom-cmd

NAME READY STATUS RESTARTS AGE

custom-cmd 0/1 Error 0 71s

9. Use the logs command to find more useful runtime informa-
tion. From the error message, you’ll know that the tool top-
analyzer isn’t available for the image:

$ kubectl logs custom-cmd

/bin/sh: top-analyzer: not found

Chapter 6, Pod Design

1. Start by creating the Pods. You can assign labels at the time of
creation:

$ kubectl run pod-1 --image=nginx --restart=N
 --labels=tier=frontend,team=artemidis

pod/pod-1 created

$ kubectl run pod-2 --image=nginx --restart=N
 --labels=tier=backend,team=artemidis

pod/pod-2 created

$ kubectl run pod-3 --image=nginx --restart=N
 --labels=tier=backend,team=artemidis

pod/pod-3 created

$ kubectl get pods --show-labels

NAME READY STATUS RESTARTS AGE LAB

pod-1 1/1 Running 0 30s te

pod-2 1/1 Running 0 24s te

pod-3 1/1 Running 0 16s te

2. You can either edit the live objects to add an annotation or use
the annotate command. We’ll use the imperative command
here:

$ kubectl annotate pod pod-1 pod-3 deployer='
pod/pod-1 annotated

pod/pod-3 annotated

$ kubectl describe pod pod-1 pod-3 | grep Ann
Annotations: deployer: Benjamin Muschko

Annotations: deployer: Benjamin Muschko

3. The label selection requires you to combine equality- and set-
based criteria to find the Pods:

$ kubectl get pods -l tier=backend,'team in (
 --show-labels

NAME READY STATUS RESTARTS AGE L

pod-2 1/1 Running 0 6m38s t

pod-3 1/1 Running 0 6m30s t

4. The create deployment command creates a Deployment
but doesn’t allow for providing the number of replicas as a com-
mand-line option. You will have to run the scale command
afterward:

$ kubectl create deployment server-deployment
deployment.apps/server-deployment created

$ kubectl scale deployment server-deployment

deployment.apps/server-deployment scaled

5. You will find that the Deployment doesn’t make any of its Pods
available even after waiting for a while. The problem is that the
assigned image does not exist. Having a look at one of its Pods
will reveal the issue in the events log:

$ kubectl get deployments

NAME READY UP-TO-DATE AVAIL

server-deployment 0/2 2 0

$ kubectl get pods

NAME READY

 AGE

server-deployment-779f77f555-q6tq2 0/1

 4m31s

server-deployment-779f77f555-sxtnc 0/1

 3m45s

$ kubectl describe pod server-deployment-779f
...

Events:

 Type Reason Age Fr

 Message

 ---- ------ ---- -

Normal Scheduled <unknown> de

 Normal Scheduled <unknown> de

 Successfully assigned default/server-deploym

 to minikube

 Normal Pulling 3m17s (x4 over 4m54s) ku

 Pulling image "grand-server:1.4.6"

 Warning Failed 3m16s (x4 over 4m53s) ku

 Failed to pull image "grand-server:1.4.6": r

 Unknown desc = Error response from daemon: p

 for grand-server, repository does not exist

 'docker login': denied: requested access to

 Warning Failed 3m16s (x4 over 4m53s) ku

 Error: ErrImagePull

 Normal BackOff 3m5s (x6 over 4m53s) ku

 Back-off pulling image "grand-server:1.4.6"

 Warning Failed 2m50s (x7 over 4m53s) ku

 Error: ImagePullBackOff

6. The set image command is a handy shortcut for assigning a
new image to a Deployment. After the change, the rollout history
should contain two revisions: one revision for the initial creation
of the Deployment and another one for the change to the image:

$ kubectl set image deployment server-deploym
deployment.apps/server-deployment image update

$ kubectl rollout history deployments server-

deployment.apps/server-deployment

REVISION CHANGE-CAUSE

1 <none>

2 <none>

7. You can use the image nginx , which has the command-line
tool curl installed. The Unix cron expression for this job is */2

* * * * :

$ kubectl create cronjob google-ping --schedu
 --image=nginx -- /bin/sh -c 'curl google.co
cronjob.batch/google-ping created

8. You can inspect when a CronJob is executed using the -w com-
mand-line option:

$ kubectl get cronjob -w

NAME SCHEDULE SUSPEND ACTIVE

google-ping */2 * * * * False 0

google-ping */2 * * * * False 1

google-ping */2 * * * * False 0

google-ping */2 * * * * False 1

google-ping */2 * * * * False 0

9. Explicitly assign the value 7 to the
spec.successfulJobsHistoryLimit attribute of the live
object. The resulting YAML manifest should have the following
configuration:

...

spec:

 successfulJobsHistoryLimit: 7

...

10. Edit the default value of spec.concurrencyPolicy of the
live object. The resulting YAML manifest should have the follow-
ing configuration:

...

spec:

 concurrencyPolicy: Forbid

...

Chapter 7, Services and Networking

1. The fastest way to create the Pod is by using the run com-
mand. You can see in the following command that you can as-
sign the port and labels at the time of creating the Pod:

$ kubectl run frontend --image=nginx --restar
 -l tier=frontend,app=nginx

pod/frontend created

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

frontend 1/1 Running 0 21s

2. Use the same method to create the backend Pod:

$ kubectl run backend --image=nginx --restart
 -l tier=backend,app=nginx

pod/backend created

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

backend 1/1 Running 0 19s

frontend 1/1 Running 0 3m53s

3. You can use the create service command to generate the
Service. Unfortunately, you cannot assign the labels right away.

Therefore, you’ll write the output of the command to a YAML file
and edit the label selector definition afterward:

$ kubectl create service clusterip nginx-serv
 --dry-run=client -o yaml > nginx-service.ya

Edit the YAML manifest to modify the label selector. The result
should look similar to the following YAML manifest:

apiVersion: v1

kind: Service

metadata:

 creationTimestamp: null

 labels:

 app: nginx-service

 name: nginx-service

spec:

 ports:

 - port: 9000

 protocol: TCP

 targetPort: 8081

 selector:

 tier: backend

 deployment: app

 type: ClusterIP

status:

 loadBalancer: {}

Now, create the Service from the YAML file. Listing the Service
should show the correct type and the exposed port:

$ kubectl create -f nginx-service.yaml

service/nginx-service created

$ kubectl get services

NAME TYPE CLUSTER-IP E

nginx-service ClusterIP 10.110.127.205 <

4. Trying to connect to the underlying Pods of the Service won’t
work. For example, a wget command times out. This behavior
happens because the configuration of the Service doesn’t select
any Pods for two reasons. First, the label selector doesn’t match
any of the existing Pods. Second, the target port isn’t available
on any of the existing Pods:

$ kubectl run busybox --image=busybox --resta

$ kubectl run busybox image busybox resta
/ # wget --spider --timeout=1 10.110.127.205:

Connecting to 10.110.127.205:9000 (10.110.127

wget: download timed out

/ # exit

pod "busybox" deleted

5. Edit the live object of the Service to look as follows. You can see
in the following code snippet that the label selector was changed,

as well as the target port:

apiVersion: v1

kind: Service

metadata:

 creationTimestamp: null

 labels:

 app: nginx-service

 name: nginx-service

spec:

 ports:

 - port: 9000

 protocol: TCP

 targetPort: 80

 selector:

 tier: backend

 app: nginx

 type: ClusterIP

status:

 loadBalancer: {}

As a result of the change, you will be able to connect to the
backend Pod:

$ kubectl run busybox --image=busybox --resta
/ # wget --spider --timeout=1 10.110.127.205:

Connecting to 10.110.127.205:9000 (10.110.127

remote file exists

/ # exit

pod "busybox" deleted

6. You can directly modify the nginx-service live object by
feeding in the desired YAML changes. Here, you’re switching
from the ClusterIP to the NodePort type. You can now con-
nect to it from outside of the cluster using the node’s IP address
and the assigned static port:

$ kubectl patch service nginx-service -p \

 '{ "spec": {"type": "NodePort"} }'

service/nginx-service patched

$ kubectl get services

NAME TYPE CLUSTER-IP E

 AGE

nginx-service NodePort 10.110.127.205 <

 141m

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

minikube Ready master 102d v1.18.3

$ kubectl describe node minikube | grep Inter
 InternalIP: 192.168.64.2

$ wget --spider --timeout=1 192.168.64.2:3268
Spider mode enabled. Check if remote file exi

--2020-09-26 15:59:12-- http://192.168.64.2:

Connecting to 192.168.64.2:32682... connected

HTTP request sent, awaiting response... 200 OK

Length: 612 [text/html]

7. Start by creating the namespace named app-stack . Copy the
contents of the provided YAML definition to the file app-stack-
.yaml and apply it. You should end up with three Pods:

$ kubectl create namespace app-stack

namespace/app-stack created

$ kubectl apply -f app-stack.yaml
pod/frontend created

pod/backend created

pod/database created

$ k b tl t d t k

$ kubectl get pods -n app-stack

NAME READY STATUS RESTARTS AGE

backend 1/1 Running 0 105s

database 1/1 Running 0 105s

frontend 1/1 Running 0 105s

8. Create a new file with the name app-stack-network-policy.yaml.
The following rules describe the desired incoming and outgoing
traffic for the database Pod:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: app-stack-network-policy

 namespace: app-stack

spec:

 podSelector:

 matchLabels:

 app: todo

 tier: database

 policyTypes:

 - Ingress

 - Egress

 ingress:

 - from:

 - podSelector:

 matchLabels:

 app: todo

 tier: backend

Apply the YAML file using the following command:

$ kubectl create -f app-stack-network-policy.
networkpolicy.networking.k8s.io/app-stack-netw

$ kubectl get networkpolicy -n app-stack

NAME POD-SELECTOR

app-stack-network-policy app=todo,tier=datab

9. You can further restrict the ports with the following definition:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: app-stack-network-policy

 namespace: app-stack

spec:

 podSelector:

 matchLabels:

 app: todo

 tier: database

 policyTypes:

 - Ingress

 - Egress

 ingress:

 - from:

 - podSelector:

 matchLabels:

 app: todo

 tier: backend

 ports:

 - protocol: TCP

 port: 3306

The describe command can verify that the correct port
ingress rule has been applied:

$ kubectl describe networkpolicy app-stack-ne
Name: app-stack-network-policy

Namespace: app-stack

Created on: 2020-09-27 16:22:31 -0600 MDT

Labels: <none>

Annotations: <none>

Spec:

 PodSelector: app=todo,tier=database

 Allowing ingress traffic:

 To Port: 3306/TCP

 From:

 PodSelector: app=todo,tier=backend

 Allowing egress traffic:

g g

 <none> (Selected pods are isolated for egr

 Policy Types: Ingress, Egress

Chapter 8, State Persistence

1. Start by generating the YAML manifest using the run command
in combination with the --dry-run option:

$ kubectl run alpine --image=alpine:3.12.0 --
 --restart=Never -o yaml -- /bin/sh -c "whil
 done;" > multi-container-alpine.yaml

$ vim multi-container-alpine.yaml

After editing the Pod, the manifest could look as follows. The
container names here are container1 and container2 :

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 run: alpine

 name: alpine

spec:

 containers:

 - args:

 - /bin/sh

 - -c

 - while true; do sleep 60; done;

 image: alpine:3.12.0

 name: container1

 resources: {}

 - args:

 - /bin/sh

 - -c

 - while true; do sleep 60; done;

 image: alpine:3.12.0

 name: container2

 resources: {}

 dnsPolicy: ClusterFirst

 restartPolicy: Always

status: {}

2. Edit the YAML file further by adding the Volume and the mount
paths for both containers.

In the end, the Pod definition could look as follows:

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 run: alpine

 name: alpine

spec:

 volumes:

 - name: shared-vol

 emptyDir: {}

 containers:

 - args:

 - /bin/sh

 - -c

 - while true; do sleep 60; done;

 image: alpine:3.12.0

 name: container1

 volumeMounts:

 - name: shared-vol

 mountPath: /etc/a

 resources: {}

 - args:

 - /bin/sh

 - -c

 - while true; do sleep 60; done;

 image: alpine:3.12.0

 name: container2

 volumeMounts:

 - name: shared-vol

 mountPath: /etc/b

 resources: {}

 dnsPolicy: ClusterFirst

 restartPolicy: Always

status: {}

Create the Pod and check if it has been created properly. You
should see the Pod in Running status with two containers
ready:

$ kubectl create -f multi-container-alpine.ya
pod/alpine created

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

alpine 2/2 Running 0 18s

3. Use the exec command to shell into the container named
container1 . Create the file /etc/a/data/hello.txt with the rele-
vant content:

$ kubectl exec alpine -c container1 -it -- /b
/ # cd /etc/a

/etc/a # ls -l

total 0

/etc/a # mkdir data

/etc/a # cd data/

/etc/a/data # echo "Hello World" > hello.txt

/etc/a/data # cat hello.txt

Hello World

/etc/a/data # exit

4. Use the exec command to shell into the container named
container2 . The contents of the file /etc/b/data/hello.txt
should say “Hello World”:

$ kubectl exec alpine -c container2 -it -- /b
/ # cat /etc/b/data/hello.txt

Hello World

/ # exit

5. Start by creating a new file named logs-pv.yaml. The contents
could look as follows:

kind: PersistentVolume

apiVersion: v1

metadata:

 name: logs-pv

spec:

 capacity:

 storage: 5Gi

 accessModes:

 - ReadWriteOnce

 - ReadOnlyMany

 hostPath:

 path: /var/logs

Create the PersistentVolume object and check on its status:

$ kubectl create -f logs-pv.yaml

persistentvolume/logs-pv created

$ kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM PO

 STORAGECLASS REASON AGE

logs-pv 5Gi RWO,ROX Retain

 18s

6. Create the file logs-pvc.yaml to define the PersistentVolume-
Claim. The following YAML manifest shows its contents:

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: logs-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 2Gi

Create the PersistentVolume object and check on its status:

$ kubectl create -f logs-pvc.yaml
persistentvolumeclaim/logs-pvc created

$ kubectl get pvc

NAME STATUS VOLUME

 ACCESS MODES STORAGECLASS AGE

logs-pvc Bound pvc-47ac2593-2cd2-4213-9e31

 RWO standard 11s

7. Create the basic YAML manifest using the --dry-run com-
mand-line option:

$ kubectl run nginx --image=nginx --dry-run=c
 -o yaml > nginx-pod.yaml

Now, edit the file nginx-pod.yaml and bind the PersistentVolume-
Claim to it:

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 run: nginx

 name: nginx

spec:

 volumes:

 - name: logs-volume

 persistentVolumeClaim:

 claimName: logs-pvc

 containers:

 - image: nginx

 name: nginx

 volumeMounts:

 - mountPath: "/var/log/nginx"

 name: logs-volume

 resources: {}

 dnsPolicy: ClusterFirst

 restartPolicy: Never

status: {}

Create the Pod using the following command and check its
status:

$ kubectl create -f nginx-pod.yaml

pod/nginx created

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx 1/1 Running 0 8s

8. Use the exec command to open an interactive shell to the Pod
and create a file in the mounted directory:

$ kubectl exec nginx -it -- /bin/sh

cd /var/log/nginx

touch my-nginx.log

ls

access.log error.log my-nginx.log

exit

9. After re-creating the Pod, the file stored on the PersistentVolume
should still exist:

$ kubectl delete pod nginx

$ kubectl create -f nginx-pod.yaml

pod/nginx created

$ kubectl exec nginx -it -- /bin/sh

cd /var/log/nginx

ls

access.log error.log my-nginx.log

exit

Index

A

access control, Understanding Security Contexts, Understanding
Service Accounts
adapter pattern, The Adapter Pattern-The Adapter Pattern
ambassador pattern, The Ambassador Pattern-Summary
annotations

basics of, Understanding Annotations
declaring, Declaring Annotations
inspecting, Inspecting Annotations
modifying for live objects, Modifying Annotations for a Live
Object

API version, Kubernetes Primitives
arguments, defining commands with, Defining a Command with
Arguments
authentication tokens, Understanding Service Accounts
auto-completion functionality, Exam Environment and Tips

B

background knowledge, Candidate Skills
Bash commands, Candidate Skills

C

-C option, Finding Object Information
candidate skills, Candidate Skills
Certified Kubernetes Administrator (CKA), Preface
Certified Kubernetes Application Developer (CKAD), Preface
cheat sheets, Exam Environment and Tips
Cloud Native Computing Foundation (CNCF), Preface, Candidate
Skills
ClusterIP Service type, Service Types, Accessing a Service with
Type ClusterIP-Accessing a Service with Type ClusterIP
CMD instructions, Defining a Command with Arguments
code examples, obtaining and using, Using Code Examples
commands (see also kubectl command-line tool)

defining with arguments, Defining a Command with Arguments
executing in containers, Executing a Command in Container

comments and questions, How to Contact Us
computing resources

creating ResourceQuota objects, Creating a ResourceQuota
exploring ResourceQuota enforcement, Exploring Resource-
Quota Enforcement
understanding resource boundaries, Understanding Resource
Boundaries

ConfigMaps

consuming as environment variables, Consuming a ConfigMap
as Environment Variables
creating, Creating a ConfigMap
mounting as Volumes, Mounting a ConfigMap as Volume
versus Secrets, Defining and Consuming Configuration Data

configuration
concepts covered, Configuration
configuration data

benefits of building binary artifacts just once, Defining and
Consuming Configuration Data
consuming ConfigMaps as environment variables,

Consuming a ConfigMap as Environment Variables
consuming Secrets as environment variables, Consuming a
Secret as Environment Variables
creating ConfigMaps, Creating a ConfigMap
creating Secrets, Creating a Secret
mounting ConfigMaps as Volumes, Mounting a ConfigMap as
Volume
mounting Secrets as Volumes, Mounting a Secret as Volume
primitives dedicated to, Defining and Consuming Configura-
tion Data

core concepts, Configuring Pods-Defining a Command with
Arguments
exam curriculum, Configuration

exam essentials, Exam Essentials
overview of, Summary
resource boundaries, Understanding Resource Boundaries-
Exploring ResourceQuota Enforcement
sample exercises, Sample Exercises
sample exercises answers, Chapter 3, Configuration-Chapter 3,

Configuration
security contexts, Understanding Security Contexts-
Understanding Security Contexts
Service Accounts, Understanding Service Accounts-Creating
and Assigning Custom Service Accounts

--container option, Init Containers
container runtime engine (CRI), Creating Pods
containerization (see also init containers)

basics of, Containerization Process
categories of containers, The Sidecar Pattern
containerizing Java-based applications, Example: Containeriz-
ing a Java-Based Application-Example: Containerizing a Java-
Based Application
ephemeral containers, Using an Ephemeral Container
executing commands in containers, Executing a Command in
Container

context, setting, Setting a Context and Namespace
core concepts

containerization process, Containerization Process-Example:

Containerizing a Java-Based Application
description of, Core Concepts
exam curriculum, Core Concepts
exam essentials, Exam Essentials
executing commands in containers, Executing a Command in
Container
interacting with Kubernetes clusters, Using kubectl to Interact
with the Kubernetes Cluster
Kubernetes primitives, Kubernetes Primitives-Kubernetes
Primitives
namespaces

basics of, Understanding Namespaces
creating and using, Creating and Using a Namespace
deleting, Deleting a Namespace
listing, Listing Namespaces

object management, Object Management-Updating a live object
Pods

accessing logs of, Accessing Logs of a Pod
basics of, Understanding Pods
configuring, Configuring Pods-Defining a Command with
Arguments
creating, Creating Pods-Creating Pods
deleting, Deleting a Pod

life cycle phases, Pod Life Cycle Phases
listing, Listing Pods
rendering Pod details, Rendering Pod Details

sample exercises, Sample Exercises
sample exercises answers, Chapter 2, Core Concepts-Chapter
2, Core Concepts

CronJobs, Understanding CronJobs

D

Datadog, Monitoring
debugging

opening interactive shells, Opening an Interactive Shell
troubleshooting Pods

common Pod error statuses, Retrieving high-level information
debugging YAML manifests, Debugging YAML manifests
inspecting events, Inspecting events
inspecting logs, Inspecting logs
retrieving high-level information, Retrieving high-level
information
verifying correct behavior, Troubleshooting Pods

troubleshooting Services, Troubleshooting Services, Rendering
Service Details
using ephemeral containers, Using an Ephemeral Container

declarative object creation, Declarative Approach

declarative Pod creation, Creating Pods
Deployments

autoscaling, Autoscaling a Deployment
basics of, Understanding Deployments
creating, Creating Deployments
exposing, Creating Services
Horizontal Pod Autoscaler (HPA), Horizontal Pod Autoscaler
listing, Listing Deployments
manually scaling, Manually Scaling a Deployment
relationship between Deployments and Services, Deployments
and Services
rendering deployment details, Rendering Deployment Details
rolling back to previous revisions, Rolling Back to a Previous
Revision
rolling out new revisions, Rolling Out a New Revision

Docker, Candidate Skills, Containerization Process
Docker Hub, Container Concepts
docker-registry option (Secrets), Creating a Secret
Dockerfile, Container Concepts
documentation, What You Will Learn, Exam Environment and Tips,

Discovering Command Options
--dry-run=client option, Hybrid Approach

E

ENTRYPOINT instructions, Defining a Command with Arguments
--env option, Creating Pods
envFrom attribute, Consuming a ConfigMap as Environment Vari-
ables, Consuming a Secret as Environment Variables
environment variables

consuming ConfigMaps as, Consuming a ConfigMap as Envi-
ronment Variables
consuming Secrets as, Consuming a Secret as Environment
Variables
declaring, Declaring Environment Variables
reassigning variable keys, Consuming a ConfigMap as Environ-
ment Variables

ephemeral containers, Using an Ephemeral Container
equality-based requirement, Label Selection from the Command
Line
errors (see debugging)

exam details and resources
CKAD versus CKA certifications, Preface
CKAD versus other certifications, Preface
command line tips, Command Line Tips and Tricks-Discovering
Command Options
curriculum covered, Curriculum-State Persistence
exam environment and tips, Exam Environment and Tips
exam objectives, Exam Objectives, State Persistence

exam overview, Summary
exam preparation

configuration essentials, Exam Essentials
core concept essentials, Exam Essentials
multi-container Pod essentials, Exam Essentials
observability essentials, Exam Essentials
Pod design essentials, Exam Essentials
reviewing official documentation, Exam Environment and
Tips
Services and networking essentials, Exam Essentials
state persistence essentials, Exam Essentials

guide to applicable resources and relationships, State
Persistence
practicing and practice exams, Practicing and Practice Exams
prerequisites, Who This Book Is For, Candidate Skills
time management, Time Management
version used during exam, Exam Objectives

--expose option, Creating Services
ExternalName Service type, Service Types

F

-f option, Accessing Logs of a Pod, Inspecting logs
--feature-gates flag, Using an Ephemeral Container
--force option, Deleting Kubernetes Objects

--from-file option, Creating a ConfigMap

G

GCR registry, Container Concepts
generic option (Secrets), Creating a Secret
GNU Bash, Candidate Skills
--grace-period=0 option, Deleting Kubernetes Objects
grep command, Finding Object Information, Rendering Pod Details

H

health probing
liveness probes, Liveness Probe
overview of, Understanding Health Probing-Understanding
Health Probing

fine-tuning runtime behavior, Understanding Health Probing
health verification methods, Understanding Health Probing

readiness probes, Readiness Probe
startup probes, Startup Probe

--help option, Discovering Command Options, Creating Pods
Horizontal Pod Autoscaler (HPA), Autoscaling a Deployment-
Horizontal Pod Autoscaler
hybrid object creation, Hybrid Approach

I

--image option, Creating Pods
images (Docker), Container Concepts
imperative object creation, Imperative Approach
imperative Pod creation, Creating Pods
init containers (see also containerization)

benefits of, Multi-Container Pods
defining, Init Containers
determining status of, Init Containers
lifecycle phases, The Sidecar Pattern
retrieving logs of, Init Containers

interactive shells, Opening an Interactive Shell
-it interactive flag, Executing a Command in Container

J

Jobs
basics of, Understanding Jobs
configuring retained Job history, Configuring Retained Job
History
creating and inspecting, Creating and Inspecting Jobs, Creating
and Inspecting Jobs
CronJobs, Understanding CronJobs
Job operation types, Job Operation Types

restart behavior, Restart Behavior
JSON, Candidate Skills

K

key-value pairs, Understanding Labels
kube- prefix (namespaces), Listing Namespaces
kubectl annotate pod command, Modifying Annotations for a Live
Object
kubectl api-resources command, Internalize Resource Short
Names
kubectl apply command, Declarative Approach, Updating a live ob-
ject, Creating Pods
kubectl autoscale deployment command, Horizontal Pod
Autoscaler
kubectl command-line tool

cheat sheet documentation, Exam Environment and Tips
essential exam preparation, Candidate Skills
--help option, Discovering Command Options, Creating Pods
interacting with Kubernetes clusters, Using kubectl to Interact
with the Kubernetes Cluster
tips and tricks, Command Line Tips and Tricks-Discovering
Command Options

kubectl config set-context command, Setting a Context and
Namespace

kubectl create command, Discovering Command Options,

Imperative Approach-Which Approach to Use?, Creating Pods
kubectl create configmap command, Creating a ConfigMap,

Creating a Secret
kubectl create cronjob command, Creating and Inspecting Jobs
kubectl create deployment command, Creating Deployments
kubectl create job command, Creating and Inspecting Jobs
kubectl create namespace command, Creating a ResourceQuota
kubectl create secret command, Creating a Secret
kubectl create service command, Creating Services
kubectl create serviceaccount command, Creating and Assigning
Custom Service Accounts
kubectl delete command, Deleting an object, Deleting a Pod
kubectl describe command, Rendering Pod Details
kubectl describe deployment command, Rendering Deployment
Details, Manually Scaling a Deployment
kubectl describe networkpolicy command, Rendering Network Pol-
icy Details
kubectl describe pod command, Inspecting events
kubectl describe pod labeled-pod command, Inspecting Labels
kubectl describe pods command, Finding Object Information
kubectl describe service command, Troubleshooting Services
kubectl edit command, Editing a live object
kubectl exec command, Executing a Command in Container

kubectl explain command, Discovering Command Options
kubectl get all command, Retrieving high-level information
kubectl get cronjobs command, Creating and Inspecting Jobs
kubectl get endpoints command, Troubleshooting Services
kubectl get events command, Inspecting events
kubectl get hpa command, Horizontal Pod Autoscaler
kubectl get namespace command, Listing Namespaces, Creating
a ResourceQuota
kubectl get networkpolicy command, Listing Network Policies
kubectl get pod labeled-pod command, Inspecting Labels
kubectl get pods command, Listing Pods, Retrieving high-level
information
kubectl get serviceaccounts command, Understanding Service
Accounts
kubectl get services command, Troubleshooting Services
kubectl logs command, Accessing Logs of a Pod, Defining a Com-
mand with Arguments, The Sidecar Pattern, Inspecting logs
kubectl patch command, Accessing a Service with Type NodePort
kubectl proxy command, Accessing a Service with Type ClusterIP
kubectl replace command, Replacing a live object
kubectl rollout command, Rolling Out a New Revision
kubectl run busybox command, Accessing a Service with Type
ClusterIP

kubectl run command, Imperative Approach-Which Approach to
Use?, Creating Pods
kubectl run labeled-pod command, Declaring Labels
kubectl run nginx command, Accessing a Service with Type
ClusterIP
kubectl scale command, Manually Scaling a Deployment
Kubernetes

benefits of, Preface, Exam Objectives
free introductory course, Candidate Skills
official documentation, What You Will Learn, Exam Environment
and Tips, Discovering Command Options
primitives, Kubernetes Primitives-Kubernetes Primitives
version used during exam, Exam Objectives

L

labels
basics of, Understanding Labels
declaring, Declaring Labels
inspecting, Inspecting Labels
modifying for live objects, Modifying Labels for a Live Object
using label selectors, Using Label Selectors-Label Selection in
a Manifest

--labels option, Creating Pods
liveness probes, Understanding Health Probing, Liveness Probe

LoadBalancer Service type, Service Types

M

metrics server, Monitoring
monitoring services, The Sidecar Pattern
monitoring tools, Monitoring
multi-container Pods (see also Pod design; Pods)

adapter pattern, The Adapter Pattern-The Adapter Pattern
ambassador pattern, The Ambassador Pattern-Summary
benefits of, Multi-Container Pods
concepts covered, Multi-Container Pods
defining, Defining Multiple Containers in a Pod
exam curriculum, Multi-Container Pods
exam essentials, Exam Essentials
init containers, Init Containers-Init Containers
overview of, Summary
sample exercises, Sample Exercises
sample exercises answers, Chapter 4, Multi-Container Pods-
Chapter 4, Multi-Container Pods
sidecar pattern, The Sidecar Pattern-The Sidecar Pattern
use cases for, Defining Multiple Containers in a Pod

N

--namespace option, Creating and Using a Namespace
namespaces

basics of, Understanding Namespaces
creating and using, Creating and Using a Namespace
custom, Setting a Context and Namespace
deleting, Deleting a Namespace
isolated all pods in a namespace, Isolating All Pods in a
Namespace
listing, Listing Namespaces

network policies
basics of, Understanding Network Policies
configuration elements of, Understanding Network Policies
creating, Creating Network Policies-Creating Network Policies
listing, Listing Network Policies
rendering details of, Rendering Network Policy Details

NodePort Service type, Service Types, Accessing a Service with
Type NodePort
non-parallel Jobs, Job Operation Types

O

-o yaml option, Hybrid Approach
objects

assigning labels to, Declaring Labels
deleting, Deleting Kubernetes Objects, Deleting an object

finding object information, Finding Object Information
general structure of, Kubernetes Primitives
modifying annotations for live, Modifying Annotations for a Live
Object
modifying labels for live, Modifying Labels for a Live Object
object management, Object Management-Updating a live object
relationship to primitives, Kubernetes Primitives

observability
concepts covered, Observability
debugging

opening interactive shells, Opening an Interactive Shell
troubleshooting Pods, Troubleshooting Pods-Inspecting logs
troubleshooting Services, Troubleshooting Services,

Rendering Service Details
using ephemeral containers, Using an Ephemeral Container

exam curriculum, Observability
exam essentials, Exam Essentials
health probing overview, Understanding Health Probing-
Understanding Health Probing
liveness probes, Liveness Probe
monitoring, Monitoring
overview of, Summary
readiness probes, Readiness Probe
sample exercises, Sample Exercises

sample exercises answers, Chapter 5, Observability-Chapter 5,

Observability
startup probes, Startup Probe

official documentation, What You Will Learn, Exam Environment
and Tips, Discovering Command Options
online training, Practicing and Practice Exams

P

pipe calls, Finding Object Information
Pod design (see also multi-container Pods; Pods)

annotations
basics of, Understanding Annotations
declaring, Declaring Annotations
inspecting, Inspecting Annotations
modifying for live objects, Modifying Annotations for a Live
Object

concepts covered, Pod Design
Deployments

autoscaling, Autoscaling a Deployment
basics of, Understanding Deployments
creating, Creating Deployments
Horizontal Pod Autoscaler (HPA), Horizontal Pod Autoscaler
listing, Listing Deployments
manually scaling, Manually Scaling a Deployment

rendering Deployment details, Rendering Deployment
Details
rolling back to previous revisions, Rolling Back to a Previous
Revision
rolling out new revisions, Rolling Out a New Revision

exam curriculum, Pod Design
exam essentials, Exam Essentials
Jobs

basics of, Understanding Jobs
configuring retained Job history, Configuring Retained Job
History
creating and inspecting, Creating and Inspecting Jobs,

Creating and Inspecting Jobs
CronJobs, Understanding CronJobs
Job operation types, Job Operation Types
restart behavior, Restart Behavior

labels
basics of, Understanding Labels
declaring, Declaring Labels
inspecting, Inspecting Labels
modifying for live objects, Modifying Labels for a Live Object
using label selectors, Using Label Selectors-Label Selection
in a Manifest

overview of, Summary

sample exercises, Sample Exercises
sample exercises answers, Chapter 6, Pod Design-Chapter 6,

Pod Design
Pods (see also Pod design; multi-container Pods)

accessing logs of, Accessing Logs of a Pod
basics of, Understanding Pods
configuring, Configuring Pods-Defining a Command with
Arguments
creating, Creating Pods-Creating Pods
defining traffic from and to, Understanding Network Policies
deleting, Deleting a Pod
exposing, Creating Services
isolating all in a namespace, Isolating All Pods in a Namespace
life cycle phases, Pod Life Cycle Phases
limiting traffic to and from, Creating Network Policies
listing, Listing Pods
Pod-to-Pod communication, Summary
rendering Pod details, Rendering Pod Details
sample exercises, Sample Exercises
sample exercises answers, Chapter 2, Core Concepts-Chapter
2, Core Concepts
Service Accounts, Understanding Service Accounts-Creating
and Assigning Custom Service Accounts
troubleshooting, Troubleshooting Pods-Inspecting logs

PodSecurityContext API, Understanding Security Contexts
--port option, Creating Pods
ports

port mapping, Port Mapping
restricting access to, Restricting Access to Ports

practice exams, Practicing and Practice Exams
--previous option, Inspecting logs
primitives

API version, Kubernetes Primitives
basics of, Kubernetes Primitives
kind, Kubernetes Primitives
metadata, Kubernetes Primitives
specification (spec), Kubernetes Primitives
status, Kubernetes Primitives

Prometheus, Monitoring
provisioning, static versus dynamic, Static Versus Dynamic
Provisioning

Q

Quay registry, Container Concepts
questions and comments, How to Contact Us
quick reference guides, Exam Environment and Tips

R

readiness probes, Understanding Health Probing, Readiness
Probe
registry (Docker), Container Concepts
ReplicaSet, Understanding Deployments
ResourceQuota objects, Creating a ResourceQuota-Exploring Re-
sourceQuota Enforcement
resources

resource usage data, Monitoring
short names, Internalize Resource Short Names

review exercises solutions
configuration, Chapter 3, Configuration-Chapter 3, Configuration
core concepts, Chapter 2, Core Concepts-Chapter 2, Core
Concepts
multi-container Pods, Chapter 4, Multi-Container Pods-Chapter
4, Multi-Container Pods
observability, Chapter 5, Observability-Chapter 5, Observability
Pod design, Chapter 6, Pod Design-Chapter 6, Pod Design
Services and networking, Chapter 7, Services and Networking-
Chapter 7, Services and Networking
state persistence, Chapter 8, State Persistence-Chapter 8, State
Persistence

--revision option, Rolling Out a New Revision
revisions

rolling back to previous, Rolling Back to a Previous Revision

rolling out new, Rolling Out a New Revision
--rm option, Creating Pods
role-based access control (RBAC), Understanding Service
Accounts
rolling update strategy, Rolling Out a New Revision

S

scaling
automatic scaling, Autoscaling a Deployment
manual scaling, Manually Scaling a Deployment

Secrets
authentication tokens, Understanding Service Accounts
versus ConfigMaps, Defining and Consuming Configuration
Data
consuming as environment variables, Consuming a Secret as
Environment Variables
creating, Creating a Secret
mounting as Volumes, Mounting a Secret as Volume

security issues
access control, Understanding Security Contexts,

Understanding Service Accounts
defining security contexts, Understanding Security Contexts
restricting access to ports, Restricting Access to Ports
Secrets, Defining and Consuming Configuration Data

setting filesystem group ID, Understanding Security Contexts
securityContex directive, Understanding Security Contexts
SecurityContext API, Understanding Security Contexts
--selector option, Label Selection from the Command Line
Service Accounts

basics of, Understanding Service Accounts
creating and assigning custom, Creating and Assigning Custom
Service Accounts

Services and networking
accessing Services with type ClusterIP, Accessing a Service
with Type ClusterIP-Accessing a Service with Type ClusterIP
accessing Services with type NodePort, Accessing a Service
with Type NodePort
basics of Services, Understanding Services
concepts covered, Services & Networking
creating Services, Creating Services
exam curriculum, Services & Networking
exam essentials, Exam Essentials
isolating all pods in a namesapce, Isolating All Pods in a
Namespace
listing Services, Listing Services
network policies

basics of, Understanding Network Policies
configuration elements of, Understanding Network Policies

creating, Creating Network Policies-Creating Network
Policies
listing, Listing Network Policies
rendering details of, Rendering Network Policy Details

overview of, Summary
ports

port mapping, Port Mapping
restricting access to, Restricting Access to Ports

relationship between Deployments and Services, Deployments
and Services
rendering Service details, Rendering Service Details
sample exercises, Sample Exercises
sample exercises answers, Chapter 7, Services and
Networking-Chapter 7, Services and Networking
Service types, Service Types
troubleshooting Services, Troubleshooting Services, Rendering
Service Details

set-based requirement, Label Selection from the Command Line
shell alias, Using an Alias for kubectl
short names, Internalize Resource Short Names
--show-labels option, Troubleshooting Services, Label Selection
from the Command Line
sidecar pattern, Defining Multiple Containers in a Pod, The Sidecar
Pattern-The Sidecar Pattern

SIGKILL signal, Deleting Kubernetes Objects
single-container Pods (see Pods)

Spring Boot framework, Example: Containerizing a Java-Based
Application
SSH private keys, Mounting a Secret as Volume
startup probes, Understanding Health Probing, Startup Probe
state persistence

concepts covered, State Persistence
exam curriculum, State Persistence
exam essentials, Exam Essentials
overview of, Summary
Persistent Volumes

basics of, Understanding Persistent Volumes
creating PersistentVolumes, Creating PersistentVolumes
creating PersistentVolumesClaims, Creating
PersistentVolumeClaims
mounting PersistentVolumesClaims, Mounting PersistentVol-
umeClaims in a Pod
PersistentVolumeClaim, Understanding Persistent Volumes

sample exercises, Sample Exercises
sample exercises answers, Chapter 8, State Persistence-
Chapter 8, State Persistence
static versus dynamic provisioning, Static Versus Dynamic
Provisioning

Volumes
basics of, Understanding Volumes
creating and accessing, Creating and Accessing Volumes
types of, Volume Types

storage classes, Static Versus Dynamic Provisioning

T

time management, Time Management
tls option (Secrets), Creating a Secret

U

Unix commands, Finding Object Information, Rendering Pod
Details
update strategies, Rolling Out a New Revision
usage metrics, Monitoring

V

Vertical Pod Autoscaler (VPA), Autoscaling a Deployment
vi and vim tools, Candidate Skills
Volumes

basics of, Understanding Volumes
creating and accessing, Creating and Accessing Volumes
mounting ConfigMaps as, Mounting a ConfigMap as Volume

mounting Secrets as, Mounting a Secret as Volume
Persistent Volumes

basics of, Understanding Persistent Volumes
creating PersistentVolumes, Creating PersistentVolumes
creating PersistentVolumesClaims, Creating
PersistentVolumeClaims
mounting PersistentVolumesClaims, Mounting PersistentVol-
umeClaims in a Pod
PersistentVolumeClaim, Understanding Persistent Volumes

purpose of, State Persistence
types of, Volume Types

volumes attribute, Mounting a ConfigMap as Volume

W

web dashboard UI, Candidate Skills

Y

YAML, Candidate Skills

About the Author

Benjamin Muschko is a software engineer, consultant, and trainer
with more than 15 years of experience in the industry. He’s passion-
ate about project automation, testing, and continuous delivery. Ben is
an author, a frequent speaker at conferences, and an avid open
source advocate. He holds the CKAD certification.

Software projects sometimes feel like climbing a mountain. In his free
time, Ben loves hiking Colorado’s 14ers and enjoys conquering long-
distance trails.

https://www.14ers.com/

Colophon

The animal on the cover of Certified Kubernetes Application Develop-
er (CKAD) Study Guide is a common porpoise (Phocoena
phocoena). It is the smallest of the seven species of porpoise and
one of the smallest marine mammals. Adults are 4.5 to 6 feet long and
weigh between 130 and 170 pounds. They are dark gray with lightly
speckled sides and white undersides. Females are larger than males.

The common porpoise lives in the coastal waters of the North At-
lantic, North Pacific, and Black Sea. They are also known as harbor
porpoises since they inhabit fjords, bays, estuaries, and harbors.

These marine mammals eat very small schooling fish and will hunt
several hundred fish per hour throughout the day. They are usually
solitary hunters but will occasionally form small packs.

Porpoises use ultrasonic clicks for echolocation (for both navigation
and hunting) and social communication. A mass of adipose tissue in
the skull, known as a melon, focuses and modulates their
vocalizations.

Porpoises are conscious breathers, so if they are unconscious for a
long time, they may drown. In captivity, they have been known to
sleep with one side of their brain at a time so that they can still swim
and breathe consciously.

The conservation status of the common porpoise is of least concern.

Many of the animals on O’Reilly covers are endangered; all of them
are important to the world.

The cover illustration is by Karen Montgomery, based on a black and
white engraving from British Quadrupeds. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Preface
	Who This Book Is For
	What You Will Learn
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Exam Details and Resources
	Exam Objectives
	Curriculum
	Core Concepts
	Configuration
	Multi-Container Pods
	Observability
	Pod Design
	Services & Networking
	State Persistence

	Exam Environment and Tips
	Candidate Skills
	Time Management
	Command Line Tips and Tricks
	Setting a Context and Namespace
	Using an Alias for kubectl
	Internalize Resource Short Names
	Deleting Kubernetes Objects
	Finding Object Information
	Discovering Command Options

	Practicing and Practice Exams
	Summary

	2. Core Concepts
	Kubernetes Primitives
	Using kubectl to Interact with the Kubernetes Cluster
	Object Management
	Imperative Approach
	Declarative Approach
	Hybrid Approach
	Which Approach to Use?
	Other Notable Commands

	Understanding Pods
	Containerization Process
	Container Concepts
	Example: Containerizing a Java-Based Application

	Creating Pods
	Listing Pods
	Pod Life Cycle Phases
	Rendering Pod Details
	Accessing Logs of a Pod
	Executing a Command in Container
	Deleting a Pod
	Configuring Pods
	Declaring Environment Variables
	Defining a Command with Arguments

	Understanding Namespaces
	Listing Namespaces
	Creating and Using a Namespace
	Deleting a Namespace
	Summary
	Exam Essentials
	Sample Exercises

	3. Configuration
	Defining and Consuming Configuration Data
	Creating a ConfigMap
	Consuming a ConfigMap as Environment Variables
	Mounting a ConfigMap as Volume
	Creating a Secret
	Consuming a Secret as Environment Variables
	Mounting a Secret as Volume

	Understanding Security Contexts
	Understanding Resource Boundaries
	Creating a ResourceQuota
	Exploring ResourceQuota Enforcement

	Understanding Service Accounts
	Creating and Assigning Custom Service Accounts

	Summary
	Exam Essentials
	Sample Exercises

	4. Multi-Container Pods
	Defining Multiple Containers in a Pod
	Init Containers
	The Sidecar Pattern
	The Adapter Pattern
	The Ambassador Pattern
	Summary
	Exam Essentials
	Sample Exercises

	5. Observability
	Understanding Health Probing
	Readiness Probe
	Liveness Probe
	Startup Probe
	Debugging in Kubernetes
	Troubleshooting Pods
	Opening an Interactive Shell
	Using an Ephemeral Container
	Troubleshooting Services

	Monitoring
	Summary
	Exam Essentials
	Sample Exercises

	6. Pod Design
	Understanding Labels
	Declaring Labels
	Inspecting Labels
	Modifying Labels for a Live Object
	Using Label Selectors
	Label Selection from the Command Line
	Label Selection in a Manifest

	Understanding Annotations
	Declaring Annotations
	Inspecting Annotations
	Modifying Annotations for a Live Object
	Understanding Deployments
	Creating Deployments
	Listing Deployments
	Rendering Deployment Details
	Rolling Out a New Revision
	Rolling Back to a Previous Revision
	Manually Scaling a Deployment
	Autoscaling a Deployment
	Horizontal Pod Autoscaler
	Understanding Jobs
	Creating and Inspecting Jobs
	Job Operation Types
	Restart Behavior
	Restarting the Container on Failure
	Starting a New Pod on Failure

	Understanding CronJobs
	Creating and Inspecting Jobs
	Configuring Retained Job History
	Summary
	Exam Essentials
	Sample Exercises

	7. Services & Networking
	Understanding Services
	Service Types
	Creating Services
	Listing Services
	Rendering Service Details
	Port Mapping
	Accessing a Service with Type ClusterIP
	Accessing a Service with Type NodePort
	Deployments and Services
	Understanding Network Policies
	Creating Network Policies
	Listing Network Policies
	Rendering Network Policy Details
	Isolating All Pods in a Namespace
	Restricting Access to Ports
	Summary
	Exam Essentials
	Sample Exercises

	8. State Persistence
	Understanding Volumes
	Volume Types
	Creating and Accessing Volumes
	Understanding Persistent Volumes
	Static Versus Dynamic Provisioning
	Creating PersistentVolumes
	Creating PersistentVolumeClaims
	Mounting PersistentVolumeClaims in a Pod
	Summary
	Exam Essentials
	Sample Exercises

	Answers to Review Questions
	Chapter 2, Core Concepts
	Chapter 3, Configuration
	Chapter 4, Multi-Container Pods
	Chapter 5, Observability
	Chapter 6, Pod Design
	Chapter 7, Services and Networking
	Chapter 8, State Persistence

	Index
	About the Author

